
PERIODICA POLYTECHNICA SER. CHEM. ENC. VOL. 4], NO. 2, PP. 97-102 (1998) 

THERMODYNAMIC STABILITY OF DIA- AND 
PARAMAGNETIC MATERIALS 

Peter VAN 
Department of Chemical Physics 
Technical University of Budapest 

H-1521 Budapest, Hungary 

Received: March 11, 1997 

Abstract 

According to the present theories of magnetic media the intrinsic stability is violated. 
Dia- and paramagnetic materials cannot be stable with the usage of the same extensive 
variables. Two different energy-momentum tensors are proposed to resolve the problem. 
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1. Introd uction 

According to the Second Law the intrinsic stability criteria in thermostatics 
requires a concave entropy function. If the entropy depends on the exten­
sive variables, the second derivative of the specific entropy, D2 s must be a 
negative definite matrix. 

For magnetic materials the most widely accepted treatment introduces 
the magnetic polarization as an extensive variable 

s( .. . , m) . 

If we accept the magnetic work in the form Bdm, that is the intensive 
quantity for magnetic interactions is the magnetic induction B then the 
Gibbs relation can be written as 

du = Tds - pdv + ... + Bdm . 

So the corresponding derivative of the entropy function is 

8s B 
8m T 

and the second partial derivative according to m 

TXm' 
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where Xm is the magnetic susceptibility and f-L is the relative permeability. 
Therefore the specific entropy is a concave function of the extensive 

variables if and only if Xm is a positive number (function). However, we 
know that the magnetic susceptibility is a negative quantity for diamagnetic 
materials, and positive for para- and ferromagnetic materials. You can see 
clearly the contradiction. 

Common textbooks containing the thermostatic theory of magnetic 
materials reflect this confusion. Different forms of the magnetic work are 
introduced by different authors [1], [2] and most of the authors simply avoid 
the treatment of diamagnetic materials [3], [4], [.5]. 

In this short paper we gi've a possible resolution of the problem, how­
ever, to this end we should go back to the origin of the different work terms 
in the first law, we should take into account the energy-momentum ten­
sors of the different electromagnetic media. The theory of electromagnetism 
is essentially a special relativistic theory, therefore \ve will investigate this 
problem considering special relativistic spacetime. 

2. Electromagnetic Energy-:Momentum Tensors for Magnetic 
Materials 

First of all we introduce some notations: 
The electromagnetic field is an asymmetric cotensor denoted by F, the 

polarization N and displacement G are asymmetric tensors. To see the clue 
with the usual time and space splitted notations we give these quantities in 
a momentary rest frame. 

The time-like component of the electromagnetic field is the E electric 
field, the space-like component is the magnetic field 

The time-like component of the polarization is the electric polarization and 
the space-like component is the magnetic polarization: 

The time-like component of the displacement is the electric displacement 
and the space Eke component is the magnetic field strength: 

Go = (_~ _~). 
Here we considered that the tensors and the cotensors can be identified with 
the help of the Lorentz form. The relation of the field quantities: 

G - F..L i\T {D = P + E, 
- ,"~ --7 B = H + M. 



THERMODYSM.JIC STABILITY ... 99 

We can find a lot of different energy-momentum tensors in the literature, a 
proper form of the electromagnetic field energy-momentum for a polarizable 
medium is a well discussed problem from the beginning of the century. Here 
we give some tensors and cite their assumptions. We gave two different 
forms: first the relativistic four-vector notation is used ( with indexes) after 
that we give the expression in a momentary rest frame. 

The first and well known form is due to MINKOWSKI (1908) [6]. He gave 
this expression requiring the form invariance of the field energy-momentum. 
This is the one that appears in most of the textbooks [3], [7], [8], [9]. 

T~w = ( 
~(E. D + B· H) 

DxB 
ExH ) 

-E 0 D - HoB + ~(E· D + B· H)I 

After that ABRAHAM gave the following expression in 1909-1910 [10]. He 
supposed that the field energy-momentum should be symmetric. 

T
A
od3 = ~ (Feq G~ . ..L. pS-i G2 ) _ ~ F G-r(go.S..L. 2 ., I ·-r 4 rC I 

+~c-2 [G-S(FO-iiVLiC - jvlo!F~lc) + UO(pS-iiVI_ic - iVIS-rF!e)] UC, 

~(E· D + B· H) 
ExH 

ExH ) 
-(E 0 D)S - (H 0 B)S + ~(E. D + B . H)I . 

Some decades later DE GROOT and SCTTORP realized that a macroscopic 
field energy expression should be based on a covariant statistical derivation 
[11]. From the microscopic field equations they have the following form ulas: 

Tes = -F· G - ~F: F + [F, N]· U 0 U - U 0 U· N· F· [/0 U = 

= -Fo-'G' S _ 1 F_.' G-rc go/3 ..L. c- 2 (Fo-r jvL UC ,_ "', 4 rE 1 re 

_(gO-' + c-2UOlF')}vL!crXUx)US: 

Yes = ( 
ExH ) -EoD-HoB+ 

+ (~(E. D + B . H) - M . B) I 
(1) 

Here the expression is given in three different forms, before the usual four 
vector formulation I give the expression in a frame independent notation, 
too [12], [13]. 

In thermodynamics, where the different balances have a practical ap­
plication, different authors suggested a different form of the field energy 
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density. For example DE GROOT and MAZUR [14], VERH.~S [15] and MAU­
GIN [4] applied a different field energy densities. After that MATOLCSI [16] 
realized that this energy density can be given in a covariant form 

TGM = - F . G - ~ F : F - ([ F, N] - g (F : N)) . U 0 U = 
_FO~iGe _ ~F G~![ 0(3 _ -2(FO~il"f UT[TT,e_ 

~. ~i[ g C lVl~i[ G , 4 . 

TGM= ( 

-gO~!lv1~f[F[XUxUe) + ~Ei[l\1'[UOUe: 

~(E2 + B2 - M· B) 

ExH 

ExH 
-EoD-HoB+ 

+ (~(E' D + B . H) - M . B) I ) 
(2) 

Let us note that the last two expressions differ only in their electromagnetic 
field energy (in a momentary rest frame). 

3. Thermodynamic Considerations 

The electromagnetic field energy is a part of the whole energy balance. To 
get the work terms in the First Law we should write the internal energy 
balance and from the expression of the source of the internal energy (the 
dissipation) we can conclude the polarization work terms. ('sing the expres­
sion of DE GROOT and SCTTORP [ll] the source of the internal energy can 
be written as 

(J = J' . E ..L E . aP _ M . aB . 
U I at at 

Therefore the extensive quantity appearing as an independent variable in 
the entropy function is B. So the Gibbs relation is: 

du = Tds + EdP - mdB, 

and the corresponding derivatives of the entropy are: 

as m a2s Xm 
s(u, p, B) --+ aB = T --+ aB2 = TIl . (3) 

The requirement of the intrinsic stability criteria suggests that the corre­
sponding medium is a diamagnetic one. 

Similarly, from the expression of the thermodynamic field energy mo­
mentum we can get for the dissipation density: 

. aP aM 
(J =J·E+E·-+B·-

U at at . 
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Therefore the extensive quantity in this case is the specific magnetization 
m. The appropriate form of the Gibbs relation is the one given in the 
introd uction: 

du = Tds+ EdP + Bdm. 

The derivatives of the entropy: 

os B 02s 
s(u, p, m) -+ om = - T -+ om2 = - TXm (4) 

The requirement of the intrinsic stability criteria shows that the correspond­
ing medium is a paramagnetic one. 

Investigation of the field energy densities suggests a similar interpre­
tation as the thermodynamic considerations. Let us consider the energy 
expressions of the different electromagnetic media separately. The energy 
density of the pure field without any polarization is 

(1) 1 
EElvJ = 2(E.D+B ·H). 

The energy density of the electric dipoles is 

(el) 1 
EElvJ = -2(E.P). 

The energy density of the magnetic dipoles is 

(ma) _ 1 (B M) 
EEM - -2 . . 

The last two expressions require some further considerations. In polarizable 
media we distinguish two different dipole types: permanent and induced. 
The behaviour of the two electric and magnetic dipole types in an external 
field is different. While both the induced and the permanent electric dipoJes 
turn to the same direction in an external field, the different magnetic dipoles 
turn to the opposite direction. In vie\\" of this fact we should change the 
sign of the field energy of induced magnetic dipoles, when no permanent 
ones are present. 

If we add the three terms above we get the thermodynamic energy 
density in (2): 

(para) 1 ( ) 1 ( ) 1 ) E2 B2 
EEM = 2 E· D + B· H -: 2 E· P - 2(B. M = 2" + 2" - M· B. 

If we change the sign of the energy of the magnetic dipoles and we add the 
three terms again, then we get the de Groot-Suttorp form energy density 

(dia) 1 1 1 (E2 B2) 
EEl'v! = 2(E. D + B· H) - 2(E. P) + 2(B. M) = 2" + 2" . 
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4. Discussion 

In the usual considerations on the electromagnetic field energy-momentum of 
polarizable media people expect a unique expression for different materials. 
Now we have seen that at least two basic expressions have to exist if we 
require the intrinsic stability. In this case the two most widely accepted 
expressions do not compete any more, they can be valid for different media. 

Different energy-momentum tensors for different materials are quite 
common in continuum physics. However, those are based on different con­
stitutive laws. Here no constitutive laws were considered yet: we gave two 
equivalent basic forms of the field energy momentum. 

Some immediate consequences of the above considerations are applied 
in the relaxation theory of para- and diamagnetic materials [17]. 
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