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Abstract

Vinblastine was investigated in the presence of cyclodextrin derivatives on different cancer cells and it was established that the 

anticancer activity was unchanged. This was the first step of a long procedure resulting in the dosage of vinblastine together with 

cyclodextrin or its derivatives to improve the adverse effects.
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1 Introduction
Vinblastine is a well-known anticancer (antineoplastic or 
cytotoxic) chemotherapy drug [1] (Fig. 1) and is used for 
treating Hodgkin's and non-Hodgkin's lymphoma, testicu-
lar, breast, lung, non-small cell lung cancer, Kaposi's sar-
coma, etc. Vinblastine is a very effective agent, however, 
has some serious side effects e.g., hair loss, fever, several 
pains, and besides that neurotoxicity [2]. The in vivo dis-
position of the drug is primarily determined by ABCB1 
transporter-mediated efflux and metabolism by cytochrome 
3A4, leading to its terminal biological half-life of about one 
day [3–5]. Vinca alkaloids are typical antimitotic agents 
eliciting their actions by binding to β-tubulin, disrupt-
ing physiological tubulin polymerization, and preventing 
microtubule assembly. It should be mentioned that vinblas-
tine is a high-charge density cation and thus binds with high 
affinity to the anionic protein tubulin [6]. The consequences 
of vinblastin exposure include mitotic arrest, apoptosis, and 
cell death. In most cases, vinblastine can be administered 
in a mixture (cocktail) with other anticancer agents or with 
other compounds decreasing the adverse effects. 

Recently, great efforts have been made to produce more 
effective and less toxic derivatives [7, 8]. Moreover, hybrid 
molecules, in which two or more pharmacophores are cou- 

pled covalently to each other, as a new trend, were synthe-
sized in increasing numbers [9, 10]. In addition, a number of 
possibilities have been explored where another carrier mol-
ecule may be present as a guest in connection with the anti-
cancer host molecule by non-covalent bonds. One of these 
options is the well-established and widespread cyclic car-
bohydrate, the cyclodextrin and/or its derivatives [11–17]. 
Cyclodextrin has been widely utilized to modify antican-
cer agents' water-solubility and improve their safety pro-
file [18–23]. Another recent example is the study of exciting 
antiviral agents, coupled with cyclodextrin resulting in sev-
eral very important outcomes [24, 25]. Moreover, a flavon 
(galangin) with important activity in the treatment of breast 
cancer is proved to be more advantageous characteristics 
using together with β-cyclodextrin [26].

Nevertheless, although the relative strength of interac-
tion between anticancer drugs (including vinblastine) and 
cyclodextrin derivatives was established [12], a compre-
hensive and exhaustive study of the effect of cyclodex-
trins on the anticancer activity and toxicity of vinblastine 
has not been found. This was the reason why the first step 
in our research project was to study how cyclodextrins 
change the antiproliferative effect of vinblastine.
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2 Results and discussion
2.1 Preparation of complexes
Two types of cyclodextrin-enabled vinblastine (VLB) 
compositions were prepared, by using an electroneutral 
heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB), and 
a polyanionic, sulfobutylether-beta-cyclodextrin (SBECD). 
The method of lab scale preparation is described below 
(see Section 4).

2.2 NMR spectroscopic measurements of the 
cyclodextrin complexes of vinblastine
First, we have identified the signal sets of vinblastine 
(Fig. 1 (a)) and the corresponding cyclodextrins (Fig. 1 (b)) 
in the 1H NMR spectra of the compositions (Fig. 2).

The 800 MHz 1H NMR spectra of vinblastine sulfate/
DIMEB composition and vinblastine sulfate/SBECD com-
position are shown in Fig. 2 (a) and (b). The molar ratio 
of vinblastine and either cyclodextrin is estimated by 
using 1H NMR spectroscopy (Fig. 2) as follows: the peak 
at δ 7.55 ppm (peak A) corresponds to one hydrogen atom 
(H-9') in vinblastine; broad signals at δ ≈ 5 ppm (peak B) cor-
responds to seven hydrogen atoms (7 × H-1) in a cyclodex-
trin (DIMEB: δ 5.10-5.20 ppm; SBECD: δ 4.88–5.20 ppm). 
Therefore, the ratio of the area of peak A and the 1/7th of 
the area of peak B gives the molar ratio of the components, 
which is 1.03:(8.14/7) = 1:1.1 for vinblastine / DIMEB and 
0.97:(8.00/7) = 1:1.2 for vinblastine / SBECD.

Then, we performed interproton spatial proximity mea-
surements for the detection of host–guest interactions. 
The NMR spectroscopic behavior of DIMEB and SBECD 
differs from each other because DIMEB is a single chem-
ical compound but SBECD is a mixture of randomly 
substituted cyclodextrin molecules. Therefore, DIMEB 

gives sharp peaks in the 1H NMR spectrum but SBECD 
gives broad peaks, which is a characteristic of mixtures 
of structurally similar compounds. To detect spatial prox-
imity between sharp 1H resonances in vinblastine sul-
fate/ DIMEB composition, we selected the 2D ROESY 
experiment (Fig. 3). To detect spatial proximity between 
a sharp 1H resonance that belongs to vinblastine sulfate and 
a broad 1H resonance of the SBECD, our choice was the 1D 
NOESY experiment (Fig. 4). We were able to substantiate 
the presence of the host–guest interactions by detecting the 
proximity of H-11' of vinblastine (δ 7.17 ppm) and CH(OR) 
hydrogen atoms of the cyclodextrins (δ 3.6–3.8 ppm).

Finally, as a further proof of host–guest interactions, 
we titrated a solution of vinblastine with DIMEB in a car-
bonate buffer (pH ≈ 10). The concentration of vinblastine 
base (cVLB) was 36.7 µmol/dm3 (made by dissolving 0.1 mg 
vinblastine sulfate in 3 ml buffer). The total concentra-
tion of DIMEB (cDIMEB) was varied according to Table 1. 
To illustrate the strength of complexation, we calculated 
an apparent association constant by presuming the forma-
tion of a 1:1 complex (Eqs. (1) and (2)).

To simplify further calculations, Eq. (3) gives the ratio of 
vinblastine in complex (VLB ∙ DIMEB, r) and its total con-
centration, cVLB, where cVLB = [VLB] + [VLB ∙ DIMEB]); 
the a, b, and c constants are given in Eq. (4). The chemical 
shift (δ) of any 1H NMR resonance is calculated as the lin-
ear combination of the δ of the free VLB and the δ of the 
VLB in complex (Eq. (5)), given that the association and 
dissociation kinetics are fast enough for detecting a single 
δ representing the average state of the system).

Eq. (5) is solved iteratively, by finding the δ of VLB 
in complex (δVLB ∙ DIMEB) and the association constant K; 
δVLB is known from the measurement of the solution 

Fig. 1 (a) The structural formula of vinblastine sulfate, (b) DIMEB and SBECD

   (a)    (b)
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without any added cyclodextrins (7.1652 ppm, as we used 
the signal of H-11' as δexp for monitoring the complexation; 

Fig. 5). The solution corresponds to the minimum of the 
sum of the squares of residuals (δfit–δexp). We have found 

Fig. 2 1H NMR spectra of (a) vinblastine sulfate/DIMEB composition and (b) vinblastine sulfate/SBECD composition in D2O. Chemical shift 
scale (δ, ppm) and area under peaks are shown in blue and red

(a)

(b)

Fig. 3 2D ROESY spectrum of vinblastine/DIMEB composition in D2O
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that δVLB ∙ DIMEB = 6.9832 ppm and K = 209 M−1 (the error 
is on order of 10%) gives the best fit (R2 = 0.9999) to the 
1:1 complexation model.
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According to our experiments, we have strong evi-
dence for host-guest interactions of DIMEB and SBECD 
with the aromatic site (H-9' to H-12') of the velbanamine 
(catharanthine) part of vinblastine; a hypothetical 100% 
complexation of vinblastine with DIMEB would result in 
a shift of the 1H NMR signal of H-11' of vinblastine by 
−0.18 ppm. However, the mapping of (presumably weaker) 

Fig. 4 1D NOESY spectrum of vinblastine/SBECD composition in D2O

Fig. 5 Selected partial 1H NMR spectra (500 MHz) from the titration series of vinblastine base (cVLB = 36.7 µmol/dm3) 
with DIMEB. 1. cDIMEB = 3.3 mmol/dm3; 2. cDIMEB = 0.94 mmol/dm3; 3. without any added DIMEB

Table 1 1H NMR titration of vinblastine base with DIMEB in D2O

cDIMEB (µmol/dm3) 0 13.1 25.0 35.9 45.8 63.5 78.6 127 244 455 943 3300

r (%) 0.0 0.3 0.5 0.8 1.0 1.4 1.7 2.7 5.1 9.1 17.2 42.1

δexp (ppm) 7.1652 7.1648 7.1642 7.1636 7.1636 7.1633 7.1624 7.1601 7.1565 7.1491 7.1357 7.0911

δfit (ppm) 7.1652 7.1647 7.1643 7.1639 7.1635 7.1628 7.1623 7.1605 7.1564 7.1495 7.1354 7.0911

δfit−δexp (ppm) 0.0000 −0.0001 0.0001 0.0003 −0.0001 −0.0005 −0.0001 0.0004 −0.0001 0.0004 −0.0003 0.0000
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competing processes or the possibility of non 1:1 com-
plexation schemes requires further NMR method develop-
ments and data analysis.

2.3 Biological investigations
The cell-based assays aimed to characterize the effect 
of cyclodextrin complex formation on the antiprolifer-
ative action of vinblastine. The antiproliferative prop-
erties of the prepared complexes and the pure active 
agent were determined in a wide range of concentrations 
(1.00 nM – 30 μM). The overlap of the obtained fitted 
dose-response curves indicates that none of the applied 
cyclodextrins modified the efficacy of vinblastine (Fig. 6). 
This finding was confirmed by the narrow ranges of the 
calculated IC50 values: 3.92–5.39 nM and 1.72–3.13 nM 
against A2780 and MCF7 cells, respectively.

Though cyclodextrins are generally well-tolerated, they 
can interfere with the growth of cells at high concentra-
tions. Therefore, the cyclodextrin concentrations corre-
sponding to the three highest vinblastine concentrations 
were applied to the two types of cancer cells (Fig. 7). None 
of the two cyclodextrins affected the viability of A2780 
cells, even at the highest concentrations corresponding 
to 30 μM vinblastine. Similarly, no relevant change was 
detected in the growth of MCF7 cells by SBECD. DIMEB, 
on the other hand, elicited a moderate but statistically 

significant inhibition of the viability of the breast cancer 
cells at the concentrations corresponding to 10 and 30 μM 
vinblastine. Theoretically, these actions can contribute 
to the antiproliferative activity of the complex. However, 
the alkaloid elicits its maximal antiproliferative action at 
these and even lower concentrations. Based on these find-
ings, it can be concluded that the contribution of DIMEB 
to the activity of complex against MCF7 cells is negligible.

3 Conclusion
In the course of our work, investigating the synthesis and 
characteristics of cyclodextrin-vinblastine compositions, 
derivatives of the electroneutral DIMEB and the polyanionic 
SBECD containing compounds were successfully prepared. 
By detailed NMR spectroscopic measurement it could be 
pointed out that the host–guest interactions presumably 
occurred between the aromatic ring of the catharanthine part 
of vinblastine and DIMEB or SBECD. 

Based on the results of the in vitro cell-based experi-
ments, it can be concluded that the applied cyclodextrins 
used for complex formation have no relevant action on the 
pharmacological activity of vinblastine. Nevertheless, it is 
clear from these data, that it is worthwhile to carefully 
examine whether any of the known side effects of vinblas-
tine decrease with administration under these conditions 
and, if so, to what extent.

Fig. 6 Antiproliferative actions of vinblastine (VLB) and its cyclodextrin complexes against ovarian (A2780) and breast (MCF7) cancer cells

Fig. 7 Actions of DIMEB and SBECD on the viability of A2780 and MCF7 cells. Cyclodextrin concentrations were identical to those applied in 
complexes at the indicated vinblastine concentrations. *** means p < 0.001, as compared to the control samples
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4.4 NMR spectroscopic measurements
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