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Abstract 

\\'e show that \\·hen t he thermodynamic fi uxes are included as independent thermody­
namic state \'ariab!es of a generalized entropy. the original OS5AGER formulation may 
be directly used in the space of the fiuxes. Therefore. the OSS.-\GER relations may be 
derived either in the space of the classical (slow) \'ariables, by using a spatial FOUlIER 
transformation. or in the space of the non-classical (fast) variables such as the physical 
fiuxes. without need of any Fourier transform. Furthermore. we analyse the question of 
non-linear OSS.-\GER relations by studying one particular set of e\'olution equations of 
the fiuxes. and considering the fluctuations of the fluxes around a nOli-equilibrium steady 
state. Comparison with kinetic theory is not completely conclusive. because of several 
open questions \\'hich we comment in the concluding remarks. 

[{ eyword.,: OSS.-\GER relat ions, exl pnded irre\'ersible t hermodyn<lmics. kinct ic theory. 

1. Introduction 

III this papfT we ('Xilllllll(' O\'SA(;EH-CASI'.llIl reciprocity relations (OCRR) 

ill the framc,\vork of exrended irrcversible thcrmodynamics (ElT) [1 
The aim of rhis rhcory is to sy:-:tcmatize in a thermodynamic formalism 
the phcIlo!l1eIlological cquatiolls which cle~cribe experiments at frequt'llcies 
comparable to the inycrse of the relaxation time of the thermodynamic fiuxes 
(heat fiux. yiSC01lS preS:'i1lre tensor. electric current. difi'usion fiux. and so on! 
or at wayelengths comparable to the mean free path of the particles of the 
sy;.;tem. 

In our opinion. the study of macroscopic matter should be undertaken 
simultalleously and in a clo::;e collahoration by macroscopic and microscopic 
methods. Beyond the situations where local equilibrium is Cl '\'alid macro­
scopic assumption. classical irreversible thermodynamics (CITJ is no longer 
satisfactory. hut alternatin:ly. more general macroscoplC theories haye not 
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been sufficiently developed yet. ElT is one of the serious efforts undertaken 
in this direction. This does not mean that one should be satisfied with only a 
macroscopic phenomenological approach: after identifying the macroscopic 
variables and establishing the equations describing a set of experiments in 
a satisfactory way. one should try to understand from a molecular approach 
why such variables and equations turn out to be relenlI1t. \re thillk that 
limiting ourseh-es to a microscopic point is unnecessarily restrictin::. because 
it is a well-known fact that a phenomenon relatively well described and un­
derstood in macroscopic terms has challenged during many years a valuable 
microscopic understanding_ 

Of course, the hope that. on the long run, the macroscopic equations 
will be supported by a molecular basis. should not pre\-ent us from being 
aware of the subtleties of the connexions between microscopic and macro­
scopic descriptions. The lane"r is independent of any particular molecular 
model: on the other side. a better molecular understanding may lead to more 
successful macroscopic descriptions. Therefore_ one should try to avoid two 
possible extremes: either to assume that the scientific description of the 
world should be restricted to microscopic models or to consider oneself sat­
isfied with the pragmatic success of some phenomenological equations fitting 
some experimental dat a_ wi t huu t confronting them with a molecular theory. 

In Section :2 we examine the derivation of OCRR in the framework of 
ElT. In Section 3 thermoelectric phenomena are used as an illustration of 
how ElT can shed a new light on the reciprocity relations. In Section -± \w 

analyse the difficulties which arise when one tries to extend the results to the 
non-linear domain. To he specific. we cleal ,,'ith the second-order constitutive 
equations of hydrodynamics. It turns our that the reciprocal properties are 
not sat isfied by the cq \la t ions lleri,-ecl from a :;ecolld-orclcr <lllalysis of the 
kinetic theory of gases. HOW('VCT. OHr results are !lot cOlllplerdy l"ClllciusiYe. 
since they are based on Cl comparisou ,,-itl! approximari\'e microscopic models 
rather than \\"itl! exacr results. Scctioll ."j i~ devoted to ,I fillai dis("us:;iu!! OIl 

the present state of the art. 

2. Onsager-Casimir Relations Il1 the Linear Regime 

O:-;S.-\GER-CAS[\[1f{ relations are ,yell ullclerstood in the linear n'glllle 
Therefore. one could ask whet her it is ,yort hy; hile to examine agaill this 
problem. as. after all. the classical results will 1)(, recovered. HO\\"('\"(T. Cl 

more thorough understanding of the derinHioll in the linear case lllay he 
helpful in view of a generalization to the non-linear regime. 

First of alL we briefly recall the O:-;SAGEH.-CASI\Im clerivarioll of the 
reciprocity relations. Assume that the C'Iltropy is Cl function of seH'ral vari­
ables .-1.[ ..... --in and denotc hy 0., Their dn-iatio!1 from the avcrage cquilib-
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num value (.4}). The entropy related to the fluctuation state will be 

1 
5 = So - -a . G . a 

2 

14·5 

(1) 

where So refers to the entropy of the reference equilibrium state. 5 is the 
entropy of the fluctuating state. and G the matrix of the second derivatives 
of entropy with respect to variables a. ::\ote that in O;';SAGER's derivation. 
the meaning of a's is simply that of 'variables of state', but the physical 
nature of such variables is ne\'er specified [6]. 

Assume furthermore that the laws describing the relaxation of the 
fluctuations are linear. in such a way that 

ela 

elt 
-M . a. (2) 

If it is supposed that the microscopic behaviour should satisfv time-reversal 
symmetry. it follows that the matrix L = JVI . G- 1 relating ;he ·thermody­
namic fluxes' da / dt to the ·thermodynamic forces' X = 05/ aa satisfies the 
OCRR 

(3) 

with E:] gn'lllg the time-reversal parity of the \'ariable 0..3 (i.e. E.3 = +1 if 
variable 0..3 is even and E.3 = -1 if 0.3 is odd). 

However. the usual thermodynamic fluxes like the heat flux or the V1S­

cous pressure tensor cannot be expressed as the time derivative of a given 
\"Cuiable. neither are generally the thermodynamic forces the deri\'ati\'es of 
the entropy. Rather. it is the divergence of the fiuxes which is related to 

the time derivatives of the nuctuation:" of the basic variables. and it is the 
spatial gradient of the derivatives of the entropy. which plays the role of 
thermodynamic force~. ::\eHTthelpss. this is not a serious problem: in the 
Fourier space (and when somc non-lincar terms appearing ill the balaIlce 
equa t ions are neglected) the Fourier-transfonns of t:1e nuxes are indeed pro­
portional to the Fourier-transform of the classical variables. One ach'antage 
of ElT is that the O;';S.·\GEH relatiom may he deriyecl in a forIll v;hich is 
lllOl"C' akin to the origillal 0;';5 .. \(;EH clerinHion than the u:,ual pre~entati()n 
founel ill eIT. 

Indeed. the entropy u~ecl III ElT takes the form 

S(Ol···· .0,,·J l ···· .J,,) = 5«1 l···· .on) 
1 , 
-J. G . J . . ) ( -1) 

Here. 01 ..... 0" are the classic al slow \"Ceria bles whereas J 1 ..... J" are the 
corresponclillg nuxes. 501 (0. 1 ..... On) is the classical local-equilibrium en­
tropy corresponding to the value:- of 01 ..... o.n. and G' is a matrix whose 
meaning must be specified later OIl. For instance. in a nvo-component fiuid 
ill the presell("(, of heat nux and diffl1sion onE' will take n 1 = ([ and 0:2 C[. 
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with II the internal energy and Cl the mass fraction of component L the 
corresponding fluxes will be J 1 = q, the heat flux. and J 2 = J. the dif­
fusion flux of component 1. It may be of interest to recall that in 1953. 
O:-;SAGER and :\I.-\CHLl"P considered an entropy depending on both 0i 

and doi/dt. i.e. on the variables and their 'fluxes', However. expression (4) 
is more general because it does not require that the fluxes should be the 
time derivatives of the \'ariables 0.;, 

The entropy production of the local-equilibrium entropy [akes the clas­
sical form 

O'eq = J . X . (5) 

where X are the usual thermoch'namic 
-V(pT- I ) in the problem \\'her~ 0.1 

entropy production in ElT is [1] 

forces, 1.e. Xl = vT- I and X 2 = 
u and 02 = Cl. The corresponding 

O'EIT = J. (X (6) 

::\ote that the variables conjugated to the fluxes in (6) are not usual ther­

modynamic forces X but the quantities X - G' . j. \Yhereas the time 
evolution of the classical variables 0; is given by the usual conservation laws 
(energy. mass. momentum ... ) the rime derivative of the fluxes, which are 
independent variables in ElT, are found by requiring that they are compat­
ible with the positi\'eness of the entropy production. Thus. in the simplest 
linear \'ersion, one will write 

J = L· (X (7) 

with L a matrix of phenomenological coefficients. In CIT. the reciprocity 
relations of L are obtained hy applyillg O:-;S.-\GER·s formali:om in the Fourier­
transformed space of 0i. 

In ElT. the reciprocity relations lllay be obtained ill Cl more direct 
way. namely. by studying the fluctuations of the fast yariables J i ill all 
equilibrium state IX j 0). and without referring to a Fourier-transform. 
Indeed. when X O. (I) may be written as 

J (G') I. L- J • J. 

This has the form of Eq. (:2). A.ccording to (3). the matrix L' = (G' I.L -J. 

(G' )-1 should satish the reciprocity relations. It follo\\'': that the matrix 
L. \\'hich is giH'n by'L = G' . (L' )-i . G'. "atisfies the reciprocity rdations. 
because ill(' matrix G'. which is the :,ecunt! deri\'atiH' of the ElT entropy. 
is itself symmetric. ::\ote. hO\\·eyer. that the matrix of the relaxation times. 
defined as T = L . G'. need not be symmetric. 

Therefore. the OCRR may be obtained in ElT both in the space of 
slow variables (where they follow from the time-reversal properties of the 
correlation function of the slow \·ariables). and in the space of the flclxes 
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(w here they follow from the time-re,'ersal prop erties of the correlation func­
tion of the fluxes). However. there is a difference in the relaxation times 
of both sets of variables. The relaxation time of the conserved variables is 
wry large (it ,'aries with the wavewctor '" as ",-2). whereas the relaxation 
time of the fluxes is of the order of a few collision times. As far as one 
derives the O:--;SAGER relations from the formal mathematical properties of 
the correlation functions. the use of the one or the other set of variables is 
completely equivalent. Howe,'er. if one tries to reproduce these properties 
by molecular simldations. the time re,'ersal of the trajectories may be repro­
duced only during a fe\,' collision times. due to the extreme sensitivity of the 
trajectory to perrurbations. Thus, in such simulations. the analysis in the 
short-time scale settled by the fluxes would be easier than in the long-time 
scale corresponding to the classical varia bIes. 

This duality ill the derivation is ea~ily imerprered from the microscopic 
point of view, \Yhereas in CIT the OC R Rare obt ained by studying the time­
reversal of \Cli(OJClj(i);, ElT used another ,\'ay based on the fluctuation­
dissipation theorem. Indeed, the expression of the transport coefficients in 
terms of the correlation function of the fluxes allows to deri,'e the reciprocity 
relations from the rime-reversal properties of the correlarions of the fluxes. 
It is wonh noticing that, whereas the cla~sical theory ahnlYs refers to the 
correlation function of the classical nuiables. ElT exhibits this duality ,vhich 
is also found in a microscopic approach. This is a further manifestation of 
the fact that ElT is closer to the microC'copic theorie" than CIT, 

3. An Illustration: Thermoelectric Phenomena 

A,~ all illu~rrarion, we will eleal wirh thermoelectric phenomena, Consider Cl 

rigid and i,;orropic body, crossed hy Cl heat fiux q and an eiectric current i. 
The gClll'raliLcd Gibh::: cquatioIl ha~ rh(~· for III ~l! 

(pT) l(021q+o:!.:!i!,di (9 ) 

,dwre :::, i~ tile electric charge per emir mass (tIle! f', the chemical potentiai 
of the electron;:.;, )Jthough all explicit idelltificatioll of the coefficients Clij is 

not fundamentaL it may be of interc"t to knen\' that (/11 = (T1L,//\T2) and 
(/')') = (Te (. ,,,ith Tl and Te the respenive relaxation time~ of q and i, 
" the specific volume (i.e, ,'= p-l ) aml ,\ and IT, the thermal and electric 
ccmductivity. \\'herea" Cll:! and O:!l arC' related to c[os:,ecl terms in the matrix 
of relaxatioIl times, 

By \'irtue of the balance equation:, for :::, and 11 

-\ '1-

\'q+i·E 

(10) 
(11 
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one obtains for the entropy balance 

ds 
p-+V' 

dt ( 1 fle .) ("T- 1 
Tq-yz =q' " 

all dq _ a

T

21 dcZZ
t
') 

T cIt 

(1:2 ) 

from which follow immediately the expressions of the entropy flux JS and 
the entropy production as, The entropy production, given by the right­
hand side of (1:2), has still the structure of a bilinear form. To obtain the 
simplest eyolution equations for q and i compatible with a positive definite 
entropy production. one assumes linear relations between the ·thermody­
namic forces'. i.e. the quanti ties between parenthese.<: and the fluxes q and 
i. This results 

E 

T 

(Ill' dq vT- 1 -
T dt 

a21 di 

T dt 

012 dq 022 cli 
---

T df T dt 

, ,. 
f.1llq + fl12 Z ' 

(13 ) 

, ,. 
fl21 q + f-l22 z , 

. 1 ' > 0 ' > 0 l' , > '1 '1)(' , , )') f \VIt 1 flu _ . fl22 anc flllJ-i22 _ I-/-± Ji12 T fl21 - as a consequence 0 

as > O. 
To show that the matrix of the coefficients J..l' is symmetric. we start 

from O:-;SAGER's original result stating that if the evolution equatioJls are 
given by do:/dt L ' (DS/Do:). then L is a symmetric matrix. \\-e may 
assume that "VT- l and ET- 1 - "V(PcT-1) vanish in (13). so that they refer 
to fluctuatioIl;; near an equilibrium state. Therefore. Eqs. (13) may be cast 
in the form 

This expreSSIOn may be rewritten in terms of the deri\'ariYes of the 
generalized entropy (9) with respect to q and i as 

( 
dq/dt ) _ TL'!( T-1 , -11 (DS/Dq .) I J.b) 
di / dt - P ,a) 'J..l' a j' DS / Di " I L 

.-\ccording to O:-;SAGER's results, the matrix L = (aT l'J..l!'a- 1 is symmet­
ric, Since a is snnmetric. because it is the matrix of the second derinlti,'es 
of .s. it follows tilat J..l' = a, L ' a is itself symmetric, The matrix T- 1 J..l'-l 'a 

in ?? may be identified with the matrix T of the relaxatioJl times, \'ote 
that in general T if' not symmetric because the product of t\yO symmetric 
matrices is generally not symmetric, 
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In a non-equilibrium steady state, (13) may be compared with the 
usual phenomenological equations expressing the coupling between thermal 
and electrical effects: it is then found that 

1 IT + f-1e 
,\T2 q -

(14) 

(15) 

where /\ is the thermal conductivity at zero electric current. ( the differential 
thermoelectric power, IT the Peltier coefficient, and r the isothermal electric 
resistivity. By comparison of Eqs. (13) and (16), one is led to the identities 
f-1'll = (/\T2 )-1. f-1~1 = ((T - f-1e )(,\T2 )-1. f-1'12 = -(IT + f-1e )(/\T2 )-1. and 
f-1~'2 = rT- 1 +(Pe -T)(IT+Pe)(/\T2)-1. From the symmetry of J-L' it follows 
that IT + Pe) = (T {le, so that (T = -IT. which is the well-known second 
Thomson relation. 

\Ve wish to emphasize that the argument leading to the symmetry 
property of the phenomenological matrix J-L' is parallel to that presented 
by O\"SAGER himself. who postulates that thermodynamic fiuxes are time 
derivati,'es of state YClriables. whilst the forces are the clerinLtives of entropy 
with respect to the state variables. Since in ElT the quantities q and i 
are basic state variables. it is clear that (14a) and (14b) relate the time 
cleri\'atives of the basic variables with EJS/EJq and EJS/EJi. just like in O\"­
SAGER's original derinltioll. where the time clerivati\'es of the basic variables 
(here. the thermodynamic fiuxes) are linearly related to the derivatives of 
the entropy with respect to these yariables (the thermodynamic forces). 

4. A Non-Linear Sit uation 

III this section we discu:,;s SOllle possible gelleralizCltioll of the OCRR to 

:,,(-'Cond-order consriturin' cqllcttiollS. either in the lillear or ill the non-linear 
regime. Rather them dealing with generalities. wc will study iIl detail one 
specific problem. COllC(cI"lling some couplings between the heat fiux and the 
\'i:3cou,; pressure in sec\)!lc!-order cOllstituti\'e equations of hydrodynamics. 

If one considers the fiuxes themseli-es as variables. the O\"S.-\GEH for­

malism may be directly applied to obtain the usual results. as we hai'e seen 
in Section 2. with the advantage that Olle lllUsr not identify rhe fiuxes with 
da / clt. as in CIT. 

Here. we study Cl thermo-hyclrodYllClmic system \i"ith heat fiux q and 
i"iscou:,; pressure pI! as cli:::"ipatii'e fiuxes. and iye assume evolution equations 
of the form 

dq 

df 
(16) 
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dpl! 

dt 

J, CASAS- \'_-\Zql.iEZ e' ai, 

(1/) 

where /\ is the thermal conductivity. I) the shear viscosity and '1 and '2 are 
the relaxation times of q and pl!_ respectively. In Eqs. (16) and (17)_ there 
are two different kinds of couplings between q an pl!: (a) the linear ones_ 
related to the terms with the coefficients Cl and Cl': (b) the non-linear ones. 
given by the terms with the coefficients 6 and 6'. \Ye \\"ould ask the question 
whether there is some relation between these various coefficients. 

Consider the evolution of the fluctuations of q and pl! around a non­
equilibrium steady state characterized by a nonvanishing mean heat flux qo 
and a nonvanishing mean pressure tensor Po. According to (16) and (11). 
the evolution of the fluctuations in the linear approximation 15 gIVen by 

( 
oq 

-M· SPI' ) . (18) 

with 

M=( (19 ) 

In order to apply O:-;SAGER's formalism to this problem. we need the ex­
pression for the entropy. In EIT_ up to third order in the fluxes_ the Gibbs 
equation for the entropy has the form [8] 

ds = a-1 du + a-I ;-;cil" (
'1[' ") --') q - :2~P' . q . dq 

/\T-
(:20) 

in \\-hich non-liIlear c()]ltrilJ\lrioIl~ pl/ . q awl qq lw\"(' been introduccd. e- 1 

and ;-; are respecti\"Ciy the absolute temperature and the pressure. alld ~ 

is a phenomenological coC'fficient c\cpcllcliIlg generally on rC'mperat1.1H' and 
pressure. Therefore. the matrix G~ related to tlw "C'("(me! order deri,',ni\"C's 
of entropy with respct to fluxcs is givCIl hy 

(:21) 

According to O:-;SAGER_ the matrix L 
under the following requirements: 

'G' -1 l'vI . ! )2 should be SYillmernc 

(i) the eH)lution equations are lilwar. 
(ii) the second momellts of the TInctuatiou:, cm' gl,-('l! ])y I G') 1. 

(iii) microscopic rever;o;i hili ty is fulfilled. 

Eqs. (18) and (19) are linear. (lud therefore. coudirioll (i) i~ (t11tomatically 
satisfied. The problems are related to couditiollS (ii) aud (iii). \\-ith respect 
to condition (ii!_ we may assume that the ~(,("Ollrl !ll()llj('llr~ ()fTIllct\1ati()ll~ arc 
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indeed given by (G~)-I. as supported by information theory ([1]. Chap .. S). 
Concerning condition (iii). and the problem of microscopic reversibility. it 
must be recalled that here the system is not in equilibrium: therefore, ,ye 
must invert not only the velocities of the particles, but also the effect of the 
boundary conditions. i.e. V changes its sign under time-reversaL in analogy 
with the change of sign of the angular velocity and the external magnetic 
field in the classical derivation of the OCRR. \Ye are thus led to 

(22) 

From (19) and (21). we have for the nondiagonal components of the matrix L 

(23) 

(24) 

\\'ith the conjecture (22) 1Il mind and taking into account that cp" +1 
and c:q = -1. one obtains 

Tl L' T2 (. , 
(25) --0 

271T 
')C 

Tl L' 2~ T') t' -<" ---b' (26) --b -- , 
T] /\T2 12 TIT 

It is of interest to compare these predictions with the results of the kinetic 
theory of gases. In Grad's expansion. the evolution equations for q and pli 
are more gelleral (han (161 and (1,) and gi"en by 

aud 

q 

:2 .'1 
-::q' (\/1) 
o 

.J. 

5 pkB 
-vT 

') Tt I 

2 
~Piq 
.) 

( I kB I) l' l/ -::q(\ ./1) - __ po . "VT...L IJP' . (\. P ) 
o :2 m -

:-(\qj" - 2p(\iJ( 
;) 

l I 

(28) 

where the c()cilicienr -: is giwu in (erms of the collision integrals ([1] . [9]] 
awl kB is Bolrzmann'" constant. \\-hen we compare these expreSSlOIlS with 
the previous O!lC'S (16) and (1 /J. ,ye are ahle to identify 

(j 
, 

(I --l):j: T] (Pi) 
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/\ = (5pkBj2m)/l: I) = p'2 . 

. \fter introducing these expreSSlOns mto (25). it is verified that 

/1 V 
--a 
/\T2 

12 C , 
--0 
21)I 5pT 

(29) 

(30) 

::\ote that this result is not surpnsmg since the coefficients a and a' are 
related with the linear terms of (16) and (11) and we could haw deriyed 
it directly by using fluctuations around equilibrium ([10]-[12]). Relations 
(30) can also be found by using projection operator technique in the kinetic 
theory of gases [13]. 

In contrast. it is found that relation (26) is not satisfied. Indeed, the 
coefficient b may be obtained by comparison of (21) and (16). The terms in 
pll . vI and q . (\7 1/) may be seen as first-order approximations to pll . q. 
This yields b = (712)( kB jnL\) + (2(51)) up to first order in the fluxes. On 
the other side. we see tha t b' = 0 bec a use there is no term of the form q q 
in (28). Furthermore. the parameter ~ may be obtained from fluctuation 
theory [8] from the calculatioll of the third moments of the fluctuatioIls of 
(SqlSPI2Sq2). it turns out to be giyen by ( = (9j25)(p3T)-1. ,,-hen the 
above values of b. b' and ~ are introduced into (26) it is easily checked that 
this relation is not fulfilled. 

5. Concluding Remarks 

Here. we propose some argumenb \vhy the OCRR !!lay nut be sati~fiecl 

in the non-linear regime. The first i~. of course. the cO!ljecture (2:2): the 
conditions for time reversal symmetry in a !lon-eCjnilihrium steady state are 
not yet clearly established. though they !Hn-c \)l'Cll tClltatiH:iy u::,cd OIl some 
other occasions in the literature ill the allalysis of flnids ill tlie prcst'IlCP of 
a velocity shear gradient 

A second reason is that ,ht' kinetic theory i, !lot cil! exan onf'. iJut 
rather a model. Therefore. the \"alue~ of the \-cnions codficieIlts derin'd from 
the kinetic theory cannot be considered as ahsolute and clcnllitin'. 

Concerning Eq.:, (27) and (28). the absence of a term ill qq ill rplarioIl 
(:28) for pll may be surprising. III fact. such a U:rlll appears lleither ill 
GRAD's formalism nor in Chapman-Enskog's approach. \Vhere the secowl­
order contributions to the heat fiux and the yisc(Jus preSSllre arc giVPll hy [15] 

VT 45 [do ] - .. vT - (VIIi - VT.1 
8 elf . 

+ -- vT - (VI!( 
Tell)) . _ 
11 df 

(31 ) 
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and 

I~~ pv(2) = ~ (f T cll)) 2 " (do -- \" (\"v)" + 2 -;-(VV)5 
I) clT clr 

2(\"v) . \"(\"V)s) + 

p 3T cll) p ", 
+3 v\"T + - --') vTvT + 8(vl/)" . (VII)" 

pT I) dT pT-
(32) 

In these expressions. q(2) and pv(2) refer to the second-order contribution 
to q and pll. and clo / cIt denotes the first-order approximation to the mate" 
rial derivative. where the time deriyative of velocity is given by the Euler 
equation and where the effects of heat conduction are neglected. ::\ote that 
relation (25) is also satisfied in this case and that the terms in vTvT do 
not come from qq. but from Vq = \"( -/\ vT). and they are due to the tem­
perature dependence of the thermal conductivity ,\. The absence of terms 
in the form qq may be clue to excessive restrictions on the distribution func­
tion [9]. [15]. Indeed. the restrictions on the value of the mean square of 
the molecular speed z/2 are sometimes written in a stricter form than the re­
strictions on the square of every component of 11. This calls our attention to 
the form of the caloric and thermal equations of state in a non-equilibrium 
steady state. 

In particular, such equations of state may include second-order contri­
butions in the heat flux. For instance. according to ElT. the viscous pressure 
tensor in a steady state can be \\Titten as [16] 

(33) 

\\'irh the condition 3]) 3;;- + \q . q. For an ideal monatomic gas. we find 
1 C> '- .) • 1 1 . r· 1 Tl . 1 1 . \ = _'.!./(;.Jl'jr) Wlll t· tle spennc vO.ume. lIS SlOWS tlat mOH' attentIOn 

should be paid to the second-order equations of state when one is studying 
nOll-linear terms. 

Finally. third-order terms in the entropy expression may also play a 
role in the formulation of reciprocal relations. These terIllS gi\'e rise to a non­
linear relation betwpen q and Pl/ and a.,,/aq and a.o/aPI/. in sllch a way that 
the matrix G'l relating the latter to thp former in the linear approximation 
around the nOll-eqEilibrium steady :,;tate is different from the matrix G~ 
related to the second-order derivatives of the entropy. The OCRR are in 

principle derived for l\II.G~-l. anclnot for M·(G'l . In the linear situation. 
G'l G~. but in the non-linear case these two matrices are different. This 
opens another possibility for the breaking of reciprocit~· relations around a 
lloll·equilibrium ~teady state. 

Further analyse~ abOUT the yalidity of O:\SAGER's relations in higher­
order hydrodynamics may be found in a few "elected references [11]-[19]. 
In [17] it is shown that the equations of higher-order hydrodynamics do 
not agree \\"ith O:\SAGEH's theory. if den:;ity. H,locity and temperature are 
used a~ state parameters. Howe\·er. it i~ also pointed out in 1 that the 
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Chapman-Enskog method can be brought in agreement with the O:\SAGER 
reciprocity relations by using as independent yariables not only the former 
ones, but also their derivati\'es of any order with respect to the coordinates. 
In [1 g]. an exam pIe of the higher order fluid dynamics possessing the 0:\­
SAGER symmetry is constructed and the proposed non-equilibrium extension 
of entropy depends on gradients of the fluid dynamic state variables. \Ye 
have indeed seen that in the linear situation the O:\SAGER reciprocity rela­
tions are satisfied for higher-order linear terms. proyided one opera tes the 
change V to -V in the coupling terms. Concerning the non-linear regime 
the possibility of OCRR has also been examined in [20] and [21]. It turns 
out that on some occasions one may select the expression of the forces in 
a non-linear regime in such a way that OCRR can be extended far from 
equilibrium [21]. In the present work we haye used a specific example where 
forces and fluxes are well defined from the start. Finally. let us recall some 
microscopic studies of the OCRR [21, [22]. [23] in view to analyse the va­
lidity of nonlinear reciprocity relations. However. these approaches are not 
directly applicable in their present form to the situa lion analysed here. 
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