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Abstract 

We present a general proof for a design principle developed during the last two years: The 
principle of equipartition of forces. The principle is derived for parallel, coupled transport 
processes without restrictions on the phenomenological coefficients. :vIinimum entropy 
production is obtained for the total system, when the thermodynamic forces of transport 
are the same over all parallel paths in the system. \Ve review some of the results obtained 
so far by application of the principle to distillation columns. 
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1. Introd uction 

Energy optimization is important in the process industry. Energyoptimiza
tion of a process means determination of minimum entropy production. Al
ready in his works on the symmetry relations, OI\SAGER stated (1931a. b) 
that entropy production is minimum in the stationary state, that is a state 
with constant fluxes. BEJAI\ (1982) has described how minimum entropy 
prod uction can be obtained in practice for several cases of heat and mass 
transfer. In a heat exchanger for example, he found a sharp minimum for 
the entropy production for certain flow conditions in the tube. For constant 
transport coefficients, TOI\DECR KVAALE:\ (1987) showed that minimum 
entropy production is obtained when the entropy production rate is con
stant through the apparatus. As a consequence of this. a heat exchanger 
with countercurrent flow dissipates less energy than one with concurrent 
flow: a well-known engineering observation. 

The results of TO:\DECR KVAALE:\ are in accordance \vith the re-
sults from finite time thermodynamics. In a recent review on finite time 
thermodynamics, A:\oREsE:\ (1996) states: Constant rate of entropy pro
duction is the path or operating strategy which produces the least overall 
entropy in the system. In his elaboration on the topic in 1990. TO\DECR 
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writes: 'With a constant coefficient (of transport), the distribution of driv
ing forces, which minimize the entropy production of the system under the 
constraint of a specified duty, is a uniform distribution.' 

The present work summarizes our recent results in this field (KJEL
STRUP RATKJE et al., 1995, SAUAR et al., 1995, 1996, 1997a). We have 
been able to generalize the results of TONDEUR (1990) and show that the 
last statement is true for parallel processes, also when the coefficients are 
not constant. We call our general result the principle of equipartition of 
forces. The principle has bearings on apparatus design. We review some 
which we have found for distillation columns. 

2. The Principle of Equipartition of Forces 

We repeat our derivation of conditions for minimum entropy production in a 
system of k parallel transport paths. Consider for simplicity that each path 
n has the coupled fluxes, J1,n and J2,n, with their conjugate forces X 1,n and 
X 2,n' The entropy production rate for path number n is 8n : 

and the fl uxes are: 

2 

81'. = L Ji,nXi,n , 
i=1 

(1) 

(2) 

(3) 

Onsager's reciprocal relation, L 12 ,n = L21 ,n, applies. All k paths are adding 
to the total entropy production rate, 8: 

k k 

8 = L 81'. = L LJi,nXi,n' (4) 
1'.=1 n=l i 

We are interested in a certain total output and demand that the sums of 
fluxes over all paths are constant: 

k 

J1 = L J1 ,n = Cl (5) 
1'.=1 

k 

J2 = L h,n = C2 . (6) 
1'.=1 
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The minimum value of Eq. (4) for the conditions (5) and (6) is found by 
using the Lagrange method for constant multipliers Al and A2 for all paths: 

(7) 

8LnBn _ \ 8LnJ1,n \ 8Ln J2 ,n 
- - Al + A2 -==..:..0-"-

8X2,n 8X2,n 8X2,n 
(8) 

The derivatives in these equations can be identified from Eqs (2) and (3) so 
that: 

-2Jr,n = AI L ll,n + A2 L 12,n , 

-2J2,n = )..I L21,n + A2 L22,n . 

Comparison of Eqs (9) and (10) with Eqs (2) and (3) gives: 

Xl --~ - .n - 2' 

(9) 

(10) 

(11) 

(12) 

The result is that the forces for each path must be constant in order to 
give minimum entropy production rate. Increasing the number of forces and 
fluxes will simply add more terms to Eqs (9) and (10), and give more results 
like Eqs (11) and (12). 

The result is valid independently of the nature of the fluxes and forces. 
The conjugate fluxes and forces may be scalars, vectors or tensors. This 
means that the fluxes subject to the constraints of Eqs (5) and (6) can be 
fluxes of heaL mass, charge, and of chemical reactions. The driving forces 
of transport for these cases are, respectively, the thermal force, v (lIT), the 
chemical force, v (f-1dT) , (where f-1i is the chemical potential of component 
i), the electric force. vcplT, (where 0 is the electric potential), and the force 
of a chemical reaction is /:).rGIT (v,'here /:).rG is Gibbs energy of reaction). 
For a constant vectorial force, condition (10) means that components of the 
vector are different constants. 

The proof for equipartition of forces is independent of Lij,n' This 
means that we need not assume constant coefficients. The phenomenological 
coefficient is normally a function of state variables, and the proof allmvs 
Lij,n to vary between the paths. By introducing Eqs (2), (3), (11) and (12) 
into Eq. (4), we have the following expression for the minimum entropy 
production rate of the system: 

k k 

Gmin = X?,n L Lll,n + Xl,n X 2,n L (L I2 .n + L21 ,n) + xi,n L L22 ,n . (13) 
n=1 n=1 
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The expression shows that the paths of high conductivity contribute more 
than other paths to the entropy production. This must be understood on 
the background of Eqs (.5) and (6). The high conductivity path also have a 
high flux. 

One scalar and two vectorial forces are common in chemical reac
tors, namely the scalar reaction force, and the vectorial forces V(l/T) and 
v(J.1dT). \Ve have minimum entropy production for a constant sum of all 
local chemical reactions (i.e. yield of the reactor), when all forces in the 
reactor are constant. The cross coefficients between the scalar and vectorial 
forces are zero. The two vectorial forces therefore contribute to the entropy 
production rate of the total system by an expression like Eq. (13), while the 
chemical reactor contributes by a single term. 

In many industrial processes, the fluxes are not of equal importance. 
In separations, for instance, usually one of several fluxes is of primary in
terest. An interesting question to ask is then: Does a combination of two 
forces give a lower entropy production than one force alone for the same 
constraints, Eq. (.5) and Eq. (6): l'vlore specifically: can mass transport be 
better promoted by a combination of gradients in chemical potential and 
in temperature, than by a gradient in chemical potential alone. By taking 
away one of the constraints of Eqs (.5) and (6), say the second one, the opti
mization problem reduces. so the last term in Eqs (9) and (10) disappears. 
'Ne obtain the solution: 

(14) 

In words: the result is that it is better to use only Xl. n to promote Jl.n 

instead of a combination of Xl. n and X 2•n when J 1 is of interest, as long as 
the Lij'S are the same. 

VVe have not so far discussed how we understand the k parallel pro
cesses. In some unit operations, like in a distillation tower there is a discrete 
stepwise addition to the total yield of the process (the flux) from each stage 
in the tower. The output of the product in the gas increases stepwise as the 
gas rises from stage to stage in the column. In this system the stages of the 
column are the k paths of the equations above (see Eq. (2)). Each stage 
has a share, An, of the total 'transfer area' of the column: A I:~=1 An. 
The non-intersecting streamlines for mass transfer across the interface of all 
are gas bubbles, however, also parallel paths, meaning that also I n can be 
seen as composed of parallel contributions. This means that the force, Xi,n, 
should be constant not only for all the stages of the column, but also for all 
bubbles on each stage. 

In the heat exchanger. there is a flux of heat both along and perpen
dicular to the transfer area in the exchanger. A. The direction along the 
area is the x-coordinate, and the direction perpendicular to the area is the 
y-coordinate. The area for heat exchange. A, can then be compared to the 
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transfer area of one stage in a distillation tower. The thermal force across 
all parts of this area (i.e. the v-component of the total force) must be 
constant in the optimal situation. Furthermore, \ve must also have that the 
x-component of the thermal force as well as the mechanical force is constant, 
in an optimal heat exchanger. 

The parallel paths and their forces need not be distributed in space 
only. Paths can also be distributed in time. The optimization problem is 
then to find the minimum of Eg. (4) given Egs (5, 6) when all equations 
are integrated over time. The mathematical formulation of the problem is 
otherwise the same as above. This means that the optimum operation of a 
continuous process with constant Lij's is a stationary state operation with 
time-independent driving forces. In the special case where we have only one 
path, this stationary state result is the same as that obtained by PRIGOGI:-iE 
(1947): A stationary state for linearly coupled fluxes is a state of minimum 
entropy production. The premises for the derivations differ. however. 

Chemical reactors can be dealt with in a new way by means of these 
results. According to these results, vectorial and scalar forces should be 
constant in space and in time in the optimal reactor. The chemical reaction 
must accordingly be kept at the same distance from equilibrium, as the re
action proceeds in space and/or in time. "Vhen the heat of reaction changes 
the temperature of the system, we obtain that heat must be supplied to the 
reaction site in a manner which keeps the components of the thermal force 
constant in space. 

The principle of equipartition of forces is, according to this discussion, 
applicable to most chemical engineering unit operations, for instance chemi
cal reactors, drying cascades, adsorption units or distillation towers. It does 
not lead to new results for simple processes, i.e. processes described by one 
flux and one force \vith a constant transport coefficient. .\ew results are 
expected for coupled transport processes and processes with varying coef
ficients. So far \ve have applied the principle of equipartition of force to 
distillation columns. We shall shortly review this work below. The applica
tion to chemical reactors is in progress (SACAR, et al. 1997). 

3. Applications to Distillation Columns 

In this section we describe some results obtained for distillation of binary 
mixtures in adiabatic and diabatic columns. A schematic illustration of a 
distillation column with stages is shown in Fig. 1. We shall first see that 
we are able to predict a favourable stage for location of one additional heat 
exchanger for a column which is adiabatic at the outset. using the principle 
of equipartition of forces. 

Simple engineering design of distillation towers is done on the basis 
of the .:vIe Cabe-Thiele diagram. This diagram contains the compositional 
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Fig. 1. A schematic illustration of the distillation column with stages. Mass and 
heat is exchanged between the up-coming gas and the down-falling liquid 
streams 

phase diagram for the mixture to be separated, and an operating line, which 
relates the composition of the vapour and liquid in the column to the phase 
diagram. \Ve have introduced the isoforce operating line for use in ?vie 
Cabe-Thiele diagrams as a design tool for new columns. 

3.1. :Uinimizing Entropy Production for Ecisting Distillation Columns 

In a distillation column separating a binary mixture there are two indepen
dent forces of transport, one chemical force, and one thermal force. For each 
stage in the column we have (KJELSTRUP R.UKJE et al., 1995): 

e = -J' ~ dT _ ~J Yld/1I,T 
n q T2 dx T d dx (15) 

Here J; is the measurable heat fi ux. and h is the separation fi ux: 

_ (Jl Jh) h- --- . 
Yl Yh 

( 16) 
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Fig. 2. The entropy production as a function of stage number in an adiabatic 

distillation column separating benzene and toluene 

The fluxes of the light (l) and heavy (h) components are JI and Jh, re
spectively, and YI and Yh are their mole fractions in the gas phase. The 
force y1d/lI,T/d:r, does not include the temperature dependent term of the 
chemical potential. The interchange of the two components takes place over 
the gas/liquid interface, and we have assumed that mass transfer is limited 
by transport into the gas phase in our numerical example. The positive 
direction of transport is from the liquid to the gas. The flux equations are: 

J' - -I ~ dT _ I ~ Yldpl,T 
• q - qq T2 dx ql T dx (17) 

J, = _1'n_1 dT _ I ~ YldWT 
Cl .~ T2 dx 11 T dx (18) 

In order to have numerical estimates for the entropy production on the stage. 
we need information on the fluxes and forces or of the phenomenological 
coefficients and the forces. The entropy production for a stage was estimated 
for the separation of benzene and toluene, from the following equation: 

D.T J '. YI6/l1,T J Bn = - JqdAn - T hdAn , ( 19) 

\\'here An is the transfer area of one stage. The forces of transport were taken 
to be constant on the stage and the flux \vas integrated across the stage. 
In practice the process is not stationary, because the continuous evapora
tion and condensation of components lead to a varying composition both 
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Fig. 3. The phenomenological coefficient for mass transfer (interdiffusion coeffi
cient) as a function of stage number in the column of Fig. 2 

in the vapour and in the liquid phases. For this reason we must consider 
small changes for which the approximation Eg. (19) is good (i.e. when there 
are several stages in the column). \Ve choose to analyze a column with 36 
stages, see Table 1 for further specifications. For details of the calculations, 
it is referred to KJELSTRCP RATKJE et al. (199.5). The entropy production 
in the adiabatic column as a function of stage number is given in Fig. 2. 
We found that the dissipation due to the thermal force was negligible in 
this column, since the components have boiling points which are close. The 
phenomenological coefficient for mass transfer was calculated as a function 
of stage number, see Fig. 3. In a column which has a uniform distribu
tion of chemical forces, the entropy production should then ideally have the 
same variation \\'ith stage number as the phenomenological coefficient, see 
Eg. (13). By comparing Figs 2 and 3 we see that this is far from the case for 
the adiabatic column. The question is then: Given that the investments for 
additional apparatus are limited, where will it be most favourable to supply 
(or \vithdra\v) heat to (from) the column? According to Figs 2 and 3 the 
forces will get a more uniform distribution when we increase the driving 
force at a place where the coefficient is relatively large. and reduce it where 
the coefficient is small. Increased driving forces near the end of the column 
are impossible without increasing the total reflux ratio (i.e. the dimensions 
of the column). VVe therefore chose to add a heat exchanger at stage no 22. 
and performed a ne\\' column simulation. In order to keep the total outlet 
conditions (nearly) constant, we had to increase the column by one stage in 
the process (see Table 1). 
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Table 1. Column specification for separation of benzene-toluene In an adiabatic 
column 

System I Adiabatic column Column with heat exchanger 
! Stage numbers 36 37 
I Feed stage 17 17 

Mole fraction in feed, XI 0.54 0.54 
I Reflux ratio 1.58 1.58 

Stage efficiency 0.7 0.7 
Distillate composition, Xl 0.9896 0.9889 
Bottom composition, XI 0.0105 0.0114 

The results for the entropy production for the column with the extra 
heat exchanger and stage are given in Fig. 4. The variation in the bottom 
composition is small compared to that in the composition of the feed which, 
however, means that we can compare the entropy production for the two 
columns. \eVe see that the peak of the entropy production around stages 27 
28 is reduced compared to that of Fig. 2. The change in area under the curve 
and the change in entropy production in the equipment, leads to a reduction 
in total entropy production by 7%. a relatively large number for distillation 
of ideal mixtures. This example of binary distillation therefore demonstrates 
how the principle can be used as a design tool for modification of existing 
distillation columns. In practical situations, the question arises whether the 
extra apparatus investments can be compensated for by the lower energy 
required by the process. \eVe have also shown how the principle can be used 
to improve the performance in multicomponent distillation (SACAR et al., 
199.5). 

3.2. Isofol'CE. Operating Lines in ,He Cabe-Thiele Diagrams 

The principle of equipartition of forces is a relatively easy design criterion 
for energy efficient columns. because it can be translated into controlling 
compositions at different stages in the column. The sequence of composi
tions, which defines constant forces of operation everywhere in the column, 
was used to define the isoforee operating line in the :VIe Cabe-Thiele dia
gram (SACAR et al., 199.5). Examples of such lines for the benzene-toluene 
phase diagram are shown in Fig. 5. Isoforce lines were constructed using a 
constant chemical force: 

(20) 

for two values of C. It appears that the isoforce line is nearly parallel with 
the equilibrium line in the phase diagram, which relates compositions in the 
liquid and vapour phases, VVe explain this for the present mixture which is 
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Fig. 4. The entropy production as a function of stage number in the modified 
adiabatic column 

close to being ideal. Activity coefficients which de\·iate largely from unity 
make the lines less parallel. The choice of the constant C is a trade-off 
between energy costs and investment costs. A large C means higher energy 
costs and lower investment costs. and vice versa for a small C. \Ye choose its 
value according to column height and other practical limitations. It may be 
difficult in practice to keep a constant force throughout the whole column. 
Isoforce lines can also be defined for multicomponent mixture distillations. 
Their illustration in the phase diagram then becomes more complicated. 

The common operating line, which has a constant ratio between gas 
and liquid streams in the column, is for comparison a straight line. It 
follO\\'s that distributed heat exchange is needed to maintain uniform forces 
over the whole column. RIVERO (199.5) found the optimum operating line 
of a diabatic column, from a numerical analysis of10st exergy. The diabatic 
column has a distributed heat exchange. This operating line follo'wed an 
isoforce line for large parts of the :\1c Cabe-Thiele diagram (SAL.o.R et aL 
1997b) . 

J.J. Conclusions 

VVe have sho\\'n that equipartition of forces over parallel paths gives mini
mum entropy production when there is a constant yield in the process. The 
parallel paths are non-intersecting streamlines. with arbitrary cond uctivi-
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Fig. 5. Examples of isoforce lines in a '\:Ic Cabe-Thiele diagram for the separation 
of benzene and toluene. A standard operating line is also shown 

ties, distributed in space or time. \Ve have demonstrated the value of the 
principle for distillation, expect that it may be useful also in other contexts. 
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