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Abstract

Diffusion is a process of transport controlled by the random movement of mobile particles in fluid
systems. The rate law of diffusion had been formulated by more different manners. The linear
‘Fick-type’ laws (the diffusion flux is proportional to the gradient of the concentration or activity) are
based on experimental observations. The likewise linear force law (the diffusion flux is proportional
to the chemical potential gradient) is one of the ‘Ohm-type’ laws of the irreversible thermodynamics.
Both are in conflict with each other and with some general principles (equilibrium criteria, relativity
theory). Applying the thermodynamic kinetic theory (called ‘thermokinetics’) it turns out that both
linear laws are approximations of an exact but nonlinear equation the GeneralForce Law (GFL).
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1. Introduction

The diffusion is the migration of molecules in a mixture from point to point. The
macroscopic properties of the system tend towards uniformity in composition or in
the chemical potentials. First, we summarize the mean characteristics of the two
linear diffusion equations, the Fick’s and the Onsagerian (’Ohm-type’) relations.
For the shake of simplicity, the system studied here will be free of pressure- and
temperature-gradient and long range external forces. The frame of reference of the
molecular motions is chosen so that the convective part of the transport always be
zero (e.g., equimolar center). They differences in the approaches stand in that how
to answer the questions:

What is the process rate?
What is the driving force?
What is the force law?
What is the motionless, rest state?

2. The Diffusion Flux

The more general definition of mass flux has the form:

Ji = wi · Ci , (1)
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where Ji is the flux of the i’th component, (moles/m2s)
Ci is the i’th concentration (moles/m3)
wi is the mean speed of the particles i (averaged on all particles), m/s

(as if all particles would move with a common speed wi).

3. Fick’s Laws

The regularities of the diffusion process were first investigated by FICK (1856) [1].
His main conclusion were: the diffusion flux vector is proportional to the gradient
of the concentration

Ji = −Di · grad Ci (Fick I.) (2)

where Di is the diffusion coefficient (m2/s)
D is in most cases concentration-independent with a very good approxima-

tion. Though the diffusion processes of different components may show interde-
pendences (e.g. ‘binary diffusion’) , to this problem we will not go into details.
It turned out that this law is valid exactly in ideal mixtures. In non-ideal systems
Ci is to replaced by a modified concentration, the ‘activity’ or, at gases, the partial
pressure by the ‘fugacity’. However, in most practical cases, the linearity in gradCi
is a good approximation. [2]–[7].
Fick’s law can be read as:

a. The rest state is at uniform concentration (grad Ck = 0).
b. When the concentrations get non-uniform, the migration of the molecules

‘comes into being’.
c. At non-steady conditions the time change of the concentration is propor-

tional to the second derivative of the concentration-distribution. Assuming a
concentration-independent Dk

∂Ck/∂t = Dk · div grad Ck (Fick II.) (3)

called ‘Fick’s Second Law’, a linear differential equation of parabolic type.

4. The Force Law

The foundations of a general thermodynamic process theory (called ‘Irreversible
Thermodynamics’) were laid down by Lars ONSAGER in 1931 [8]. ONSAGER is
based on the linear phenomenological laws of various process rates: the viscous
flow (NEWTON, 1687), heat conduction (FOURIER, 1822), electric conductivity
(OHM, 1826) and the diffusion (Fick). All linear process rate relations are formu-
lated in an ‘Ohm-type’ form: The fluxes are linear homogeneous functions of the
thermodynamic ‘forces’. The forces are gradients of the appropriate ‘potentials’
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(Fi ), the temperature at heat conductance, the chemical potentials at mass flows,
etc. The rest state is the equilibrium state, at uniform thermodynamic potentials
(not necessarily identical to the uniform concentration). At equilibria the fluxes
and the ‘forces’ (differences or gradients of the potentials F) vanish. In our case,
the diffusion rate (Jk the same as in Fick’s law) is proportional to the gradient of
the appropriate chemical potential [9]–[12].

Ji = −Li · grad µi (Ons.) (4)

The (assumed constant) factors of proportionality called the ‘phenomenological
coefficients’ (L) The concentration and the chemical potential are in non-linear
(logarithmic) relation.

µi = µ0
i + RT · ln Ci , (5)

or

e
µi
RT = e

µ0
i

RT · Ci . (6)
In an ideal solution

µ0
i = const. (7)

div grad C Ċ�Fick II.

grad C grad µJ

C µ

��Fick I.

D L

Ons.

Concentrations Motions Driving forces

���
gradgradgrad

div div
��

Table 1. Fick’s and Onsager’s laws. Connections of the basic quantities.
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5. Problems, Contradictions

Formally, the rate equations in the Fick- and the Onsager-representation (CIT) are
of similar form, apart from the physical content of the force-parameter (C or a
and µ). The two theories, however, conflict in more points. Moreover, both have
inconsistencies with some general laws (thermodynamics, relativity theory). The
main problematic points are:

a. The problem of the velocity.

Both theories (Fick and Onsager) define the process rate (J) as the average flux of
the molecules in question. In this sense, the average velocity vector of the particles
is

w ≡ J/C (m/s). (8)

This interpretation, however, leads to more contradictions.
Example. Regard a layer separating two solutions (I. and II.). The solute molecules
enter on a left side boundary, diffusing towards the right side and leaving it for the
second solution (Fig. 1). Keeping steady boundary concentrations (CI and CI I and
CI I ≈ 0) a steady state will set up.

Fig. 1. Steady diffusion through a layer. First contradiction: unlimited velocity.

Here, the layer is regarded to be at rest. Flux J is a vector directed perpendic-
ular to the boundaries. At steady state J must have the same uniform value inside
the whole layer. But, when CI I tends to zero, the velocity w (defined as J/C), must
increase beyond all limits. This contradicts all rational considerations. Similar
problem arises using Eq. (4)

When C → 0 then µ→ −∞ and L → 0 what is a nonsense as well.



DIFFUSION AND THERMOKINETICS 95

b. The problem of infinite speed of action

Relation Fick II. is a differential equation of parabolic type. This fact leads to the
consequence that a finite perturbation at a given place and time results in a finite
change at a finite distance within an infinite small time period [13]. But, according
to the relativity theory, no action can propagate with a velocity greater than the
(finite) speed of light [14].

c. Thermodynamic inconsistency

The principle of transitivity of equilibrium requires that at equilibrium all inde-
pendent thermodynamic potentials (e.g., the temperature and chemical potentials)
must equilibrate, their gradients vanish. In the sense of Fick’s law the fluxes vanish
when the concentrations (but not exactly the chemical potentials) equilibrate. Con-
sequently, Fick’s laws do not harmonize with thermodynamics (while Onsager’s
relations do). Experimental proofs: In Fick’s equation the diffusion constant (D),
in Onsager’s relation L is supposed to be constant parameter. Comparing D and L
parameters:

Li = Di · Ci . (9)

If Li would be constant against Ci , then the Onsager’s relation would be correct
and if Di , then Fick’s equation. A number of experiments have proved that the Fick
equation is the correct one. [3]–[4].

Conclusion: neither Fick’s nor Onsager’s rate equation is the exact general
form to describe diffusion processes. It turned out that neither of the two repre-
sentations can be reformed. A radical change must be made. The flux, the driving
force and the force law must be otherwise formulated.

6. Absolute and Net Fluxes

Most problems are consequences of the fact that the fluxes J have been defined in
a too simplified way, the mode of averaging does not allow to take the dynamics
of equilibrium (self diffusion) into account. It is well known that the diffusion flux
observed results of the fact that at a given place the number of particles migrating
in a forward direction differ of those migrating in a opposite, backward direction.
It is consequence of a spatial deformation of the internal migration process rates.
The kinetic activity is measured by the ‘absolute rate’, a local scalar property.

The absolute value of the (thermal) velocities of the particles can be defined
as [7]

u2 = u2
x + u2

y + u2
z . (10)

The square root of the average of u2 will be denoted as u.One must stress that u is a
mean thermal speed always less than the speed of light. The average absolute flux
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(the ‘traffic density’) is the average

j = u · C (moles /m2 · s) (11)

where C is the concentration of the mobile particles.
The absolute flux density is in close relation with the kinetic energy density

density and with the pressure as well.

j = C ·
√

2 · Ekin

M
, (12)

where M is the molar mass of the particles in question.
The pressure is the traffic density of the momenta

P = j · p, (13)

where p is the average momentum of the particles.

Forward and backward absolute fluxes

For describing the mechanism of diffusion there is practical to choose a reference
(y, z) plane of unit area normal to the macroscopic diffusion flow (coordinate x).
The absolute flux can be thus splitted to a ‘forward’ (positive velocity) and a ‘back-
ward’ part (negative velocity component) (called by Bird: ‘inward’ fluxes):

j (+)
x = u(+) · C (+) (14)

j (−)
x = u(−) · C (−) (15)

and
j = j (+) + j (−), (16)

where C(+) is the concentration of the particles moving in a positive (forward)
direction and

C (−) is the concentration of the particles moving in a negative (back-
ward) direction.

u(+), u(−) are the square roots of the average of the squares of the x-directed
velocities

u(+) = u(−) = u√
3

(17)

j (+) is the number of moles passing the y · z plane per unit time in a
+x direction

j (−) is the number of moles passing the y · z plane per unit time in a
−x direction.

(Other counter-processes: input/output, income/outcome, export/import etc.)
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j (+) and j (−) are time reversal pairs and there is thus possible to apply the appropriate
law, the law of detailed balance. At equilibrium the non-zero reverse processes are
exactly balanced.

j (+)
eq = j (−)

eq , (18)

C (+)
eq = C (−)

eq = C/2. (19)

In the sense of the ‘local equilibrium’ hypothesis there exist the appropriate chemical
potentials

µ(+) and µ(−).

Introducing the scalar local quantity j , the system of the fundamental local scalar
properties are completed to three and with the differences (or gradients) and the
second derivatives (div grad) to nine. The main relationships connecting them are
derivable from the first three [15]-[18].

µ(C) (Equation of state, thermostatics)
j (C) (Rate relation, Mass-Action type, Fick)
j (µ) (Rate relation, force law type).

The µ(C) relation

Ideal mixture :

µ = µ0 + RT · ln C, (20)
or

e
µ

RT = e
µ0

RT · C, (21)

where µ0 is the constant part of µ.
In non-ideal phase, C is to be replaced by the activity, or, the partial pressure

to fugacity.

The j (C) type rate equations

These kinetic equations are the so-called ‘Mass Action Law’ types of the process
rates. (The rates are proportional to the amounts of the participants). j (C) is the
source of the Fick type equations (might be called, ‘Fick’s 0’ relation).

j = u · C. (22)

C means here the concentration of the particles. If only a part of them ismobile, a
constant factor can be needed. As seen, it is essentially the definition of j .
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The j (µ) force law is non-linear

The two former types of relationships, µ(C) and j (C) demand, that the appropriate
form of the force law be an exponential function. The ‘Force Laws’ connecting the
fundamental kinetic properties, the (absolute) motions ( j) and the driving potential
(F) are typically exponential

j = j 0 · exp(F)

j (F) transport relations are non-linear!

In our case the is the appropriate potential the chemical potential

F = µ

RT

General Force Law j = j 0 · e µ
RT (GFL) (23)

where j0 is a constant factor

j 0 = u · C0 · e−µ0

RT = const. (24)

C0 is the sum of the concentrations in a mixture.

GFL is the rate law of internal migration both in equilibrium and non-equilibrium
body.

It harmonizes with Fick’s law but differs from the (linear) Onsagerian form. The
force factor e

µ
RT is called by Guggenheim: ‘absolute activity’.

7. Non-Equilibrium System

Net fluxes, gradients, characteristic length

Diffusion flux J is observed if the counter-parts of the absolute flux are not balanced.

J is the difference of the reverse absolute fluxes, (‘net’ flux ):

J = j (+) − j (−) �= 0 (C(+) �= C (−)). (25)

Due to fixed space direction (x), vector J reduces to a scalar unidirectional Jx

J = (Jx , 0, 0) (26)

Jx = ux · (C (+) − C (−)) = −ux ·�C (27)
dC

dt
= −�Jx = ux ·�(�C) (28)
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which is originally a difference-, and not a differential-equation.
For macroscopic description a very good approximation can be used: the

differences are proportional to the gradients

� ≈ λ · d

dx
(29)

and
D = u · λ, (30)

where λ is a ‘characteristical length

Fig. 2. Relations of J , j→ and j←, grad j and λ

The difference equations can thus be approximated with differential equations:

Jx = −D · dC

dx
(Fick I.) (31)

dCdt = D · d2C(dx) (Fick II.) (32)

Jx =
(
λ · j 0

) · e µ
RT · d

dx

( µ

RT

)
(Ons.) (33)

Jx = λ · j 0 d

dx

(
e

µ
RT

)
(GFL) (34)

The characteristic length λ is an important parameter of processes where displace-
ment and interaction of the counter-fluxes takes place. In general, it measures the
ratio of the two opposite effects. λ can be 10−10 m or equal to the free path in gases.
A distant relative of it is the HETP at chromatography or fractional distillation
operations.

The relations can be illustrated as follows:



100 K. OLÁH

Unsteady

Steady

Equil.

d2C/dx2 Ċ�Fick II.

dC/dx
d

dx
(eµ/RT)J

C (eµ/RT)j

�

u

GFL
exp

��

�Fick I.

D � exp

GFL

Concentrations Motions Driving forces

���
��� = λ d/dx

d/dx d/dx
��

Table 2. Derivation of the diffusion equations from GFL

8. Conclusions

Applying the thermokinetic theory on transport processes one could find the original
form of the diffusional process equations. This relation, called the ‘General Force
Law’ (GFL) is free of contradictions.

GFL is non-linear

Both linear or quasi-linear laws (Fick, Onsager) are derivatives of GFL
The derivation implies approximations (differences → differentials, expo-

nential→ linear).
All contradictions burdening the ‘linear’ laws are consequences of the ap-

proximations.
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