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Abstract 

The long road that starts from the microscopic equations of motion and ends with the 
phenomenological equations of the experimenter. is sketched. One type of system leads 
to nonlinear macroscopic equations. but no reciprocal relations are found. The other type 
(called diffusive type) leads to a nonlinear Fokker-Planck equation. For low temperature 
the fluctuations are small and one is left with a set of non linear deterministic equations. 
They obey the Onsager-Casimir relations. 

KeYW07'ds: statistical mechanics: non linear Onsager relations. 

The \\'ay in which Onsager arrived at his celebrated reciprocal relations \vas 
a stroke of genius. He managed to combine on the one hand equilibrium 
statistical mechanics with. on the other hand. bits of information about 
fluctuations and then to deduce relations among the phenomenological co­
efficients in the macroscopic laws governing the irreversible behaviour. It 
has pi'oved hard to extend this feat to nonlinear macroscopic laws (although 
Peter :\IAzl·H. showed that Onsager \,;as close [1]). Some attempts are re­
yipwpd hy YEIUJ..\S [2]. l"llfol"tunately I am not a genius and must therefore 
plod along in a :;ystelllatic v;ay from the H'l"y first principles of statistical 
mechanics to arri\"(' in cl reliablp manner at reciprocal l"platiolls. It is a long 
way. which in the prc"pnt context I can on 1:; sketch. _.l. large !lumber of 
details ha\'e to 1w omirt(,(l. for which I refer to [3]. 

The sta7·ting puillt ill the da~sical case is formed by the Hamiltonian 
equations of motioll for _Y panicles 1Il a \'olume SI with reflecting walls. 

Plc (1' . ) 

An ensemble of such systems is described by a density p(q.p. t) in 6S dimen­
sional phase space. \\·ho;.;c c\"olution can be written using Poisson brackets: 

/I(q.p.t) = {H.p}. (2) 

. .l. stationary ensemble with energy E is 

5[H(q.pl El· (3) 
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Note that the Liouville equation (2) is logically equi\'alent to (1): if one 
knows the solutions of (1) one knows those of (2) and vice versa. Intro ducing 
an ensemble is not an aid to solving the equations of motion but merely a 
preparation for an approximate treatment. 

Coarse-graining is an indispensable step in statistical mechanics. Sup­
pose one has a set of observable quantities, given as functions --ir(q,p) in 
phase space. Define phase cells as sub regions of phase space delineated by 

a r < A,.(q,p) < (/,. + i:::,.a r (all J'). (-1) 

The margins i::>.a r are determined by the accuracy of the obseryations. The 
coarse-grained distribution P( al. a2 . ... ) in the observational Cl-space is giwn 
by 

J p ciq dp. (5) 

This is a projection: from p follows uniquely P. but nor Ylce versa. Station­
ary pe giYe stationary pt. 

The coarse-grained P. in contrast to p does not satisfy an autonomous 
evolution equation of differential type (does not constitute a semi-group). 
The reaSOIl is that one has lost the information about the details of the 
distribution p inside each phase cell. As a remedy one makes the following 
randomness assumption: The detailed distribution does not matter. all that 
matters for the disevolution of P is the total occupation in the cells. i.e. (5). 
Then there exists a probability that a system in cell ClI' has moved after a 
small time i:::,.t into a cell at a~ .. which we denote hy i:::,.tn-(o'\O)i:::,.o'. 

leads to the 7nlk,ter equation 

P(o:t) = -/ W(o'icl)da'·P(a:t) + /1F(a\a')P(O':tldo
l 

(6) 

::\ote that after each 6t we have to make the same as:,;umprion agalll. This 
repeated mnciomnes3 aS3'umption IS a generalization of BoluIll2111!l'S 'Sross­
zahlansatz', It is a part of oll derivations of master equations. hO\\'en:r 
cleverly concealed, It is yery drastic inasmuch as it breaks the time symme­
try by stipulating that one must randomize at the start of each ~t. 

The justification of this assumption is still a mystery. One thing is 
clear. the proper choice of the macrovaria bles .-i,. is crllcial. and is not detPr­
mined by the taste of the experimenter. For instance. they must somehow 
incorporate ali correlations that live longer than i:::,.t. .-\nd they must nuy so 
slowly that they are practically continuous. i.e. they do !lot vary much dur­
ing i:::,.t. These are the reasons why one cannot add ad libitum new yariables. 
as is done in extended thermodynamics. 
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In quantum statistical mechanics the starting point is the Schrodinger 
equation for the iY particles 

(7) 

The macrovariables are those hermitian operators A,. in Hilbert space that 
are slowly varying: that means that in the representation in which H is 
diagonal their matrix elements are concentrated in a narrow band along the 
diagonaL narrow compared to the experimental margin .6.A,.. 

It is essential in quantum statistical mechanics to realize that the level 
density is homogeneous. Phase cells are linear subspaces of the total Hilbert 
space and still have a huge number of dimensions. They are constructed in 
such a way that in each of them the variables A.,. have a value Cl,., well defined 
within the experimental error .6..-1.,.. Hence they commute with each other. 
The occupation P of the phase cell is given by the square of the component 
of W in that celL In this way one obtains again (6), [4]. 

The reason why quantum mechanics does not affect the formulation 
of the master equation is visualized by the follo\ving picture. Quantum me­
chanics breaks up the phase space into grains of order h. They are much 
finer than the coarse grains .6.A. r determined by the macroscopic obser,a­
tions. This explains how the description on the macroscopic le\'el has be­
come classicaL in terms of probabilities P instead of probability amplitudes 
W. Of course. thf' construction of the AI" and the values of the transition 
probabilities IF do reflect the underlying quantum mechanics. 

Consider the time reversal transformation, which in classical language 
reads 

-7. q q. p ... ---+ -po (8) 

Suppose .-1. r (q. -p) c/·.-1. r p) where Cl' 1 for even and odd \'ariables. 
H must be even so that pe is im'ariant. Once the master equation (6) has 
been accepted it can be pro·;ed rigorously that Tr obeys detailed balance: 

(9) 

(I do not consider Hamiltonians that are not im'ariant for (8), as 111 the 
presence of a magnet ic field or an overall rotation ) In quantum mechanics 
the language is clifl'erent but the result (9) is the same, 

Having f'stablished the master equation for the occupation probabil­
ities of the phase cells \\'e !lOW have to extract macroscopic deterministic 
equations from it. such as hydrodynamics. Ohm '5. law. rate equations of 
chemical reactions. ete. This is achie\'ccl by the system size e:rpansio71. ap­
plicable wheneycr n- inyoh'es a large parameter. e,g. the volume Sl. capacity 
C. particle number .y, \\-rite the variables a,. as the sum of a mClcrOSCOp!C 
part and CL fluctuating part 

0,. 
1 / ') 

Sl.,:,.(t) + Sl I-E.,.. Plo, tI IT( E.. t). (10 ) 
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Consider this as a transformation from the ar to the new variables ~r' the 
functions :.pr to be fixed presently, Define mean and variance of the jumps: 

J(a~ ar )TF(a'la) da' = m~O) (a) + SI-I m~i) (a) + "', 

= J(a~ - (lr)(a~ - (ls)TV(a'la)da' = ()~~)(a) + "', 
(11 ) 

(12) 

Substitute all this into the master equation to get an equation for the prob­
ability IT( ~, t) and collect powers of SI, There are some ominous terms of 

order SI+ I/ 2 , but they can be made to cancel by requiring :.pr(t) to obey 

This is the macroscopic deterministic phenomenological equation, It IS non­
linear and there is no Onsager relation, 

The terms of order Slo yield 

oIT(~, t) 

at (14) 

(S "1' 1 (0), 1 d' . f' iO) . I . . ummatlOn Imp lee: In,.;, 15 t le en\'atlve 0 m;, WIt 1 respect to us.) 

This is a linear Fc)kker-Planck equation with time-dependent coefficients. 
It describes the fiuctuations about the macroscopic value in Gaussian ap­
proximation. 

In our SI-expansion we tacitly assumed that m;,O) =F 0 and that the 
solutions -Pr(tJ of (13) tend to an eqnilihrinll1 point '" In other systems 

it may happen that m~.O) vanishes identically: I call this the ,! tYPE. 
The expansion of the master eqnation then takes a clifferf'llt form: its lowest 
order in SI-I tunl:; out to be (after :;O!lH,' rcscaling) 

oP(o. ti 

at (15 J 

This is a nonlincar Fokker-Planck or cliffusiol! cljllatioIl. By SO!1l,: tri\'ial 
rearrangIng of terms 

op 
at 

1 ::; (' ::; P - u (0). I U ' 
--- () .. (a IP --

. 7 .... ' / . 
:2 00,. . 00" PI 

(lG) 

(17 ) 

The first term in (16) has the form of a Liou \'ille ('qua tioll belonging 
to the deterministic equation of motioIl 

J.:,.(u). (IS) 
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The second term IS clissipative. as is demonstrated by the following H­
theorem 

~ J p2 da - - J pE (~~) cr(O) (~~) da :::; O. (19) 
elt pe - oar pe rs oa s pe 

Application of detailed balancing (9) to the differential operator in (16) is a 
bit tricky but can be clone. with the result 

(20) 

This shows that (18) is invariant for time reversal. Hence the two terms in 
(16) represent the reversible and the irreversible evolution, respectively. 

To extract from (15) or (16) a deterministic phenomenological equation 
one has to choose once again an expansion parameter. The temperature T 
is an obvious choice since for low T the fluctuations are small. Accordingly 

we assume that cr~~) scales with T: 

(21 ) 

For any particular system this can be checked using the definition (12). One 
also knows how pe yaries with T: 

pe(o) C exp[-F(a)jT]. (22) 

Substitute (21) and (22) into (16) and collect powers of T 

(23) 

:\ow take the limit T 0 so that the fluctuation part yanishes and one is 
left with a Liouyille equation belonging to a deterministic equation for a,.. 

namely 

_. I, ,oF(u) 
(I,. = Il.rlU) - -crr,(U)---. 

. 2 . . ua" (2-1) 

The first term is reversible and therefore mechanical. the second term is 
damping. 
The second term in (2-1) has the familiar form of the rate equations (or 
regresslOn equations). The thermodynamic forces are 

of 
00 s 

(25) 

They need not be linear in the 0,.. as mentioned by :\IAZt'R [1]. Since 
F is inyariant under time re\'ersal (81. the force X., has the same parity 
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The familiar rate coefficients are 

(26) 

and need not be constants. According to (20) they obey the Onsager reCl­
procity relations, including Casimir's extension. 

As we used T as an expansion parameter our treatment formally applies 
to isothermal cases only'. This can be remedied by choosing as expansion 
parameter some averaged or representative temperature and including the 
deviation of the actual temperature as one of the (lr. 

1. Summary 

From the microscopic equations we obtained the master equation (6) at 
the expense of the repeated randomness assumption. The matrix Tr of 
transition probabilities obeys (9). \Vhen it involves a size parameter 11 one 

may expand in powers of 11-1/ 2 . Either this gives a macroscopic equation 
(13) with Gaussian fluctuations (14), or it gives a diffusion equation (15). 
In the latter case a set of deterministic equations (24) may be extracted 
by expanding in T. These equations are nonlinear and yet subject to the 
reciprocal relations of Onsager-Casimir. 
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