Supplement

Experimental and Regression Vapor–liquid Equilibrium Data for Ethanol + Dipropylene Glycol Binary System. Ethanol Anhydrization Process Simulation using DPG as Extractive Agent

Marilena Nicolae1*, Elena M. Fendu1

¹ Petroleum Processing Engineering and Environmental Protection Department, Petroleum-Gas University of Ploiești, blvd. București, 39 no., 100680 Ploiești, Romania

* Corresponding author, e-mail: mnicolae@upg-ploiesti.ro

Determination of the consistency of the vapor-liquid equilibrium (VLE) data Arc Test method

Table S1 The values of the constants α and β used to calculate the $\ln(f)$ function used to represent the arc for the studied mixtures and for the pure components

(a)

Figure S1 Experimental vapour pressure data of binary mixture ethanol + dipropylene glycol (DPG) in $\ln(f)$ representation: full square – experimental points; continuous line – $\ln f$ function calculated by means of the corresponding equation and using the constants given in Table S1: a) for a mixture with 0.1003 mole fraction ethanol; b) for a mixture with 0.2003 mole fraction ethanol

(b)

Figure S2 Experimental vapour pressure data of binary mixture ethanol + DPG in $\ln(f)$ representation: full square – experimental points; continuous line – $\ln f$ function calculated by means of the corresponding equation and using the constants given in Table S1: a) for a mixture with 0.3006 mole fraction ethanol; b) for a mixture with 0.4015 mole fraction ethanol

Figure S3 Experimental vapour pressure data of binary mixture ethanol + DPG in $\ln(f)$ representation: full square – experimental points; continuous line – $\ln f$ function calculated by means of the corresponding equation and using the constants given in Table S1: a) for a mixture with 0.4990 mole fraction ethanol; b) for a mixture with 0.600 mole fraction ethanol

Figure S4 Experimental vapour pressure data of binary mixture ethanol + DPG in $\ln(f)$ representation: full square – experimental points; continuous line – $\ln f$ function calculated by means of the corresponding equation and using the constants given in Table S1: a) for a mixture with 0.7004 mole fraction ethanol; b) for a mixture with 0.8004 mole fraction ethanol

Figure S5 Experimental vapour pressure data of binary mixture ethanol + DPG in $\ln(f)$ representation: full square – experimental points; continuous line – $\ln f$ function calculated by means of the corresponding equation and using the constants given in Table S1 for a mixture with 0.8990 mole fraction ethanol.

Consistency method from NIST

Table S2 The values of Δp_1^0 and Δp_2^0 of the pure component consistency test applied to the *T-P-x* experimental data of the ethanol-DPG

binary system	
Δp_1^0	Δp_2^0
0.00780	0.0015
0.00443	0.0266
0.00147	0.00371
0.00160	0.00018
0.00148	0.00253
0.00173	0.00816
0.00006	0.00109
0.00034	0.00083

Temperature and flowrates profile for the preconcentration (PC), extractive distillation (EDC) and solvent recovery (SRC) columns

Fig. S6 Temperature and flowrates profile for the preconcentration (PC) column, Variant A (best)

Fig. S7 Temperature and flowrates profile for extractive distillation (EDC) column, Variant A (best)

Fig. S8 Temperature and flowrates profile for the solvent recovery (SRC) column, Variant A (best)

Fig. S9 Temperature and flowrates profile for the preconcentration (PC) column, Variant B (best)

Fig. S10 Temperature and flowrates profile for extractive distillation (EDC) column, Variant B (best)

Fig. S11 Temperature and flowrates profile for the solvent recovery (SRC) column, Variant B (best)

Composition profiles for the preconcentration (PC), extractive distillation (EDC) and solvent recovery (SRC) columns

Fig. S12 Composition profiles for the preconcentration (PC) column, Variant A (best)

Fig. S13 Composition profiles for the extractive distillation (EDC) column (PC) column, Variant A (best)

Fig. S14 Composition profiles for solvent recovery (SRC) column Variant A (best)

Fig. S15 Composition profiles for the preconcentration (PC) column, Variant B(best)

Fig. S16 Composition profiles for the extractive distillation (EDC) column (PC) column, Variant B (best)

Fig. S17 Composition profiles for solvent recovery (SRC) column Variant B (best)