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Abstract

We show that when the thermodynamic fluxes are included as independent thermody-
namic state variables of a generalized entropy. the original ONSAGER formulation may
be directly used in the space of the fluxes. Therefore, the ONSAGER relations may be
derived either in the space of the classical (slow) variables, by using a spatial FOURIER
transformation, or in the space of the non-classical (fast) variables such as the physical
fluxes, without need of any Fourier transform. Furthermore, we analyse the question of
non-linear ONSAGER relations by studying one particular set of evolution equations of
the fluxes, and considering the fluctuations of the fluxes around a non-equilibrium steady
state. Comparison with kinetic theory is not completely conclusive, because of several
open questions which we comment in the concluding remarks.
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1. Introduction

in the framework of extended irreversible thermodynamics (EIT) (1]

i
I

In this paper we examine ONSAGER-CASIMIR reciprocity relations (OCRR)
-4

The aim of this theory is to systematize in a thermodynamic formalism

the phenomenological equations which describe experiments at frequencies
comparable to the inverse of the relaxation time of the thermodynamic fluxes
{heat flux, viscous pressure tensor, electric current, diffusion flux, and so on]

or at wavelengths comparable to the mean free path of the particles of the
system.

In our opinion, the study of macroscopic matter should be undertaken
simultaneously and in a close collaboration by macroscopic and microscopic
methods. Beyond the situations where local equilibrium is a valid macro-
scopic assumption, classical irreversible thermodynamics (CIT) is no longer
satisfactory. but alternativelv. more general macroscopic theories have not
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been sufficiently developed yet. EIT is one of the serious efforts undertaken
in this direction. This does not mean that one should be satisfied with only a
macroscopic, phenomenological approach: after identifving the macroscopic
variables and establishing the equations describing a set of experiments in
a satisfactory way, one should try to understand from a molecular approach
why such variables and equations turn out to be relevant. We think that
limiting ourselves to a microscopic polnt is unnecessarily restrictive, because
it 18 a well-known fact that a phenomenon relatively well described and un-
derstood in macroscopic terms has challenged during many vears a valuable
microscopic understanding.

Of course, the hope that, on the long run, the macroscopic equations
will be supported by a molecular basis, should not prevent us from being
aware of the subtleties of the connexions between microscopic and macro-
scopic descriptions. The latter is independent of any particular molecular
model; on the other side, a better molecular understanding may lead to more
successful macroscopic descriptions. Therefore, one should try to avoid two
possible extremes: either to assume that the scientific description of the
world should be restricted to micro:copic models or to consider oneself sat-
isfied with the pragmartic success of some phenomenological equations fitting
some experimental data, without confronting them with a molecular theory.

In Section 2 we examine the derivation of OCRR in the framework of
EIT. In Section 3 thermoeleciric phenomena are used as an illustration of
how EIT can shed a new light on the reciprocity relations. In Section 4 we
analyse the difficulties which arise when one tries to extend the results to the
non-linear domain. To be specific, we deal with the second-order constitutive
equations of hydrodynamics. It turns out that the reciprocal properties are

not satisfied by the equations derived from a second-order anal;

kinetic theory of gases. However. our results are not completely conclusive,
since they are based on a comparison with zq)pv(w“nnati\ e microscopic models
rather than with exact results. Section 3 is devoted to a final discussion on
the present state of the art.

2. Onsager—Casimir Relations in the Linear Regime

ONSAGER-CASIMIR relations are well understood in the linear regime |
Therefore, one could ask whether it is worthwhile to examine again this

problem. as, after all. the classical results will be recovered. However, a

more thorough understanding of the derivation in the linear case may be
helpful in view of a generalization to the non-linear regime.

First of all. we briefly recall the ONSAGER-CasIMIR derivation of the
reciprocity relations. Assume that the entropy is a function of several vari-
ables Aj. ... .. 4, and denote by a;z their deviation from the average equilib-

7
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rium value (43). The entropy related to the fluctuation state will be
1
5=So—gavG-a. (1)

where Sy refers to the entropy of the reference equilibrium state, S is the
entropy of the fluctuating state, and G the matrix of the second derivatives
of entropy with respect to variables «o. Note that in ONSAGER's derivation,
the meaning of a’s is simply that of ‘variables of state’, but the physical
nature of such variables is never specified [6].

Assume furthermore that the laws describing the relaxation of the
fluctuations are linear, in such a way that

do
— = -M - «. (2)
dt )

If it is supposed that the microscopic behaviour should satisfy time-reversal
symmetry, it follows that the matrix L = M - G™! relating the ‘thermody-
namic fluxes’ da/dt to the ‘thermodynamic forces’ X = 95/« satisfies the
OCRR

3)

with ¢ giving the time-reversal parity of the variable ag (le. z3 = +1 if
variable ag is even and ¢ = —1 if ag is odd).

However, the usual thermodynamic fluxes like the heat flux or the vis-
cous pressure tensor cannot be expressed as the time derivative of a given
variable. neither are generally the thermodynamic forces the derivatives of

the entropy. Rather, it is the divergence of the fluxes which is related to
bl 2
the time derivatives of the fluctuations of the basic variables, and it is the
spatial gradient of the derivatives of the entropy, which plays the role of
thermodynamic forces. Nevertheless. this is not a serious problem: in the
Fourier space (and when some non-linear terms appearing in the balance
v (=]
equations are neglected) the Fourier-transforms of the fluxes are indeed pro-

portional to the Fourier-transtform of the classical variables. One advantage
of EIT is that the ONSAGER relations may be derived in a formn which is
more akin to the original ONSAGER derivation than the usual presentation
iound in CIT.

Indeed. the entropy used in EIT takes the form
. | ; | 1 ! QAN
S{eyp.o..., an. i Tp)l = Seglor.. . an)—=J -G -J. {4}

Here. ay...., a, are the classical slow variables whereas J....,J, are the

corresponding fluxes, Seglai.....ap,) is the classical local-equilibrium en-

. i k . 7 . .
tropy corresponding to the values of aj.....a,. and G’ 1s a matrix whose
meaning must be specified later on. For instance, in a two-component fuid

in the presence of heat Hux and diffusion one will take o) = u and as = ¢;.
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with u the internal energy and ¢; the mass fraction of component 1. the
corresponding fluxes will be J; = g¢. the heat flux, and Jo = J, the dif-
fusion flux of component 1. It may be of interest to recall that in 1953,
OnNSAGER and MACHLUP [7] considered an entropy depending on both a;
and da;/dt, l.e. on the variables and their ‘Huxes’. However, expression (4)
is more general because it does not require that the fluxes should be the
time derivatives of the variables ;.

The entropy production of the local-equilibrium entropy takes the clas-
sical form

Geg = J - X, (3)

where X are the usual thermodynamic forces, ie. X; = VI ! and X9 =
—V(uT7') in the problem where a; = u and as = ¢;. The corresponding
entropy production in EIT is [1]

cpir=J (X -G -J). (6)

Note that the variables conjugated to the fluxes in (6) are not usual ther-
modynamic forces X but the quantities X — G’ - J. Whereas the time
evolution of the classical variables a; is given by the usual conservation laws
(energy, mass, momentum...] the time derivative of the fluxes, which are
independent variables in EIT, are found by requiring that they are compat-
ible with the positiveness of the entropy production. Thus, in the simplest
linear version. one will write

J=L- (X -G -J). (7

with L a matrix of phenomenological coefficients. In CIT. the reciprocity
relations of L are obtained by applyving ONSAGER's formalism in the Fourier-
transformed space of a;.

In EIT, the reciprocity relations may be obtained in a more direct
way, namely, by studying the fluctuations of the fast variables J; in an
equilibrium state {X ; = 0), and without referring to a Fourlc;—rz‘ans‘iorm.
Indeed. when X = 0, (7} may be written as

J= @y (8

This has the form of Eq (2). According to (3). the matrix L' = (Ggh~t.Lth
(G/)_1 should satisfy the reciprocity relations. It follows that the matrix
L. which is given by L =G (L)} ~G/. satisfles the 1‘eciprocity relations,
because the matrix G'. which is the second derivative of the EIT entropy,

is itself symmetric. Note, however, than the matrix of the relaxation times,
defined as 7 = L - G’ need not be symmetric.

Therefore. the OCRR may be obtained in EIT both in the space of
slow variables (where they follow from the time-reversal properties of the
correlation function of the slow variables), and in the space of the fluxes
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{where they follow from the time-reversal properties of the correlation func-
tion of the fluxes). However, there is a difference in the relaxation times
of both sets of variables. The relaxation time of the conserved variables is
very large (it varies with the wavevector & as k—?). whereas the relaxation
time of the fluxes is of the order of a few collision times. As far as one
derives the ONSAGER relations from the formal mathematical properties of
the correlation functions, the use of the one or the other set of variables is
completely equivalent. However, if one tries to reproduce these properties
by molecular simulations, the time reversal of the trajectories may be repro-
duced only during a few collision times, due to the extreme sensitivity of the
trajectory to perturbations. Thus. in such simulations, the analyvsis in the
short-time scale settled by the fluxes would be easier than in the long-time
scale corresponding to the classical variables.

This duality in the derivation is easily interpreted from the microscopic
point of view. Whereas in CIT the OCRR are obtained by studying the time-
reversal of {a;(0)cx;(t)). EIT used another way based on the fluctuation-
dissipation theorem. Indeed, the expression of the transport coefficients in
terms of the correlation function of the fluxes allows to derive the reciprocity
relations from the time-reversal properties of the correlations of the fluxes.
It is worth noticing that, whereas the classical theory always refers to the
correlation function of the classical variables, EIT exhibits this duality which
is also found in a microscopic approach. This is a further manifestation of
the fact that EIT is closer to the microscopic theories than CIT.

3. An Ilustration: Thermoelectric Phenomena

As an illustration. we will deal with thermoelectric phenomena. Consider a
rigid and isotropic body, crossed by a heat flux g and an electric current 7.

The generalized Gibbs equation has the form

ds = T du — Yu,ff_lr/‘:( - i/)T%_I(u“q ~ a9t} - dg

—(pT )V " {asy g + assiy - di . (9)

Re]

where 1. is the electric charge per unit mass and p,

he chemical potential

ey ot

of the electrons. Although an explicit identification of the coefficients a;; is

not fundamental, it may be of interest to know that ajy = (71v/AT7) and
ass = (rev/o.T) with 7 and 7, the respective relaxation times of g and z,
. 1

v the specific volume (i.e. v = p~j and \ and o, the thermal and electric

conductivity. whereas ays and a9 are related to crossed terms in the matrix
of relaxation times.

By virtue of the balance equations for z. and u

pie = =V 1. {10)
pu = =N g+, (11}
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one obtains for the entropy balance

d_*_l_v‘<iq_/fii) =gq- <VT‘1 a”éq__ﬁz_lﬁ>
dt T T T dt T dt

‘ . E ! aps d azs di
7. < ——Vﬁe 12 4q L4 (12)
T T T dt T dt '
from which follow immediately the expressions of the entropy flux J° and
the entropy production o¢®. The entropy production, given by the right-
hand side of (12), has still the structure of a bilinear form. To obtain the
simplest evolution equations for g and ¢ compatible with a positive definite
entropy production, one assumes linear relations between the ‘thermody-
namic forces’, i.e. the quantities between parentheses and the fluxes g and
1. This results
-1 aidg a9y d , ;.
VIT = —— = — = = [11q+ iyt
T dt T dt
(13)
E e ays dg asy di
— = V- - S — = g+
T T T dt T dt

lv i
jav]
=~

with ¢y > 0, pho > 0 and g pbhy > (1/4) () + ph )2 as a consequence of
Hi1 Hao Hlﬁ__ YAV PR DI 1

o > 0.
- . R . . . ' . k
To show that the matrix of the coefficients pu' is symmetric. we start
from ONSAGER’s original result stating that if the evolution equations are

given by da/dt = L - (05/0«), then L is a symmetric matrix. We may
o — e -1, .

assume that VI ! and ET™' = V{u T7!) vanish in (13). so that they refer

to fluctuations near an equilibrium state. Therefore, Egs. (13) may be cast

in the form

dg/dt \ _ o T.—1 1 q de)
<di/dz’ )" ety g ) (14a)

This expression may be rewritten in terms of the derivatives of the

generalized entropy (9) with respect to g and 7 as
dqg /dt 9. - —1s 95/8q
4/ ) :/)T"}(aT) l-,ul~a . /, d ) (14b)
dijdt ST : as5/ot

According to ONSAGER's results, the matrix L = (aT)’l cp'oa”!l s symmet-

ric. Since a is symmetric, because it is the matrix of the second derivatives
of s, it follows that g’ = a-L -a is itself symmetric. The matrix Tt
in 77 may be identified with the matrix 7 of the relaxation times. Note
that in general 7 1s not symmetric because the product of two svmmetric
matrices is generally not symmetric.

®
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In a non-equilibrium steady state, (13) may be compared with the
usual phenomenological equations expressing the coupling between thermal
and electrical effects; it is then found that

1 T+ pe

vr—t = —q — L
A S

(14)

; CID 4 e . ;

E-Vu = {-q—(g’——\i—r)z, (15)

where A is the thermal conductivity at zero electric current, ¢ the differential
thermoelectric power, Il the Peltier coefficient, and r the isothermal electric
resistivity. By comparison of EFg¢s. (13) and (16), one is led to the identities

iy = OTH™H by = (CT — pe)(MTH™E phy = (I + pe)(AT?)7!, and
phy = 1T+ (e = THI + pe)(/\TZ)—l. From the symmetry of p' it follows
that —(II+ ) = (T — e, so that (I = —II, which is the well-known second

Thomson relation.

We wish to emphasize that the argument leading to the symmetry
property of the phenomenological matrix u’ is parallel to that presented
by ONSAGER himself, who postulates that thermodynamic fluxes are time
derivatives of state variables, whilst the forces are the derivatives of entropy
with respect to the state variables. Since in EIT the quantities g and 2
are basic state variables, it is clear that (14a) and (14b) relate the time
derivatives of the basic variables with 95/dq and 0S/37. just like in ON-
SAGER’s original derivation, where the time derivatives of the basic variables
{here, the thermodynamic fluxes) are linearly related to the derivatives of

the entropy with respect to these variables (the thermodynamic forces}.

4. A Non-Linear Situation

In this section we discuss some possible generalization of the OCRR to
second-order constitutive equations. either in the linear or in the non-linear
regime. Rather than dealing with generalities, we will study in detail one
specific problem, concerning some couplings between the heat flux and the
viscous pressure in secound-order constitutive equations of hyvdrodynamics.

If one considers the fluxes themselves as variables, the ONSAGER for-
malism may be directly applied to obtain the usual results. as we have seen
in Section 2, with the advantage that one must not identify the fluxes with
da /dt. as in CIT.

Here, we study a thermo-hydrodynamic system with heat flux ¢ and
viscous pressure PY as dissipative fluxes, and we assume evolution equations
of the form
dq 1 N 1% 12

—
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dPV 1 ) 5 ! V8 / S b
— = —:;{P +2(Vu)' 1+ ad(Vg) +b(gq)” . (17)

where A is the thermal conductivity, 17 the shear viscosity and 7 and 7 are
the relaxation times of g and PV, respectively. In Eg¢s. (16) and (17). there
are two different kinds of couplings between g an P”: (a) the linear ones,
related to the terms with the coefficients « and ¢’; (b) the non-linear ones,
given by the terms with the coefficients b and 4. We would ask the question
whether there is some relation between these various coefficients.

Consider the evolution of the fluctuations of g and P” around a non-
equilibrium steady state characterized by a nonvanishing mean heat flux g
and a nonvanishing mean pressure tensor Pj. According to (16) and (17),
the evolution of the fluctuations in the linear approximation is given by

with

In order to apply ONSAGER’s formalism to this problem, we need the ex-
pression for the entropy. In EIT, up to third order in the fluxes. the Gibbs
equation for the entropy has the form [§]

ds = 67 du + 87 vde - (%q —-26PY. q) - dg ~ <7I;;_ PY - EQQ> cdPY
(20,

(20)
in which non-linear contributions P - g and gg have been introduced, g1

and 7w are respectively the absolute temperature and the pressure, and

is a phenomenological coefficient depending generally on temperature and
pressure. Therefore, the matrix Gy related to the second order derivatives
of entropy with respct to fluxes is given by

' I\ 2 .
G/ _ 1 (‘//,’\T quﬂ {‘71‘
2 26 o /20T ’ )
“Cqy v/
According to ONSAGER. the matrix L = M - (G')5 ' should be symmetric

under the following requirements:

(i) the evolution equations are linear,

cee s ~ P . . . [
(i1) the second moments of the fluctuations are given by {(G")7
{iil) microscopic reversibility is fulfilled.

FEgs. (18) and (19) are linear, and therefore. condition (i) is automatically
satisfied. The problems are related to conditions (ii) and (i11). With respect
to condition (ii). we may assume that the second moments of fluctuations are
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indeed given by (G{Z)_l, as supported by information theory ([1], Chap.5).
must be recalled that here the system is not in equilibrium; therefore, we
must invert not only the velocities of the particles, but also the effect of the
boundary conditions, i.e. V changes its sign under time-reversal, in analogy
with the change of sign of the angular velocity and the external magnetic
fleld in the classical derivation of the OCRR. We are thus led to

From (19) and (21). we have for the nondiagonal components of the matrix L

I 2¢ T1V ¥ + bqy| (23)
2 = - aVv + . 2.
1 T1 o /\T2 90!
2¢ THU
Ly = =qg— ——[a'V + 2V qq]. (24
- 9o '277T{ 9ol (24)
With the conjecture (22) in mind and taking into account that epr = +1
and ¢q = —1, one obtains
U U e
o = a . 25
T2 T (22)
2€ TIU 2 TV .
= = Ly (26)
7 A= 9 nT

It is of interest to compare these predictions with the results of the kinetic
theory of gases. In Grad's expansion, the evolution equations for g and PV
are more general than (16) and (17) and given by [9]

. hkpT . bpkg 2 7 ,
g=-—2=V P - SEEVT _ Spag - —g (V)
m 2 m 3 5
5 T The_ , ,
g (vl S Lgv oy - 2B T L P (v oPYy (27
35 5 2 m
and
P' = ~Z(Vq) = 2p(Vv)" = pyP" = PV - (Vo) — (VL (P¥)]
-PY(V v + gi_P" (VU (28)
where the coefficient ~ is given in terms of the collision integrals ([1] . [9]]

and kg i1s Boltzmann's constant. When we compare these expressions with
the previous ones (16) and (17], we are able to identify

a=—kpT/m: o = —4/5: 71 =3/(2pv1: ™ =1/(p~):
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(29)
A = (5pkg/2m)m; n=rpr.
After introducing these expressions into (25}, it is verified that
v v, 2v (30)
—a = a = —-—-:. :
AT2 2nT 5pT '

Note that this result is not surprising since the coefficients ¢ and o are
related with the linear terms of (16) and (17) and we could have derived
it directly by using fluctuations around equilibrium ([10]-[12]). Relations
(30) can also be found by using projection operator technique in the kinetic
theory of gases [13].

In contrast, it is found that relation (26) is not satisfied. Indeed. the
coefficient b may be obtained by comparison of (27} and (16). The terms in
PY . VT and g - (Vv) may be seen as first-order approximations to P - q.
This vields b = (7/2)(kp/mA) + (2/5n) up to first order in the fluxes. On
the other side. we see that ¥ = 0 because there is no term of the form gg
in (28). Furthermore. the parameter £ may be obtained from fluctuation
theory [8] from the calculation of the third moments of the fluctuations of
(8q16P126g2), it turns out to be given by € = (9/25)(p>T)”!. When the
above values of b, and € are introduced into (26) it is easily checked that
this relation is not fulfilled.

5. Concluding Remarks

Here, we propose some arguments why the OCRR may not be satisfied
in the non-linear regime. The first is. of course. the conjecture (22): the
conditions for time reversal symmetry in a non-equilibrium steady state are
not vet clearly established, though they have been tentatively used on so1
other occasions in the literature in the analysis
a velocity shear gradient [14]

of fluids in the presence of

A second reason is that the kinetic theory is not an exact one, but
rather a model. Therefore. the values of the various coefficients derived from

the kinetic theory cannot be considered as absolute and definitive.

3
Concerning Fgs (27) and (28). the absence of a term in gq in relation
{28) for PY may be surprising. In fact. such a term appears neither in
GRrAD’s formalism nor in Chapman-Enskog’s approach, where the second-

order contributions to the heat flux and the viscous pressure are given by [15]
/)T (2) 15 T T f]?] 9 45 (]()

— = == —— | VNV + | —=NT — (V) - VTj| -
nzq 4 (2 n dT) di v ”

V]

. 35 T dn .
=3Vp (V)" +3V (V) + | — 4+ —— | VT - {(Vr) (31)
4 n dt

o
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and
v 4 /T T d . . 1 s
Lpr = o (2 —l> VIV 4+ 2 ( S2(Vy) - 2(V) V(W)”) +
n* 3\2 ndl dt
3T d . 5
3L vvr+ L L Grur 4 gV (V) (32)
pT n dI" pT* '
In these expressions, g 2) and PY?) refer to the second-order contribution

to g and P¥, and do/(h‘ denotes the first-order approximation to the mate-
rial derivative, where the time derivative of velocity is given by the Euler
equation and where the effects of heat conduction are neglected. Note that
relation (25) is also satisfied in this case and that the terms in VI'VT do
not come from ggq. but from Vg = V(—AVT), and they are due to the tem-
perature dependence of the thermal conductivity A. The absence of terms
in the form gg may be due to excessive restrictions on the distribution func-
tion [9], [15]. Indeed, the restrictions on the value of the mean square of
the molecular speed v? are sometimes written in a stricter form than the re-
strictions on the square of every component of . This calls our attention to
the form of the caloric and thermal equations of state in a non-equilibrium
steady state.

In particular, such equations of state may include second-order contri-
butions in the heat Hux. For instance. according to EIT, the viscous pressure
tensor in a steady state can be written as [16]

P =x=U + x(gg)” — 29(Vv)* (33)

th the condition 3p = 37 + yq - g¢. For an ideal monatomic gas, we find

v = 12/(5ep”) with v the specific volume. This shows that more attention
should be paid to the second-order equations of state whe e is studying

non-linear terms.

Finally. third-order terms in the entropy expression may also play a
role in the formulation of reciprocal relations. These terms give rise to a non-
linear relation between g and P¥ and 0s/0q and 0s/9PY. in such a way that
the matrix G| relating the latter to the former in the linear approximation
around the non-equilibrium steady state s (uﬁerent from the matrix sz
related to the second-order derivatives of the entropy. The OCRR are in
principle derived for I\’I~G;_l. and not for M-(G] )71, In the linear situation,
G/ = G5. but in the non-linear case these two matrices are different. This
opens another possibility for the breaking of reciprocity relations around a
non-equilibrium steady state.

Further analyvses about the validity of ONSAGER’s relations in higher-
order hydrodynamics may be found in a few selected references [17]-[19].
In [17] it is shown that the equcxtlons of higher-order hydrodynamics do
not agree with ONSAGER's theory, if density. velocity and temperature are
used as state parameters. However, it is also pointed out in [18] that the
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Chapman-Enskog method can be brought in agreement with the ONSAGER
reciprocity relations by using as independent variables not only the former
ones, but also their derivatives of any order with respect to the coordinates.
ing the ON-
SAGER symmetry is constructed and the proposed non-equilibrium extension
of entropy depends on gradients of the fluid dynamic state variables. We
have indeed seen that in the linear situation the ONSAGER reciprocity rela-
tions are satisfied for higher-order linear terms, provided one operates the

In [19], an example of the higher order fluid dynamics poss

change V to —V in the coupling terms. Concerning the non-linear regime
the possibility of OCRR has also been examined in [20] and [21]. It turns
out that on some occasions one may select the expression of the forces in
a non-linear regime in such a way that OCRR can be extended far from
equilibrium [21]. In the present work we have used a specific example where
forces and fluxes are well defined from the start. Finally, let us recall some
microscopic studies of the OCRR [2], [22]. [23] in view to analyse the va-
Lidity of nonlinear reciprocity relations. However. these approaches are not
directly applicable in their present form to the situation analysed here.
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