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Abstract 

The validity of the anti-symmetric reciprocal relation can be proved for non-linear con­
stitutive equations generally if it holds in the linear approximation. The constitutive 
equations may be formulated so that the coefficients of the main effects are positive. 
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1. Introduction 

A number of practically important applications of non-equilibrium thermo­
dynamics leads to a two-variable problem; with hvo thermodynamic fluxes 
and two forces [1 6]. Gsually, this is the situation when studying the ma­
chines of energy transformation, e.g., heat engines [7 la], electric motors 
or generators, etc. If the reversible limit case has importance it is very con­
venient to choose the independent variables so that the reciprocal relation 
in ;:he realm of linearity IS anti-symmetry; 

(1 ) 

The inequalities 
Lll > 0 and (2) 

express the second law and the inequalities turn into equalities in the re­
versible limit. It is very useful to know that the constitutive equations can 
be put into the customary form [1. 2, 11-13], 

11 = LllXl + L12 X 2, 

12 = L2l...\1 + L22...\2 , (3) 

even III the non-linear regime and the relations (1) and (2) for the L coef­
ficient&- (depending on the independent variables Xl and ...\2 ) c&.'1 be pre­
served. The non-linear generalization of Onsager's reciprocal relations by 

)This work was motivated by the EC project CARNET and has been supported by 
the Hungarian National Scientific Research Fund, OTKA (1949, T-17000) and the EC 
(Contract No: ERBCIPDCT 940005) 



• 

66 J. VERH.4S 

HURLEY - GARROD [14, 15], and VERH . .\S [16] ensures the validity of the 
inequalities (2) only for an open set around the equilibrium. 

Non-linear thermodynamic modelling needs some further support 
replacing the linear approachability of continuously differentiable functions 
[17]. When looking for this support the above facts (to be prove1) are 
helpful. 

2. A Lemma 

The proof is based on the lemma: 

If a continuously differentiable multi-variable function F(x 1) :1'2, 

... , xn) is zero if all the independent variables are zero, it can 
be given in the form 

where aI, a2, . .. ,an are continuous functions of Xl, 1:2, ... , x n · 

The functions aI, a2 , ... ,an are not determined uniquely. 

The proof of the lemma is based on Lagrange's mean value theorem. 
The auxiliary function 

satisfies the equalities 

G(O) = 0 and G(l) = F(:q, .1'2, ... , Xn) 

from which 

F(X1, X2, ... , xn) = G(l) = G(l) - G(O) = dG I 
1 - 0 d~ 0<';<1 

of I of I of I 
= OX1 0<';<1 Xl + OX2 0<';<1 x2 + ... + OXn 0<';<1 xn 

follows. 

3. The Sketch of the Proof 

Assume a t\vo-variable problem for which the reciprocal relation in the 
approximation is anti-symmetric; 

h=11 (X1 , X2), 

12 = h(X1 , X2) 
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with 

oh I + 
012

1 - ° 
OX2 X j =X2=O oX 1 X j =X2 =O - . 

Applying the lemma, we can write 

with 

h = A.(Xl, X2)Xl + B(Xl, X2)X2, 

h = C(Xl, X2)X1 + D(Xl' X 2)X2, 

B(O,O) + C(O,O) = 0. 

Applying the lemma again, we get 

Having eliminated C, the entropy inequality reads 

(Ts = (A. + EX2)Xf + (FXl + D)X:j ~ ° . 
If one of the two terms (say the second) is negative the inequality 

(A. + EX2)Xf > -(FXl + D)Xi 
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(6) 

(7) 

(8) 

(9) 

holds out of equilibrium. It makes possible to choose a function H so that 
the expression H (X 1, X 2)X i xi is between the two sides; 

(A. + EX2)xl > Hxlxi > -(FXl + D)xi , 

from which the inequalities 

(A. + EX2 - Hxi)xl > 0, 

(FXl + D + Hxl)xi > ° 
follow. Eqs. (3.3) can be cast into the form 

h = (A. + EX2 - HXi)Xl + (+B - EX 1 + HXIX2)X2 , 

12 = (-B + EX l - HXIX2)Xl + (D + FXl + HXl)X2 

Introducing the notations 

Lll = A. + EX2 - HX'#. 
L'11 = -B + EXl - HX1Xz , 

L12 = B - EX 1 + H X lX2 , 
L22 = D + F Xl + H X f , 

(10 ) 

we obtain the usual form as given in equations (3) together with the recip­
rocal relation (1) and the inequalities (2) for sufficiently smooth constitu­
tive equations. 
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