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Abstract

The long road that starts from the microscopic equations of motion and ends with the
- phenomenological equations of the experimenter, is sketched. One type of system leads
to nonlinear macroscopic equations, but no reciprocal relations are found. The other type
(called diffusive type) leads to a nonlinear Fokker-Planck equation. For low temperature
the fluctuations are small and one is left with a set of nonlinear deterministic equations.
They obey the Onsager-Casimir relations.
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The way in which Onsager arrived at his celebrated reciprocal relations was
a stroke of genius. He managed to combine on the one hand equilibrium
statistical mechanics with, on the other hand, bits of information about
fluctuations and then to deduce relations among the phenomenological co-
efficients in the macroscopic laws governing the irreversible behaviour. It
has proved hard to extend this feat to nonlinear macroscopic laws (although
Peter MAZUR showed that Onsager was close [1]). Some attempts are re-
viewed by VERHAS [2]. Unfortunately I am not a genius and must therefore
plod along in a systematic way from the very first principles of statistical
mechanics to arrive in a reliable manner at reciprocal relations. It is a long

way, which in the present context I can only sketch. A large number of

o
details have to be omitted, for which I refer to [3].
The starting pownt in the classical case is formed by the Hamiltonian

equations of motion for N particles in a volume £ with reflecting walls,
oH . 0H
Ipy; 9qk

An ensemble of such svstems is described by a density p{g.p.?) in 6V dimen-
sional phase space. whose evolution can be written using Poisson brackets:

(1)

i

plg.p.t) = {H.p}. (2)

A stationary ensemble with energy E 1

w0

p lg.p) = d[H (q.p) — E]. (3)
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Note that the Liouville equation (2) is logically equivalent to (1): if one
knows the solutions of (1) one knows those of (2} and vice versa. Introducing
an ensemble is not an aid to solving the equations of motion but merely a
preparation for an approximate treatment.

Coarse-graining is an indispensable step in statistical mechanics. Sup-
pose one has a set of observable quantities, given as functions A.{g,p) in
phase space. Define phase cells as subregions of phase space delineated by

ap < A g, p) < ap + Nap (all r). {4}

The margins Aa, are determined by the accuracy of the observations. The

coarse-grained distribution P(aj,a9,...) in the observational a-space is given
by

P(ay,as,...) = / pdg dp. (3)

ar <Ar(gp}<ar+2ar

This is a projection: from p follows uniquely P, but not vice versa. Station-
ary p® give statiomary P°.

The coarse-grained P, in contrast to p does not satisfy an autonomous
evolution equation of differential type (does not constitute a semi-group).
The reason is that one has lost the information about the details of the
distribution p inside each phase cell. As a remedy one makes the following
randomuness assumption: The detailed distribution does not matter, all that
matters for the disevolution of P is the total occupation in the cells. i.e. (5).
Then there exists a probability that a system in cell a, has moved after a
small time Af into a cell at o/, which we denote by At W(a'|a) Aa’. This
leads to the master equation

A \ - ! ! / . r AN oL ! 3
Plat) = - /U (a'layda' - Pla:t) + /W(ala iPla ) da . (6}
Note that after each At¢ we have to make the same assumption again. This
repeated randomness assumption is a generalization of Boltzmann’s ‘Stoss-

zahlansatz’. It is a part of all derivations of master equations, however

cleverly concealed. It is very drastic inasmuch as it breaks the time symme-
try by stipulating that one must randomize at the start of each At.

’ The justification of this assumption is still a mystery., One thing is
clear, the proper choice of the macrovariables 4, is crucial, and is not deter-
mined by the taste of the experimenter. For instance, they must somehow
incorporate all correlations that live longer than A¢. And they must vary so
slowly that they are practically continuous, i.e. they do not vary much dur-
ing At. These are the reasons why one cannot add ad libitum new variables,
as is done in extended thermodynamics.
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In quantum statistical mechanics the starting point is the Schrodinger
equation for the N particles

zﬁ\IJ(ql e T .P1,D2.-..) = HY. (1)

The macrovariables are those hermitian operators 4, in Hilbert space that
are slowly varying; that means that in the representation in which H is
diagonal their matrix elements are concentrated in a narrow band along the
diagonal, narrow compared to the experimental margin AA,

It is essential in quantum statistical mechanics to realize that the level
density is homogeneous. Phase cells are linear subspaces of the total Hilbert
space and still have a huge number of dimensions. They are constructed in
such a way that in each of them the variables A, have a value a,, well defined
within the experimental error AA,. Hence they commute with each other.
The occupation P of the phase cell is given by the square of the component
of U in that cell. In this way one obtains again (6). [4].

The reason why quantum mechanics does not affect the formulation
of the master equation is visualized by the following picture. Quantum me-
chanics breaks up the phase space into grains of order . They are much
finer than the coarse grains AA, determined by the macroscopic observa-
tions. This explains how the description on the macroscopic level has be-
come classical, in terms of probabilities P instead of probability amplitudes
¥. Of course, the construction of the 4, and the values of the transition
probabilities W do reflect the underlying quantum mechanics.

Consider the time reversal transformation, which in classical language
reads

t— —1, q — q. pr— —D. (8)

Suppose A.{g,—p) = . 4,(¢.p) where z, = £1 for even and odd variables.
H must be even so that P° is invariant. Once the master equation (6) has
been accepted it can be proved rigorously that W cbeys detailed balance:

“la")

Wiala' )P a'lza)P(a). (9)

(I do not consider Hamiltonians that are not im'ariant for (8), as in the
presence of a magnetic field or an overall rotation [5] ) In quantum mechanics
the language is different but the result {9) is the same.

Having established the master equation for the occupation probabil-
ities of the phase cells we now have to extract 111aczo<coplc deterministic
equations from it, such as hydrodynamics., Ohm’s, law. rate equations of
chemical reactions, etc. This is achieved b\ the system size erpansion. ap-
plicable whenever W involves a large parameter, e.g. the volume Q, capacity
C'. particle number N. Write the variables a, as the sum of a macroscopic
part and a fluctuating part

= Qe () + QY26 Pla.t) = TI{£.1). (10)
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Consider this as a transformation from the a, to the new variables &, the
functions ¢, to be fixed presently. Define mean and variance of the jumps:

me(a) = [(dh — ap)W(a'|a)dd' = m(ro)(a) + Q_lm,(j)(a) +--, {11)
orsla) = [(a, — a;)(d} — as)W (d'|a)da’ = U,(-g)(a) + o (12)

Substitute all this into the master equation to get an equation for the prob-
ability II(£,¢) and collect powers of Q. There are some ominous terms of

order Q12 but they can be made to cancel by requiring ¢.{t} to obey

So(t) = mY(p). (13)

This is the macroscopic deterministic phenomenological equation. It is non-
linear and there is no Onsager relation.
The terms of order Q7 vield

Ol(€, t)

0, . @ 1(0)( 8°11
ot ;

{ ¢ ; )
= —m, () —&I + -0,/ () ——— (14)

PISANT < B 7 A 7
&, 2 08,06,

S 0y . . .0y . \_
(Summation implied: s is the derivative of m; ' with respect to ag.)
This is a linear Fokker-Planck equation with time-dependent coefficients.
It describes the fluctuations about the macroscopic value in Gaussian ap-
proximation.

. . {0) .

In our Q-expansion we tacitly assumed that m,’-) = 0 and that the
€
T

solutions ¢, (t) of (13} tend to an equilibrium point 5. In other systems

. {0) . . . . . . ,
it may happen that m, ' vanishes identically; I call this the diffusion type.

The expansion of the master equation then takes a different form:
order in Q7! turns out to be {after some rescaling)
Ny . ; 9
OP{a, t) g 19 o)
4 : _ ot ) . (0 -
—_— = - g o) P 4 = e
ot day 20a,.da, 7

This i1s a nonlinear Fokker-Planck or diffusion equation. By some trivial

rearranging of terms
9 P
) ayp* -—-> (16)

opP d 190 f
— = —— N, {a)P + — <U“ ( -
2 S da, Pt

ot a(zr

Lla) = m(l)( ) L9
el 2P¢ Oa

The first term in (16) has the form of a Liouville equation belonging

oW (a)P*. (17)

to the deterministic equation of motion

ap = Ky la). (18)
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The second term is dissipative, as is demonstrated by the following H-

theorem
d [ P2 o P 8 P
e = | pe [ <°)< -—>d<. 19
dt/P6 ¢ / <3ar P€>U” Ba. pe ) d =0 (19)

Application of detailed balancing (9) to the differential operator in (16) is a
bit tricky but can be done, with the result

[ =]

)(sa) = aﬁo)(a). {20)

sl (za) = =R, (a), 5r:‘sa£

)

This shows that (18) is invariant for time reversal. Hence the two terms in
(16) represent the reversible and the irreversible evolution, respectively.

To extract from (15) or (16) a deterministic phenomenological equation
one has to choose once again an expansion parameter. The temperature T
is an obvious choice since for low T the fluctuations are small. Accordingly

we assume that cr,(“g) scales with T:
e, T) = Té,s(a). (21)

For any particular system this can be checked using the definition (12). One
also knows how P°¢ varies with T:

Pa) = Cexp[~F(a)/T). (22)
Substitute (21) and (22) into {16} and collect powers of T

or _ 9 [
ot dar

1,
Ly — §Urs

OF Tr o . OP (23)
)+ — Gy . (2!

da 2 dag das

Now take the limit T — 0 so that the fluctuation part vanishes and one is

left with a Liouville equaticn belonging to a deterministic equation for a,.

namely

1. ( OF(a) (24)
—Grsla)———. 2:
5 a) Da. (24)

The first term is reversible and therefore mechanical. the second term is

ap = Npla) —

damping.
The second term in (24) has the familiar form of the rate equations (or
regression equations). The thermodynamic forces are
aF
Jas

They need not be linear in the a,. as mentioned by MazUR [1]. Since
F is invariant under time reversal (8). the force X, has the same parity
as as.

X, =
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The familiar rate coefficients are

Grs(a) (26)

and need not be constants. According to (20) they obey the Onsager reci-
procity relations, including Casimir’s extension.

As we used T as an expansion parameter our treatment formally applies
to isothermal cases only. This can be remedied by choosing as expansion
parameter some averaged or representative temperature and including the
deviation of the actual temperature as one of the a,.

1. Summary

ot

From the microscopic equations we obtained the master equation (6} a
the expense of the repeated randomness assumption. The matrix W
transition probabilities obeys (9). When it involves a size parameter {2 one
may expand in powers of Q~Y2 Either this gives a macroscopic equation
(13) with Gaussian fluctuations (14), or it gives a diffusion equation (15).
In the latter case a set of deterministic equations (24) may be extracted
by expanding in 7. These equations are nonlinear and yet subject to the
reciprocal relations of Onsager—Casimir.

e
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