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Abstract 

Stability of equilibria in first order phase transitions is investigated by Lyapunov's method. 
If both phases are present then the set of equilibria is strictly asymptotically stable. The 
'metastable' states (only one of the phases is present) are unstable states having a peculiar 
feature. 
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1. Introduction 

The application of the theory of fluxes and forces to phase transitions has 
interesting and peculiar features which are worth investigating thoroughly. 

First of all let us recall some well known facts. (See e.g., in [1).) 
The state of a system consisting of interacting homogeneous bodies is 

described by a set of extensive variables, 

(1) 

The fiuxes are time rates of the extensive variables, 

k = 1, ... ,n. (2) 

The thermodynamical forces - differences of intensive quantities - are func­
tions of the extensive variables, 

(3) 

The fiuxes are induced by the forces, i.e., they can be given as functions of 
the forces, 

in such a way that the fluxes are zero if and only if the forces are zero. 
Relations (2) and (4) result in a system of differential equations 

k = 1, ... ,n (5) 
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which will be written in the following concise form: 

x=r(x). (6) 

Solutions of this dynamical equation are called processes. A constant process 
- i.e., a state - x* is an equilibrium if and only if the fluxes at x* are zero, 
i.e., f( x *) = 0 (which occurs if and only if the forces are zero at x * ). 

The stability properties of equilibria can be examined by Lyapunov's 
method. 

Let us recall that an equilibrium x* is stable if for each neighbourhood 
N of x* there is a neighbourhood U of x* such that for every process r with 
r(O) E U we have r(t) E N for all t > O. 

An equilibrium x* is asymptotically stable if it is stable and there is a 
neighbourhood V of x* such that for every process r with r(O) E V \ve have 
limt-toor(t) = x*. 

A set E of equilibria is strictly asymptotically stable if 

• every equilibrium in E is stable, 
• every equilibrium in E has a neighbourhood V such that for every 

process r with r(O) E V we have that limt-too r(t) is in the closure 
of E. 

Without phase transitions the equilibrium (in a phase) is unique, and 

• conditions of intrinsic stability and 
• positive entropy production 

together imply asymptotic stability which is a mathematical expression for 
the trend to equilibrium; the present result tells us that every process tends 
to the unique equilibrium regardless of the initial values ([2], [3] [4]). 

It is worth mentioning that the total entropy of the bodies and the 
environment together is a Lyapunov function for asymptotic stability: the 
conditions of intrinsic stability ensure that the Lyapunov functibn has a 
maximum at the equilibrium and the positive entropy production ensures 
that the 'total time derivative' of the Lyapunov function has a minimum at 
the eq.uilibrium. 

2. Phase Transitions 

The situation is quite different in the case of phase transitions: we shall see 
that in the investigated system there are different possibilities ([5],[6]): 

a) if two phases of the same material are present then the equilibrium 
is not unique, the set of equilibria is strictly asymptotically stable 
(which means that processes tend to an equilibrium depending on the 
initial values), 
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b) if only one of the phases is present then the equilibrium is unique and 
is either asymptotically stable or unstable. 

Let us consider two bodies in a given environment with constant tem­
perature Ta and pressure Pa; let the two bodies consist of different phases 
of the same material and suppose that the transition between the phases is 
of first order. 

The state of the system is described by the internal energy, volume 
and mass of the bodies: 

(7) 

Mass conservation 
(8) 

reduces the number of the independent variables: one of the masses can be 
disregarded; we shall omit 1112, so we have 

(9) 

Wf1 allow that one of the bodies is 'empty', i.e., has zero mass (and conse­
quently, zero energy and zero volume). Of course, the intensive quantities of 
such an empty body are not defined, and the force acting on such an empty 
body is zero. Therefore we assume that the forces have the form 

F 

(10) 

where 

( M) _ {I if M i= 0, 
T/ - - 0 if M = o. 

a) Let us first suppose that Ml.i'V12 i= o. Then (10) implies that equilib­
Dum exists if and only if (Ta, Pa) is on the phase line, i.e., 

f-Ll(Ta,Pa) = f-L2(Ta,Pa) 

and then the set of equilibria is 

(11 ) 

where the specific internal energies and volumes are uniquely determined by 
the equations 

(13) 
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Thus the set of equilibria is a whole line segment; equilibrium is not 
unique. 

Introducing the new notion of strict asymptotic stability of a set of 
equilibria, we can prove that 

• conditions of intrinsic stability and 
• positive entropy production 

imply the strict asymptotic stability of the set of equilibria in the present 
case, which means that every process tends to some equilibrium, depending 
on the initial values. 

b) Suppose nmv that )\12 = O. Then (10) yields that the equilibrium is 

(14) 

where the specific internal energy and volume are uniquely determined by 
the equations 

(15) 

Again we can prove that 

• conditions of intrinsic stability and 
• positive entropy production 

imply that the equilibrium is asymptotically stable if 

(16) 

and is unstable if 
(17) 

Our previous results can be formulated from a different point of view as 
follows: 

If I-1dTa, Pa) = 1-12 (Ta, Pa) then the set of equilibria is the line segment 
(a connected continuum) 

which is strictly asymptotically stable. 
If J-ll (Ta, Pa) < 1-12 (Ta, Pa) then there are two equilibria, 

and (19) 

the first is asymptotically stable, the second is unstable. 
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3. Metastability 

3tates with property (16) are the usual stable states according to classical 
;hermodynamics; states with property (17) are the ones called metastable 
.n classical thermodynamics. 

Observe that the notion of metastabili ty is not generally defined in 
:lassical thermodynamics and is not introduced in Lyapunov's theory. Now 
ive see that metastable states are unstable in Lyapunov's sense. However, 
we can find a peculiar feature of this unstability: namely, the hyperplane 
?viI = 1\18 is invariant for the dynamical equation, and restricting the equa­
tion to this hyp erplane, the state becomes asymptotically stable. This means 
that if we consider a process in which the other phase is not present, phase 
transition starts only if a small amount (a 'nucleus') of the other phase 
appears (by fluctuation). 

Thus we can define metastability in general as follows. Suppose the 
equilibrium is contained in a subset invariant for the dynamical equation. 
An unstable equilibrium is called metastable with respect to the subset in 
question, if it becomes a stable equilibrium if we restrict the dynamical 
equation to that subset. 
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