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Abstract 

The paper consists of three parts. The first contains well-known equations and relations. 
The second part quotes papers [3] and [5]. The third part raises the investigation of 
the role of the wave propagation in the case of the constitutive equation [1]. This paper 
generalizes the results of [1]. A new, so far unknown function is applied. In the case 
where the mechanical and thermodynamic waves can be independent, the conditions of 
the unknown functions are determined. 
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1. Mechanical and Thermodynamic Equations and Relations 

Small deformations of solids will be investigated in the following section and 
Cartesian coordinates will be used. 

The mechanical equations are the equation of motion 

ij i . i 
{j,j + q = pv 

and (1) 

(2) 

The kinematic equation is 

1 
~ .. - - (u' . + u' .) 
Cl) - 2 l,) ),l or 

1 
Cij = 2" (Vi,j + vj,d , (3) 

where t~e notations are: {jij stress, Cij strain, E:ij strain rate, qi volume force, 

vi velocity of the particle and p density of mass. 
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The thermodynamical equations and relations are as follows. First 

• iJ' • hi 
pu = a Cij - ,i 

is the first law of thermodynamics. 
By using Helmholz's function H = u - T.s 

We assume that the free energy for an elastic body is [2, 4] 

1 pgmn pg • 1 )2 H = -C c c + B c (T - 110) + -o:(T - To . 2 pg mn pg '2 

vVe obtain Duhamel-Neuman's law from (6) because 

kl a 

kl a 

oH 
p-, 

OC:kl 

[C,klmn; + Bkl(T - 11 l] p ~mn 0 , 

(4) 

(5) 

(6) 

(7) 

where T denotes temperature, .s specific entropy and hi heat flux vector. 
The second law of thermodynamics is 

( 
. .) kl 1 k 

-p H+T.s +a'E.kl-Th'T,k2:0 (8) 

or Clausius-Duhem's inequality 

kl· ( . .) a ckl - P H + T.s 2: o. (9) 

The other form of the second la,Y of thermodynamics IS [4] 

( 10) 

and 

and ( 11) 

The Vernotte-Cattaneo's equation [5J 
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2. The Elastic-Plastic Solid 

vVe introduce a tensor s/I kl - having the same invariance properties as Ski -

which \ve shall call a 'plastic strain' tensor, and we postulate a constitutive 
equation for ski in the form 

~'I - ~kl(~kg T ~II ) C le - c· v , ,c pg . (13) 

If we denote the difference of the two tensors Ski and s/I kl by s' k[ so 
that 

, /I 
E kl = Ekl - Ski, (14) 

then it follows from (13) that the constitutive equation for c' kl must have 
the form 

-' - -' ( pg T -I! ) c kl - c kl a , ,c pg . (15 ) 

The tensors E' kl and El! kl cannot be expressed in terms of the displacements 
by formulae such as (3)z, but only their sum Ski is given by (3). We shall 
call E'kl an 'elastic strain' tensor. Equation (15) has a unique inverse of form 
[3,5] 

kl (' 11 ') a = E pg, c pg, T . (16) 

We introduce moreover a constitutive equation for the plastic strain S" kl. 

Consider the equation 
f( kl 11 T) a ,E kl, = K. (17) 

where f is a continuously differentiable function of its variables and K is a 
scalar \vhich depends in some 'way on the \vhole history of motion. 

vVe postulate a constitutive equation for tiel in the form 

~I! - (pg. pg ,J' 'T T" "-k[-gkla ,a ,"-pg" ), f = ti . (IS) 

We further add (IS) that 

when and (19) 

For a given value of K and s/I k[, Eq. (17) represents a surface m seven­
dimensional space (six components of stress and one component of temper­
ature). Thus, we say that a point lies on the surface (17) if 

Of . kl of· 
oa kl a + oT T = 0, (20) 

since i;kl vanishes on the surface. Similarly, a point in stress and temperature 
space is inside or outside the surface (17) according to 

or ::::0 on f = K* . (21 ) 
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We call a state neutral when 

~irkl + of T = 0 
oa kl oT ' 

or unloading when 

f = K, ;" = 0 

and ~irkl + of T < 0 on f = K, ;" = 0 
oakl oT-

or when f :::; 0, ;" = 0 and we call loading when 

and 

[3, 5). The surfaces (17) are usually yield surfaces or loading surfaces. 
From (17) and (18), 

. . ( kl 11 T' kl .11 T') 
K = K a ,c kl, , a , CH, . (22) 

We restrict further discussions to the case when;" is a linear function of irkl, 

i kl and T and 9kl is a linear function of irk! and T. In view of ;" = 0 when 

i kl = 0 which must be statisfied for all irkl and T, we assume that 

and also write 

. - hkl( pq "," T) .11 
K - a,~ pq' CH 

./1 • kl T' 
ckl = 9kl = oklmn a + okl , 

(23) 

(24) 

where hkl, 0klmn and Okl are tensor functions of a pq
, c" pq and T. If i'kl and 

;" are equal to zero, from (24) and (20) we obtain 

and 
of of . 
__ irmn + -T = O. 
oamn oT 

It results from these equations that 

of 
°kl = )..{3 kl aT 

(24) and (25) implies [3, 5) 

where 

and 

./1 A{3 Ckl = kl , 

A =,,\ --amn + -T (
of. of .) 

oamn oT 

"\2':0. (25) 

(26) 

(27) 



THERMODYNAMICS OF PLASTIC BODIES 9 

-Jow we return to the thermodynamical laws (5) and (6). The variable Vkl 
n them is equal to ikl because the deformation is small. 

vVe assume that the free energy, entropy and thermal flux are 

H H(e'kl,e"kl,T) , 

s S(e'kl,e"kl,T) , 

and 
k 11 h (T,T,m,epq,e pq). 

With these functions, Eqs. (5) and (6) may be written as 

(
OH). (kl oH )., (kl OH).II . k 

pr-p s + oT T+ (j - p oe' kl ek/+ (j - p oe" kl ckl-psT-h;1 = 0 

(28) 
and 

(
OH). (kl OH)., (kl oH ).11 hkT,k -p s + - T + P (j - -- ekl + (j - p-- ckl - -- 2: 0 
oT &' kl oe" kI T 

(29) 
both of which must hold during loading, as "vell as unloading. In particular, 
if we consider unloading during which i kl = 0 and f :::; K, then the stress 
and temperature in any point within the loading surface and for all arbitrary 
and independent T and i kl follow the relations 

s 

kl (j 

oH 

oT ' 
oH 

p--. 
oe' kl 

Using (30) and (31), Eqs. (28) and (29) now become 

( 
kI OH) 11 k pr + (j - p~ e kl - psT - h ;k = 0 

uc kI 

and 

( 
kl oH ) 11 hkT,k 

(j - p-- e kl - -- > 0 , 
oe" kl T -

respectively. 
By combining (33), (26) and (27) we have during loading [3, 5] 

( 
kl oH ) (Of kl of.) hkT.k >"{hl (j - p-- --0- + -T - --' > 0 

Oe" kl o(jkl oT T - , 

whenever 

f = K, 

(30) 

(31 ) 

(32) 

(33) 

(34) 

(35) 
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The inequality (33) or equivalently (34) holds only during loading, whereas 
during neutral loading and unloading (since i kZ = 0) we have 

k -h T;k 2:: o. (36) 

Also, the energy equation (32) holds during loading but during neutral load­
ing or unloading, this is reduced to 

. k 
pr - ps T - h ;k = 0 . 

"Ve assume for simplicity that 

H = H' (c:' kZ, T) + HII (c:1I 
kZ, T) . 

Now (31) IS 

kl oH' 
0" = P oc:' kZ . 

When H' is similar to Eq. (6) then we obtain Eq. (7) but now 
instead of C;kZ. This equation has the following inverse form 

We can write (26) and (27) in the form 

./1 D mn 4. T' 
C:kl = kZmnO" + - kl . 

Combining (40) and (41) we obtain 

(37) 

(38) 

(39) 

C;' kl stands 

( 40) 

(41) 

Eq. (42) can be accepted as constitutive equation for thermoplasticity, dur­
ing loading state. 

3. Second Order Thermo-Mechanical Wave 

The basic functions are called stress O"ii, strain C:ij, velocity vi, temperature 

T, internal specific energy u, heat flux hi, and specific entropy s. 
"Ve will investigate the case in which the basic functions a:e continu­

ous but their derivatives have a jump along the wave surface rp(:z:i) = O. For 
example, A is an arbitrary function, which is continuous along the wave sur­
face [A] = 0 ( [] denotes the jump) and their derivatives are not continuous 
[A,p] = o:rp,p == o:rpp' Here rp = rp(xp) is the wave surface, where p = 1,2,3,4 
and X4 == t, that is, :Z:4 denotes time. 
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The normal unit vector of the wave front is nk 'P,k and the 
y' 6Im'P,I'P,m 

&", 

wave propagation velocity c = - y'_1 Tt , where o'P = '~4 and k l m -
.; m'P,I'P,m ot - Y, ,,-

1,2,3. The functions A are O'ij, vi, Cij, T, u, hi, S f-L ij , vi, Kij, V, A, Xi, 0' 

have jumps [1]. 
In the case of the second order thermomechanical wave the compati­

bility equations are 

where 

and 

f-Li j nj 

2KijC 

i -pv C, 

-( Vinj + Vjni) , 

Lkl(C:pq , T). 

This equation can be written in the form 

4. pq }"" mn B_o 
• kl Kpq = \klmnf-L + klU 

or =rspq -=rs 
f-L r s = A. Kpq - B V. 

The other compatibility equations are 

(
GO's GO's ) (i GO's ) c pTO' - -.-Kkl - --. v = ni X - -- , 
Ockl GT. GT,i 

( 43) 

(44) 

(45) 

(46) 

( 47) 

(48) 

Eqs. (43)-(48) contain twenty-one unknown functions. The number of the 
equations is twenty. One more equation is necessary. 

Let the missing one equation be 9 = 0, where 
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The compatibility equation for 9 is 

( 
og og i) ( og og kl og og i) 

nj --19 + -·-x = C -.-Kik + -. -I-l + -.19 + - .. x . 
oT,j oh 2,j Ocik OCTkl oT oh 2 

(49) 

Using (45) and (48) Eqs. (43), ... ,(49) can be written as 

(

=r5pq -=TS ) 
ns A Kpq - B 19 + pCVr = 0, (50) 

(51) 

(52) 

( 
OCT Ski) [ (1 i' OCT S ) OCT S lJ C pTCT - -.-K - ni -a Jnj - -- + C-. 19 = 0, 
oCkl TC oT,i oT 

(53) 

where CTs ~ O. 

By substituting (51) a 6th order linear homogeneous equation can be 
obtained for VI, V2, v3, .\, {), CT. 

[ 
=ijkl 2 .] =ij 

-njA (nlc5Z + c5fnk) + 2p C c55
' Vs - 2cnjB {) = 0, (55) 

1 ., 2" 
-TCCT 2J (c5?n- + c5l!n·)v + TC \ - a 2J n-n'{) = 0 2 2J J2S / 2J , (56) 

1 OCT S S - 2 
-TC-;-:-(c5k 111 + c5inkJvs + PTC TCT-
2 uckl 

[ ( 
ij OCT S ) 2 OCT S 1 - ni a nj - TC-- + TC -. {) = 0 . 

oT,i oT . 
(57) 

1 (Og =klpq Og) s s [( og og ik ) -TC ~ + A ~ 'ki (c5p nq + c5qn p )vs + nj TC-.-. + -i-.o nk -
2 uCpq uCT oT,J oh ,J 

( 
2 og og i') 2-k1 og ] 

- TC af+ ohioJnjC +TC B o&kl {)=O. (58) 

The determinant of it is zero. This determinant is a 12th order algebraic 
equation. Vile require 4 real roots. 

J 



THERMODYNAMICS OF PLASTIC BODIES 

From this we can study the behavior of functions IJs > 0, g. 
When 

13 

og =kipq og 
-;:;-:- + A !'I.kl = 0, (59) 
UCpq UIJ 

then the determinant of (55), (56), (57) and (58) is the simplest form. In 
this case it is a product of two determinants and the mechanical wave is 
independent of the thermodynamical \vave. That is 

2pc2 + M· 11 

1\1121 

j\l1 31 

j\1 12 

2pc2 + 1\1122 

1'v1 32 

=0 

],,1 13 

M23 

2pc2 + 1\11
33 

it is satisfied when the first determinant is equal to zero or the second 
one is equal to zero. From the first equation the speed of propagation of 
the mechanical wave is obtained, and from the second one the speed of 
propagation of a thermodynamical wave is obtained. 

The first equation has the following form 

The second is 

ac6 + /3c4 + ;c2 + 0 = o. 

2 4 [ og ik pT Te nj-.-.-a nk+ oh 1 . 
,] 

(
7 og _ o~ aij ) c + T (B kl ~ - o~) c2] = 0 . 

oT . oh· oir kl oT ,) ! 

(60) 

c = 0 is a multiplicity four root of (60). Eq. (60) has got one positive and 
one negative real root. The condition of this is 

( 
og ik ) [ (-kl og og )] 

nj oh i,i a nk T B oirkl - oT < o. (61 ) 

·When the mechanical and thermodynamical waves are coupled, for example, 
when the unknown function depends on the rate of specific entropy 3, the 
equations of wave propagation are more complicated. 

Fil1ally, stress is divided into two parts, that is lJij = E lJij + D lJij . 

The first is the elastic stress (31) the second is the plastic stress, that is, 

DlJ
ij = a°'::. with the condition that ~':.' > o. 

'-J) v .... JJ 

The stress is lJij = oH + OrTs • 
. &ij &ij 
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