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Abstract 

Thermokinetics is the general kinetic theory of physico-chemical phenomena. Though its 
basic conception is very old, the thermodynamic theory has been developed only in the last 
two decades. The scope of Thermokinetics extends to equilibria (dynamics of equilibria), 
to near-equilibrium (Onsagerian Irreversible Thermodynamics) and far from equilibrium 
processes (chemical reactions). The kinetic treatment results in new interpretations for 
old concepts, such as rate coefficients, symmetry relations, cross effects, etc. The proper 
selection of variables leads to a symmetric and unified system of static and dynamic 
properties and relationships. As Maxwell's experimentally confirmed reciprocities (MRR) 
confirmed the existence of the entropy, in a similar way, the empirical dynamic reciprocities 
(DRR) lead to the 'Entropy dissipation Function (Ds)' and vice versa, DRR can be proved, 
similarly to MRR, as the reciprocity of the second derivative matrix of Ds. Onsager's 
ORR is regarded as a special case of DRR. Problems about other proofs are listed in brief. 
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1. Introduction 

Beauty in Description of Nature 

The old Greeks believed in that Nature is built up of simple, symmetrical 
elements: (regular polyhedra), its description must be as simple and sym­
metrical as geometry and mathematics, reflecting its beauty in structure [1]. 

To Leonardo da Vinci is attributed the saying: 
'When a construction is not beautiful then it cannot be good' 
Copernicus and Kepler searched a more simple and beautiful interpre-

tation of the motions of the system of Earth, Sun and planets: the heliocen­
tric model. Mechanics arrived at a stage of evolution when its fundamental 
relations exhibit a perfect beauty. Well known are Hamilton's canonical 
equati6ns, Einstein's space-time relativistic relations, the Schrodinger equa­
tion and unified relationships of elementary particles and interactions. The 

lecture held on the Symposium' Reciprocity Relations and Non-linear Thermody­
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beauty is accompanied with symmetries, general validity, unified descrip­
tion, simplicity, possibility of making general calculus in a wide range of 
applications. 

J.W.Gibbs wrote (motto of Tisza's 'Generalized Thermodynamics' [2]): 
'One of the principal objects of theoretical research in any department 

of knowledge is to find the point of view from which the subject appears in 
its greatest simplicity'. 

In developing theoretical models it was always an important question: 
which of the variables are to be selected, which points of view, which co­
ordinates fit best the nature of the material system. This, in most cases, 
may differ from the point of view of experimental observations (example: 
the characterization of the heat conductance of an anisotropic. e.g., triclinic 
crystal needs six independent parameters in the Cartesian coordinates but 
only three in the oblique-angled eigen-system. The entropy, chemical po­
tential, heat or diffusional mass flow etc., are in most cases not directly 
measurable) . 

Experience proves that the two main 'points of view' differ in that 

a. Textbooks of the 'observer-applier' type deal with the interaction of 
the material world and man, from the point of view of the latter. 
Descriptions lead to complicated (ugly) relations (see: Earth-centric 
astronomy, thermodynamic books written for engineers dealing with 
heat and work, engines, perpetuum mobile, temperature defined by 
thermometer, entropy by calorimeter, 1., H., Ill. Law, equations of 
state of non-ideal gases). Quoting Truesdell [3): they are ' ... loaded 
with words like piston, boiler, condenser, heat bath, reservoir, ideal en­
gine, perfect gas, quasi-static, cyclic, nearly in equilibrium, isolated ... ) 

b. The 'exact' treatise deals with the Nature in itself and not with the ob­
server. (Astronomy dealing with solar system. Gibbsian, Onsagerian 
thermodynamics and 'thermokinetics'. Unified general laws, symmet­
ric and definite matrices, simple and descriptive equations of state). 
The aim is simplicity, ease of understanding, exact definitions and 
beauty of the system of relationships. 

The 'exact' thermodynamics, thanks to Gibbs, Onsager, Prigogine, 
Callen and others, arrived at some high level of beauty. 

But. 

Not all were satisfied perfectly by the thermodynamics as it appeared in 
most textbooks. Truesdell wrote (loc.cit. [3]): 'The difference between 
mechanics and thermodynamics is that thermodynamics never grow up'. 

Though the target of the critics is first of all the 'observer-centric' tech­
nical thermodynamics, some beu ty-breaks, disharmonies burden the latter 
one as well. One may ask: 'isn't thermodynamics finished yet? The answer 
is firm: Yes, not'. The search for a more proper representation is to be 
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continued, some necessary corrections need to be made, false notes are to 
be corrected. 

Some instances of disharmony found in thermodynamics are 

a. Gibbs' fundamental equations. 
b. Einstein's model for the equilibrium of matter and radiation. 
c. Limited validity of the Law of Microscopic Reversibility. 
d. Onsager's kinetics: why is it restricted to linear relations? 
e. Difficulties at the proof of the Reciprocal Relations. 
f. Non-ideal systems: why are not valid the ideal equations of state? 

The answers can be given in terms of the kinetic theory, the 

Thermo kinetics 

2. Gibbs, the Fundamental Equations, Density- and 
Potential-Space 

The fundamental equations, written for a global system exhibit some asym­
metry : 

GIBBS 
dS 

EULER 
S 

GIBBS-DUHEM 
o 

(liT) . dU + '2)-J1kIT) . dNk + (PIT) . dV , 
k 

(liT) . U + ''2)-J1kIT) . Nk + (PIT) . V , 
k 

U· d(l/T) + I,>Vk . d(-J1kIT) + V· d(PIT). 
k 

(1) 

(2) 

(3) 

Two of the three relationships are independent, thus the number of variables 
is greater than necessary by one. This may cause some problems. For 
example, the second derivative matrix of the entropy is singular, its inverse 
cannot be calculated. The Legendre-transformed form of the entropy is zero. 

The so called 'local' system is more convenient. A local system is a 
small area of given volume without any physical walls (open system ). The 
Gibbs space is then spanned by the densities (in other word, the concentra­
tions), ,defined as 

Ci == lim (E;/V) . 
v-+o 

(4) 

By definition, the density of the volume is Cv =1 and dY = O. For lo­
cal systems, consequently, the superfluous variable, the volume disappears 
(densities do not depend on the volume). Taking dV = 0 and dividing by V: 
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GIBBS 
d(SIV) (liT) . d(UIV) + ~(-f-lkIT). dCk = dW C , (5) 

k 

EULER 
(SIV - PIT) (liT) . (UIV) + ~(-f-lkIT) . Ck == W , (6) 

k 

GIBBS-DUHEM 
-d(P IT) (uIV)· d(l/T) + ~Ckd(-f-lkIT) = dW F . (7) 

k 

As seen, PIT is a Legendre-transformed of SIV. As SIV is the principal 
quantity of the density-space, PIT is the same for the potential-space 
both connecting potentials and densities. ~V is used mostly in statistical 
studies, called as 'KRAMERS potential' [4]. 

Denoting the independent sets of C's and F's by Cj and Fj 

dW = d(~ Cj· Fj) = ~Fi· dCi + ~ Cj· dFj = 
i i i 

= d(SIV) + d(-PIT) = dCW + dFW (8) 

F= (B(SIV)). .= (-B(PIT)). 
t BC; ,Ct BFj (9) 

Both SIVl and PIT have nonsingular second derivative matrices. Exper­
iments confirm that in many instances PIT may deserve more attention 
than S! 

(In mechanics, the kinetic energy, function of the conservative mo­
menta, is the parallel of the entropy density, and the velocity of the Fi '). 

3. Thermokinetics. Rate Equations 

3.1. Absolute and Net Rates 

Thermodynamic systems consist of a great number of similar elements (e.g., 
particles). Processes are carried by the motions of the particles. Ther­
modynamic motions differ from those of mechanics in that any process is 
accompanied by its reverse. As it was put in words by FOWLER (1924) [5J: 
'anyone process of exchange acting in a particular direction must 
be invariably companied by an analogous reverse process'. Conse­
quently 

any 'net' process rates (Ji) are differences 
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of 'forward' (ji') and 'bacbvard' (jt) 'absolute' process rates: 

J j = jj -+ - jj t- (10) 

Examples: chemical reaction 'from left to right' and 'from right to left'(ar­
rows ---+ and +--), evaporation and vapour condensation, in gases the fiux 
of particles in directions +X and -X and the anodic and cathodic exchange 
current at electrode surfaces. Onsagerian 'irreversible thermodynamics' (IT) 
always deals with 'net' fiuxes (Ji). IT, consequently, have lost any contact 
with thermostatics. In equilibria net fiuxes (and the forces) always vanish, 
the rate equations degenerate to 0 = o. The kinetic theory (Thermokinet­
ics), in contrast, deals with absolute rates, studies therefore not only irre­
versible processes but dynamics of equilibria as well. (It cannot be called 
irreversible theory). jj absolute rates ( as the potentials ) do not vanish but 
equilibrate in equilibria. Knowing the rate relations between ji and Pi, one 
knows all from the relations of Jj and Xi, their differences. Onsager's IT is, 
consequently, a part of the general kinetic theory as its linear limiting case. 
It is hard to understand that, since Onsager, in process thermodynamics 
the absolute rates have been quite forgotten . 

Net fiuxes Ji 
. -+ 

Jj 
.t-

Ji Absolute fiuxes 
.} + + 

linear non-linear rate relations 

+ + + 
Forces Xi p!' 

! 
p! 

! Potentials 

(Onsager, IT) (Thermokinetics) 

3.2. The Two Important Types of Rate Equations 

3.2.1. The Kinetic Mass-Action Law (MA) 

The law was declared by GULDBERG and WAAGE (1872) [6]. In brief, MA 
asserts: the rate of a process is proportional to the number den­
sity of the participants. The factor of proportionality 1S called the rate 
constant of the process (k). 

(11 ) 

This is the absolute rate in terms of the densities (density-space). 
The law, though it was not declared, was employed since the first half 

of the 19th century, first of all, for chemical processes. Boltzmann, Maxwell, 
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J (fotWard) (backward) 

Fig. 1. Absolute and net process rates 

Einstein, Tolman, Onsager and many others up to now, all calculated with 
rate equations of the MA type. The physical content of the law seems clear 
and self-evident. However, in some instances problems arose, calculations 
with MA are responsible for a series of problems. It really works well only 
for elementary (atomic) processes, and for ideal mixtures. The time-reversal 
symmetry law, the Microscopic Reversibility is t'herefore restricted to mi­
croscopic processes, Onsager coped hardly with MA type equations. The 
processes in non-ideal systems are described only in a very complicated 
way, the activities cannot be avoided threatening its original meaning. The 
exclusive use of MA equations is responsible for the fact that a kinetic ther­
modynamic theory could not be developed for a very long time. 

3.2.2. The Potential-Action Type Rate Equations (PA) 

In PA type relationships the absolute process rates (j) are expressed 

in terms of the potentials 
jj (F 1 ... ,F n) , (12) 

where the variables Fi form the set of independent potentials (potential­
space). (12) reminds us of the Onsagerian 'ohmic' rate equations (net 
fluxes in terms of the forces). This representation exhibits more favourable 
properties. 

First, rate equations of different types of processes have a unified, 
general form [7]. 

Secondly, it leads to the time-reversal symmetry law [8], [9] of general 
importance. 

Thirdly, they make possible to develop a thermodynamic theory for 
non-ideal systems [10]. 
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3.3. The Entropy Dissipation Function 

rhe dynamic parallel of the Kramers potential is the Entropy Dissipation 
Ds) [11] 

Ds = ~J .. ·F· - L..J l l ' (13) 

;i and Pi form the independent set again. The exact differential of Ds is 

(14) 

:Jomparison with (8) shows that D~ is the parallel of SIV and Df of PIT. 
The first derivatives are 

(15) 

The absolute rates form the third important set of entities in the unified 
thermodynamic system. The relations may be visualized as follows: 

EOS 

where 

W~L,iFi7 
c 

F 

~i.Fi ~D, 
J 

EOS means the equations of state at equilibrium 
MA means Mass-Action type rate equations and 

PA means the Potential-Action type rate equations. 

4. Reciprocities 

4.1. Thermostatics. Maxwell's Reciprocity Relations 

PA 

The d~ryendences of the differentials represent the appropriate matrices of 
the exact differentials of Jacobian form 

(16) 

(17) 
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The elements rik form a quadratic matrix ('state matrix'). The diagonal 
elements rii and rkk represent the self-effects. rik is responsible for the 
cross-effect between the i'th and the k'th interaction. r is the second deriva­
tive matrix of FIT and r- 1 that of the entropy density. It follows from the 
elementary theorem of calculus that matrix r is always symmetrical, conse­
quently, no matter if the EOS are linear or not. 

r - 1 
ik 

rik - rki 

Maxwell's Reciprocity Relations (MRR) 
(20) 

This reciprocity is confirmed by experiments. Mathematically it is proved by 
(19). The sufficient condition of the symmetry is that FIT and 51V exist 
and are continuous functions of the potentials and densities, respectively. 
(Local equilibrium). 

4.2. The Dynamic Reciprocity Relations 

The partial derivatives connecting ji's and F;'s form the matrix A 

dji (21 ) 

(22) 

Aik are the second derivative of the Entropy Dissipation. They from sym­
metric matrix 

A-I 
hik (23) 

(fJjk) - = Aki. (24) 
8Fi 

Aik - Aki 

The Dynamic Reciprocity Relations (DRR) 
(25) 

(The dynamic equivalent of MRR). The validity of DRR does not depend on 
the functional form j(F), consequently, is not confined to linearity. Sum­
ming the two symmetrical relationships we get 
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dF 

L:idFi' dCi ,; / 

Negative o2(S/V) / 

de dj (26) 

4.3. Onsager's Reciprocity 

Lars Onsager with his two famous papers which appeared in 1931 [12], 
laid dmvn the foundations of the thermodynamic theory of non-equilibrium 
('irreversible') systems. In his work he declared the reciprocity between 
different processes as a general thermodynamic law. Onsager supposed that, 
not far from equilibrium, the (net) fluxes (Jd are linear functions of the 
forces (Xd (the 'Ohm's laws' of thermodynamics) 

Ji = I:: Lik . X k , 

k 

(27) 

where Ji is the net rate of the i'th process, Xk is the k'th thermodynamic 
driving force (difference or gradient of Fk) Lik is the appropriate rate coef­
ficient. 

Onsager's reciprocity principle asserts symmetries for the cross coeffi-
cients 

Lik - Lki 

(Onsager's Reciprocity Relations) (ORR) 
(28) 

Similarly to that of l\Iaxwell, this reciprocity is confirmed by experiments. 
(Later H.B.G. CASIMIR [13] has extended the law to more general sys­

tems, e.g., to the presence of magnetic field and therefore the cross symmetry 
law is often called 'Onsager-Casimir Relations'). Onsager has tried to give 
a general proof of these relations. His approach was based on the law of 
MR declared not long before, supposing that it was a law of general validity 
responsible for all dynamic symmetries in thermodynamics. He derived the 
reciprocities by an argument borrowed from fluctuation-dissipation theory 
with the assumption that the rate at which a fluctuation in an equilibrium 
ensem~le regresses equals the rate at which the ensemble average of the 
same quantity will change in a nonequilibrium ensemble. For example, he 
supposed that the average decay of temperature fluctuations obeys the or­
dinary laws of heat conduction. (His first example was the heat flow in an 
anisotropic body). From a fluctuation-dissipation law called by him the law 
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of microscopic reversibility he derived the symmetry relation for this phe­
nomenon. This proof was not convincing for all. MEIXNER wrote (1973): 
[14] (p.55.) 'The Onsager-Casimir reciprocal relations yield more informa­
tion than the fluctuation-dissipation theorem combined with microscopic 
reversibility. Rather, this is a sep arate and independent statement'. 

Onsager was, in searching a general proof for (28), in a very difficult 
position. 

First, use of net and not absolute fluxes restricted all statements to 
linear rate relations. 

Secondly, the Microscopic Reversibility concerns only absolute reverse 
rate pairs of a single process and cannot do anything with cross effect of 
different processes. 

Thirdly, the law of Microscopic Reversibility can be applied only to 
microscopic, atomic processes. 

Fourthly, in deriving the relations of rate equations Onsager could use 
only rate equations of the j(C) type, consequently, the calculations were 
com plicated. 

The problem can be solved: 

Because ORR is a special linear version of DRR from the reciprocity DRR 
follows the reciprocity ORR. 

Remember that in thermodynamics operation 'd' may have more phys­
ical meanings. 

A few of them may be: 

a. Small difference (deviation from equilibrium): 

dC~b,.C, dF~b,.F=X, dj~Dj=-J (29) 

b. Gradients or divergences 'VC or 'V J 
c. Time rate of change dC / dt 
d. For chemical reactions, 'd' is to be replaced by the stoichiometric 

matrix. 

Near equilibrium 

-dji ~ Ji = LLik' Xk ~ LLik' dFk = - L Aik' dFk. (30) 
k k k 

Consequently, the symmetry of A is equivalent to the symmetry of 

(31 ) 

quod erat demonstrandum. 
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5. Summary 

The derivation can be summarized as follows 

Thermostatics Thermokinetics 
W = LiGi· Fi = Ds = Li ji . Fi = 

= Li Fi . dG i + Li Gi . dF; = = Li j i . dF; + Li Fi . dj i 
= d(Sji!) + d(-PjT) = dD F + dDi s s 

Densities Potentials Abs. rates 

Fi 

Gi(Fj} / ~ ji(Fi) 

Gi ---------. ji 
ji(Gj)MA 

dF; 

dCi(dFi) ( 

%eEpr 

dGi 
-!-

Maxwell 
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