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Abstract

Crystalline unit cell structure of anhydrous title compound, diantipyrinylmethane (CAS Registry No. 1251-85-0), a substance usually 

obtained as a by-product in Mannich type reactions of antipyrine, has been modelled by the help of powder X-ray diffraction, applying 

the DASH software package and crystal coordinates coming from former single crystal X-ray structure determinations (CSD codes 

FADDIY and FADDIY01) of its monohydrate. The unit cell of the anhydrate compound belongs to the monoclinic space group P21/a, 

with unit cell parameters of a = 14.604, b = 9.858, c = 14.509 Å, β = 95.56 °, V = 2078.9 Å3, Z = 4, Z ' = 1. Comparisons of FT-IR spectrum 

and thermal behavior of the anhydrous and monohydrated forms confirm differences in degree of hydration and solid state structure, 

while those of 1H- and 13C NMR-spectra show their molecular identity.
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1 Introduction
Most crystal and molecule structure determinations car-
ried out by X-ray diffraction are based on successful 
growth of a single crystal of organic compounds [1, 2]. 
In case, when single crystal growth fails, powder X-ray 
diffraction still provides a little hope to extract some 
structural information [3]. Luckily, several software pro-
grams have been compiled till now to help the efforts for 
structural determinations from powder data [4, 5], aim-
ing at various organic compounds, especially pharmaceu-
ticals. Among them, the DASH software package [6] is 
a versatile, user-friendly graphical-user-interface-driven 
computer program, which earlier was distributed together 
with Cambridge Structural Database System [7] package, 
and now it available separately and publicly at world wide 
web (link to 'github.com/ccdc-opensource/dash/releases'), 
as well. It serves continuously quite well [8, 9] on powder 
diffraction data collected in high resolution by synchrotron 

radiation [10], including e.g., mebendazole Form A [11]. 
Laboratory pattern collections were also tested by the 
DASH package [12]. Several structures, obtained success-
fully with the help of the DASH program, are also reported 
for various crystalline pigments [13, 14] and recently for 
(RS)-trichlormethiazide [15], when their diffraction pat-
terns were measured only by laboratory X-ray tubes. 
Anhydrates of ezetimibe [16], morphine [17], naloxone 
hydrochloride and naltrexone hydrochloride [18] were also 
determined from laboratory powder diffraction data by 
application of DASH, where the initial molecular geom-
etries were taken from the single-crystal structure of the 
monohydrates by excluding the water molecule. Similarly 
to the latter cases, we could find our title compound in an 
anhydrous form, and tried to resolve its unknown unit cell 
features as deep as possible, based on its laboratory pow-
der pattern and known monohydrate structure, applying 
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build-in indexing and simulated annealing opportunities 
of the DASH program package [6].

There are several indications for the existence of dianti-
pyrinylmethane (or 4,4'-methylenediantipyrine, CAS Reg- 
istry No. 1251-85-0, see structure in Table 1), obtained usu-
ally as a by-product of Mannich-type reactions of antipyrine, 
as a solid compound in at least two crystalline forms, espe-
cially either in anhydrous or monohydrate forms. The melt-
ing point of 4,4'-methylenediantipyrine is mostly observed 
in the range of 176–181 °C [19–24], but exceptionally it is 
also reported even at 153–154 °C [25]. Actually, two sin-
gle crystal structural determinations are available in the 
Cambridge Structural Database (CSD, CCDC) [1, 7], 
both are for the monohydrate form of 4,4'-methylene-
diantipyrine, with structural codes FADDIY [26] and 
FADDIY01 [27], which were measured at −70 and ca. 
+20 °C, respectively, and both of them indicate a space 
group symmetry of P21/c and closely related unit cell struc-
tures. Nevertheless, there are several various powder XRD 
patterns of 'low precision' (i.e., which are without assigna-
tion of crystal system or unit cell information) but only for 
anhydrous forms of the title compound in the international 
PDF4+ database (ICDD) [28]. Among them, the PDF File 
No. 00-021-1604 (unindexed pattern, deposited in 1967, 
in frame of a ICDD Grant-in-aid support, available by sub-
scription) seems to be the most reliable one.

We have been lucky to obtain and study both anhydrous 
and monohydrate forms of diantipyrinylmethane, and tried 
to index their room temperature powder patterns measured 
by laboratory X-ray tube and establish the still missing 
conventional crystallographic unit cell parameters of the 
anhydrous form by the help of DASH software package [6].

2 Experimental
2.1 Synthesis of anhydrous 4,4'-methylenediantipyrine
0.36 mL formaldehyde (as a 35% aqueous solution) and 
0.28 mL cc. HCl in 2 mL of water was added to 2.6 mmol 
(0.5 g) racemic antipyrine and refluxed for 24 hours. After 
completion of the reaction, the mixture was extracted 
with 15 mL of dichloromethane. After separating the 
phases, 1.5 ml 30% V/V% KOH/aq was added to the aque-
ous phase. The opal solution obtained was extracted by 
15 mL of dichloromethane. The organic phase was dried 
over Na2SO4. The obtained product was crystallized from 
diethyl ether. Recrystallization from aqueous ethanol 
resulted in monohydrate form.

2.2 Powder X-ray Diffraction (XRD)
Powder XRD patterns were recorded with an X'pert Pro 
MPD (PANalytical B.v., The Netherlands) multipurpose 
X-ray diffractometer using Cu Kα radiation (λ = 1.5406 Å) 
with Ni filter, X'celerator detector, and "zero background" 
single crystal silicon or "top-loaded" sample holders in the 
range of 2θ = 4 − 44°. The X-ray tube was operating at 
40 kV and 30 mA.

2.3 Indexing, space group determination and structure 
modelling based on powder XRD pattern by DASH 
program package
For special purposes of the simulated annealing method of 
structural modelling in the DASH software package [6], a 
step size of 0.0167° up to 2θ = 52° was applied, in order 
to see the merit of fitting of simulated patterns at high 
degrees, as well. In this case, the overall measurement 
time was 39 min. Unit cell searches were carried out by 
using build-in and external indexing facility (DICVOL91 
or later versions [29]) of the DASH program package [6]. 
Space group determination was also helped by an inter-
faced program Extinction Symbol, a special program 
that identifies the most probable space groups for a set of 
reflections and their intensities [30].

2.4 FT-IR and NMR spectroscopies
Fourier transform infrared spectra of the solid powdered 
samples were measured by PE System 2000 (Perkin 
Elmer) FTIR spectrophotometer in KBr between 500 and 
4000 cm−1.

1H-, 13C-NMR and DEPTQ spectra of the synthe-
sized sample have been measured in CDCl3, in a Bruker 
Advance 500 NMR Spectrometer (Bruker). Chemical 
shifts are calculated to tetramethylsilane (TMS).

2.5 Differential Scanning Calorimetry (DSC)
DSC measurements were performed in a DSC 2920 device 
(TA Instruments Inc., New Castle, DE USA). The pow-
dered samples (3.5-4 mg) were measured in hermetically 
sealed Al pans at a heating rate of 10 K/min. Pure In 
metal piece was applied for calibration of temperature and 
enthalpy, meanwhile an empty sealed pan as reference.

2.6 Thermogravimetry
A simultaneous TG/DTA apparatus (STD 2960 Simulta- 
neous DTA-TGA, TA Instruments Inc., USA), a heating 
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rate of 10 °C min−1, an air flow rate of 130 mL/min, open 
Pt crucible was applied.

3 Results and discussion
3.1 XRD Phase identification of anhydrous and 
monohydrated forms of 4,4'-methylenediantipyrine
This product formed finally from diethyl ether in its anhy-
drous form and identified by help of the international 
PDF4+ powder X-ray diffraction database [28], as 4,4-dian-
tipirinylmethane (reference pattern is PDF-00-021-1604, 
'unindexed', based on reference sample from British Drug 
Houses, Ltd., Poole, England, ICDD Grant-in-aid, 1967, 
Institute of Physics, University College, Wales).

Then a part of the anhydrous sample has also been 
converted/recrystallized with ethanol to its monohydrate 
form, for which reference powder XRD patterns are gen-
erated from the atomic coordinates of the correspond-
ing single crystal determinations (CSD code of FADDIY 
and FADDIY01) of 4,4'-methylenediantipyrine monohy-
drate [26, 27], see Fig. 1.

3.2 Analytical identification of molecule of 
4,4'-methylenediantipyrine (diantipyrinylmethane)
The chemical constitutional formulae is confirmed both 
by 1H- and 13C-NMR(DEPTQ) spectra (CDCl3, 500 MHz), 
which are found (Table 1) in harmony with the symmetry 
of molecular structure and the publicly available spectral 
references of AIST [31], SciFindern [32]).

3.3 Comparison of FTIR spectrum of anhydrous and 
monohydrated forms
The FT-IR spectrum of both the anhydrous and mono-
hydrated diantipyrinylmethane sample of ours is shown 
in Fig. 2. IR spectra of the monohydrate form are avail-
able in the public databases (AIST [31], SciFindern [32]). 
These references are in good agreement with the spectrum 
obtained for our monohydrate sample. Anyhow, the spec-
trum of anhydrous sample indicates – in the regions of 
3100–3800 cm−1 – an absence of water of crystallization 
or hydration, and lack of hydrogen bonds, compared to 
broad bands of monohydrate, originating from widening 
of νOH stretching vibrations. The vibrational bands below 
1800 cm−1 reflect both strong similarities and small but 
significant differences in molecular vibration frequencies, 
as well. The mall differences indicate or confirm slight but 
significant alterations of force fields of secondary interac-
tions in the solid anhydrous vs. monohydrated forms.

3.4 Comparison of thermal behavior of anhydrous and 
monohydrated forms
DSC curves, measured on both anhydrous and monohy-
drated form in sealed Al crucible, are exhibited in Fig. 3(a). 
Our monohydrate sample shows an endothermic dehydra-
tion effect at around 156–158 °C [25, 27] and a final melting 
point ranging from 177 to 179 °C. The latter range is close 
to those given for the corresponding anhydrous compound 
in the former special literature [19–24]. Thermogravimetric 
weight loss till 174 °C clearly indicates the release of one 
molecule of water from the sample with monohydrate 
formulae, measured as ca. 4.55% (Fig. 3(b), theoretical mass 
loss because of dehydration calculated for C23H24N4O2·H2O 
is 4.43%). Limited weight changes, probably because of 
sublimation of the anhydrous compound, can be considered 

Fig. 1 XRD profile of (a) anhydrous 4,4'-methylenediantipyrine, 
product from diethyl ether, Et2O, corresponding to PDF-00-021-1604; 
(b) 4,4'-methylenediantipyrine monohydrate obtained from ethanol, 
EtOH; (c) 4,4'-methylenediantipyrine monohydrate reference pattern 

(calculated, FADDIY01, [27]), in comparison
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as negligible till 177 °C. (Small effects such as 'up & down' 
jumps on the TG curves – during the fusion phenomenon 
– might come from the high sensitivity of our TG balance 
being able to sense a kind of 'tropism' or 'taxis' of liquid 
drops forming within the TG-crucible). The measured main 
heat effects are 93.36, 83.10, and 96.34 J/g for dehydration, 
fusion of in situ formed, and of the originally anhydrous 

Table 1 Readouts and assignations of 1H- and 13C-NMR chemical shifts 
(CDCl3) of 4,4'-methylenediantipyrine, in comparison with reference 

data of AIST [31]
1H NMR 

(500 MHz, 
CDCl3) 
δ, ppm 

A: 7.405,
A':7.395,
B':7.391,

B: 7.375 (8H);
C: 7.216 (2H);

D: 3.256 (s, 2H)
E: 2.979 (s, 6H)
F: 2.433 (s, 6H)

s singlet; 
d doublet; 
t triplet;

1H NMR 
(400 MHz, 

CDCl3) 
δ, ppm 
(AIST, 

SDBS No.
 15285HSP-
48-779 [31])

A: 7.417
B: 7.382
C: 7.234
D: 3.271
E: 2.988
F: 2.441

13C NMR 
(125.75 MHz, 

CDCl3) 
δ, ppm 

(DEPTQ)

166.21
154.44
135.48
129.06
126.05
123.68
108.50
35.960
15.820
11.492

13C NMR 
(25.16 MHz, 

CDCl3) 
δ, ppm 
(AIST, 

SDBS No.
 15285CDS-
12-482 [31])

166.19
154.44
135.45
129.01
126.06
123.67
108.43
35.87
15.73
11.41

Fig. 2 FT-IR spectrum of our anhydrous 4,4'-methylenediantipyrine 
(top, from Et2O) and monohydrate sample obtained from EtOH 

(bottom), in comparison

Fig. 3 Comparison of (a) both DSC heat effects (measured in sealed 
Al crucibles); and (b) both TG mass losses (obtained in open Pt 
crucibles) of anhydrous (top curves, in red) and monohydrate 

4,4'-methylenediantipyrine sample from EtOH + H2O (bottom curves, 
in blue) of ours. (Peak temperatures of fusion are reported as melting 

points)

(a)

(b)
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matter, respectively. Unfortunately, no literature values on 
enthalpies of the dehydration and melting are available for 
the monohydrate compound.

3.5 Estimation of crystallographic unit cell for the 
anhydrous and monohydrate forms, from room 
temperature laboratory powder XRD patterns (by help 
of the DASH software package)
Based on the anhydrous and monohydrated sample's powder 
XRD profile measured at room temperature by our labora-
tory X-ray tube, we have carried out some modelling trials on 
crystal structures, what has not been reported yet (Table 2). 
For the anhydrous form, a monoclinic unit cell with space 
group symmetry P21/a (s.g., No. 14) has been found the most 
appropriate by estimation of expected molecular volume and 
evaluation of results provided by the interfaced Extinction 
Symbol program [30], and systematic absences, among the 
cell suggestions obtained with build-in and external index-
ing facility (DICVOL91 or later program versions [29]) of 
the DASH program package [6]. The estimated unit cell 
parameters are summarized in Table 2. Final profile fitting 
result and molecular content of the unit cell, what could be 
achieved with the trials of simulated annealing method built 
in the same DASH program package [6] are shown in Fig. 4. 
(Corresponding set of atomic coordinates, in the form of 
crystallographic information file is attached as supplemen-
tary information or available on request from the authors.)

A skeleton of formerly solved structures of the corre-
sponding monohydrate form (CSD code FADDIY [26]) 
and FADDIY01 [27]), with known bond distances and 
angles could be applied as a model for simulations on tor-
sion angles. Although, both solved single crystal struc-
tures of monohydrate in CSD database (FADDIY [26]) and 
FADDIY01 [27]) exhibit hydrogen bonds involving hydro-
gens of H2O molecules and carbonyl oxygen atoms of anti-
pyrine molecules, in the case of anhydrous form there is 
no opportunity for formation of any hydrogen bonds, as 
it is also reflected in the FT-IR spectrum of the anhydrous 
form (Fig. 2, top spectrum). The hydrogen bonds in the 
monohydrate structure of FADDIY01 [27] and a confor-
mational comparison of the molecules in the monohydrate 
and anhydrous forms are demonstrated in Fig. 5(a) and (b). 
The conformational differences are purely arising from the 
different torsional angles occurring in the two forms. More 
detailed comparisons of secondary interactions, as e.g., 
in [33] have no worth carrying out in our case, because of 
the approximate feature of our modelling results.

4 Conclusion
Crystalline unit cell structure of anhydrous title com-
pound, diantipyrinylmethane, not studied either by powder 
or single crystal XRD previously, have been successfully 
indexed (Table 2, 2nd column) and visualized from its pow-
der X-ray diffraction pattern, by DASH program package, 

Table 2 Unit cell parameters of anhydrous diantipyrinylmethane estimated from the measured powder XRD patterns by powder pattern indexing 
(Dicvol [29]) using interactive DASH program [6] (shown together with a trial for monohydrate sample and single crystal references for that).

Crystallographic 
unit cell parameters

4,4'-methylene-diantipyrine 
anhydrous form (Et2O), 

powder pattern-indexing,
rt [DASH, this work]

4,4'-methylene-
diantipyrine monohydrate, 

FADDIY [26]
T= −70 °C

4,4'-methylene-
diantipyrine monohydrate 

FADDIY01 [27]
T = 20 °C

4,4'-methylene-diantipyrine 
monohydrate sample (EtOH + H2O), 

powder pattern-indexing,
rt [DASH, this work]

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic

Space group P21/a
(No. 14)

P21/c
(No. 14)

P21/c
(No. 14)

P21/c
(No. 14)

a (Å) 14.604 11.937(3) 11.879(<1) 11.927

b (Å) 9.858 14.740(4) 14.679(<1) 14.741

c (Å) 14.509 12.085 (3) 12.259 (<1) 12.300

α (°) 90 90 90 90

β (°) 95.56 92.44 (<1) 92.89 (<1) 92.92

γ (°) 90 90 90 90

V (Å3) 2078.870 2124.451 2134.905 2159.795

V (formula unit) (Å3) 519.718 531.113 533.726 539.949

Z/Z ' 4/1 4/1 4/1 4/1

Zero shift (°) 0.1320 – – 0.1809

Pawley fitting c2 52.275 – – 15

Profile c2 after SA1 178.93 – – 180.62
1 For definitions see at world wide web linked to github.com/ccdc-opensource/dash/wiki/FiguresOfMerit [6]
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as this molecule has only 4 torsional rotational degrees of 
freedom and exists lonely (Z ' = 1) in the asymmetric unit of 
its crystalline form (s.g. P21/a, No. 14, Z = 4). Conditions, 
such as low degree of torsional freedom and presence of 
only one molecule in the asymmetric cell, increase the 
opportunity of finding at least an "approximate" structure 
description based of powder XRD pattern fitting [4, 9, 34] 
with help of single crystal structural skeleton data obtained 
previously and available in CSD as rigid body model. 
Actually, because of the high initial Pawley profile fit-
ting difficulties, arising mainly from usage of a laboratory 
X-ray tube radiation and of reflection plate sample holder 
system [35], the precise unit cell structure could not be 
achieved, it should further be validated from single crystal 

growth and XRD structure resolution, but unfortunately, 
we were not able to obtain a single crystal of the anhydrous 
compound. Anyhow, the previously described single crys-
tal structure of monohydrate have been found very useful, 
and comparisons of FT-IR spectrum and thermal behavior 
of the anhydrous and monohydrated forms have definitely 
confirmed differences in degree of hydration and solid state 
structure, while those of 1H- and 13C-NMR spectra proved 
the molecular identity of the two forms. The achieved 
indexing - confirmed by the unit cell content modelling - 
may enrich the 'low precision' reference powder XRD card 
information (PDF 00-021-1604) of the anhydrous title com-
pound in the PDF database, as well.
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Fig. 4 Final fitting result on XRD profile (a) and unit cell contents 
(b) of anhydrous diantipyrinylmethane crystalline form, achieved with 
indexing (DICVOL [29]) and simulated annealing feature of the DASH 

program package [6]

(a)

(b)

Fig. 5 Arrangements in the crystals: (a) The hydrogen bonds in the 
monohydrate structure of FADDIY01 [27]; and (b) conformational 

comparison of the molecules in the monohydrate and anhydrous forms. 
(The conformational differences are purely arising from the different 

torsional angles occurring in the two forms)

(a)

(b)
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