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Abstract

A unified thermomechanical framework 1s presented for the theory of mechanically elastic
materials the physical description of which requires the consideration of additional vari-
ables of state and of their gradients {weak nonlocality). This includes both the case of
additional degrees of freedom carryving their own inertia and the case of diffusive internal
variables of state. In view of practical applications to fracture and propagation of phase-
transition fronts, special attention is pald to the construction and immediate consequences
of the equations of balance of canonical momentum {on the material manifold) and en-
ergy at regular points and at jump discontinuities. In particular, the general expression
of the dissipation at, and of the driving force acting on, phase-transition fronts is formally
obtained in such a broad framework. Brief applications include thermoelastic conduc-
tors {e.g.. shape-memory alloys) and elastic ferromagnets in which both spin inertia and
ferromagnetic exchange forces (magnetic ordering) are taken into account.
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1. Introduction

With a tremendous development in both the conception and uses of com-
posite materials, smart materials exhibiting phase transitions, and materials
ico-mechanical effects, it has become a necessity

exploiting combined ph;
to think in more rational terms about a somewhat general framework. This
is what we called. perhaps inappropriately, the theory of material inhomo-
geneifies once it was recognized that many of the relevant effects are mani-
fested in some characteristic way in the canonical balance laws of continuum
physics, namely, the balance of canonical (material) momentum and of en-
ergy at both regular and singular material points (Mavcin [1], [2]). Allied
to a formulation based on the principle of virtual power (e.g., MAUGIN [3])
and the powerful notions of evolving microstructure and internal variables
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of state (MAUGIN and MUSCHIK [4]), this indeed provides a satisfactory
general framework into which such macroscopically irreversible phenomena
as fracture and the progress of phase-transition fronts fit naturally.

In the present contribution, in order to exemplify our viewpoint, we
shall consider a sufficiently large class of materials in which, say, the solid-
like material exhibits some elasticity but its complete physical description
requires considering one (or several) additional variable(s) (5) which allow(s)
a weak nonlocality (cf., MAUGIN [3]) in the semse that its (their) gradient(s)
need(s) also to be involved in some way. We shall first formally develop the
scheme, specifying only at a later stage if this additional variable presents
a classical inertia (i.e., it is an additional internal degree of freedom per
se) or it shares most of the properties associated with so-called wnternal
variables of state (cf., Ref. [4]). Special emphasis is placed on obtaining the
expression of canonical (material) balance laws as they play a fundamental
role in designing criteria of the progress of defects. We remind the reader
that material inhomogeneities in a broad sense - including dislocations,
growing cavities, cracks, phase transitions — are viewed as ‘defects’ of various
dimensionalities in this theory.

A short background is given in Section 2. Canonical balances of mo-
mentum and energy are expanded in Section 3. This decides the expression
of the second law of thermodynamics at regular material points. The asso-
ciated jump relations are developed in Section 4. We briefly deal with some
illustrative examples in Section 5. A more extended work on the subject
will be published later on (MAUGIN [6]).

2. Background

Using standard notations of continuum mechanics (e.g., TRUESDELL and
NoLL {7], MARSDEN and HUGHES [8]) let B, an open simply connected
subset of the material manifold M?®. be our material body of ‘particles’ X
and po(X) the mass measure at the reference configuration Kg. The actual
placement of X at time ¢ is given by the (supposedly) smooth function
x = y(X.,t). In the absence of body forces and for an essentially elastic
(hyperelastic) material. at each regular point X we have the following two
basic local laws in the Piola-Kirchhoff form:

e balance of mass

9po/0t|x =0 (1)
e balance of linear momentum
Op/0tlx — divpT =0 (2)

These are strici conservation laws. Here we have set

p = po(X)v.T = 9W/9F . (3)
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where
vim0y/0thx . Fi= 0y/0X|; = VRy. (4)

F
We assume Jp = det F > 0 always (Vt) so that we also have
Vo= 0y otlk, FTli=0yTl/ox| = Uy (5)
and we can check that

V = —-Fl.v, v=-F. .V, (6)
F7'.F = 13, F-Fl=1, (7)
where 1r and 1 are unit dyadics at Kp and K; (actual conﬁgurétion), re-

spectively. Of some use can be the following common measures of finite
strain (T = transpose)

C=F.F, E=-(C-1p). (8)

[V RS

We need to say some words on the scalar-valued function W present in the
definition (3)2. It is for sure an energy per unit volume of the material at
Kp. Henceforth we shall assume that it admits the following functional
dependence

W =W(F.a.Vga.0:X), (9)

where 6 — such that § > 0, infd = 0 - is called the thermodynamical
temperature, and o is any suitable field variable a(X,t) for our physical
description. Hence, W is a free energy. The fact that Vgya appears in (9)
implies a weak nonlocality as regards the physical property related to a -
hence a characteristic length [ ~ |a|/|V gal; while the explicit appearance of
X indicates a possible, here smooth, material inhomogeneity. It is clear that
{2) and (9) incorporate an extremely wide class of materials, thermoelastic
ones being among the simplest. The consideration of higher gradients of
x(x,%) than the first would complicate the whole picture. As no memory
effect is included, the local statement of the balance of moment of momen-
tum is equivalent fo the invariance under S0(3) in K; of the scalar-valued
function W. This can be precisely written down only with a specification of
the tensorial nature of . Formally, however, we can write the corresponding
condition as

(F-T + 50(Wlaj)a =0, (10)

where subscript 4 denotes the operation of skewsymmetrization and
S0(Wa) indicates the action of an infinitesimal generator of S0(3) on W
with respect to its o functional dependence only. In the absence of «, (10)
reduces to the classical condition F - T = T . FT which represents the
symmetry of the Cauchy stress tensor or the symmetry of the first Piola
stress T ‘with respect to F.
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3. Canonical Balance Equations

We assume that W is concave in 8 and no convexity conditions insofar as F
and o are concerned, and set

S:= —0W /08, A:=-—0W /da. M :=3dW /d(Vga), (11)

A= Z—‘}-VR‘JW:—(WT/(SQ, (12)

where 4/da denotes the Euler-Lagrange functional derivative with respect
to the components of a. By taking the inner product of (2) on the right by
either ¥ or v and integrating by parts on account of Egs. (3), (1), (9), (11)
and (12), we arrive at the following result:

o Theorem 1. At each regular material point X € B, at time ¢, the
following canonical covectorial and scalar balance laws hold:
e balance of canonical momentum:

ap ,
| - { div gb + £ & fih} ~ AV ga (13)
X
e balance of energy:
OH .
__a_t_ _ {Y—R G—%—th ; (th} = — A4 (14)
X
where ‘
Oa .
mr —— (10)
ot |,
o - _pl p=p0C- -V (16)
b (L“ﬁm T-F+ M2 (Vea)!) (17)
G=T - v+ M. &, (18)
as
fih = 5V Re. M =8 ?l (19)
H=E+K=S+P. -V —sth, (20)
1 5 1
E = -po(X)v? = =po(X)V - C -V, (21)
E =56+ W, (22)
fh = K - W = 2" (v.F. 0.V ga, 8: X, (23)
and th th
—th — I2
inh _ ar ; inh _ oL i — (24)
oX expl ot leapl
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Here E is the internal energy per unit volume at K g and £ and H may be
thought as effective Lagrangian and Hamiltonian densities in the presence of
dissipative effects. The notation in Egs. (24) means that all flelds are kept
constant in the computation of these partial derivatives. As a matter of
fact, with q’"h = 0, local energy conservation (first law of thermodynamics)
requires that Eq. (14) should be a strict conservation law, from which there
follows that the quantity qth
takes the form

— Ad must be a material divergence. Thus (14)

OH
———-t —Va(T- v+ M - 6-Q)=0 (25)
ot I«
while we have simultaneously the local entropy balance as
93 + Vg S =othy ot (26)
at |«
where we have set
S=Q/f, o =-8 Vg(nd). " =61 4a). (27)

Following BRIDGMAN [9], the second law of thermodynamics at regular ma-
terial points requires that the right-hand side in (26) should be non-negative:

og = ol + o™ >0, (28)

in which ¢'™" stands for the bulk inirinsic entropy source, and Q and S are

the heat-flux and entropy-flux vectors. Other possible consistent choices of
S and o' are discussed by MAUGIN [8]. The present choice suits well the
spirit of the theory of internel variables of state if the latter’s definition is
relaxed so as to allow the possible occurrence of diffusion (via Vga) and
controllability at a boundary (cf. MAUGIN [10]). Indeed, a naive implemen-
tation of the classical theory of irreversible processes (TIP) (DE GrooOT
and MAZUR [11]) to the term o™ considered separately from ot would
vield a generally non-linear evolution-diffusion equation for a hence with
coupling to the ‘main’ fleld equation (2} an extraordinarily rich complex of
nonlinear dynamical behaviours, of which the simplest one is exemplified
by the so-called intertial-dissipative systems. exhibited as demonstrated by
ENGELBRECHT and Mauvgiyn [12] for thermoelastic conductors. Notice that
a more singular relationship between A and & can be envisaged within the
framework of convex analysis such as a ‘plastic type’ of evolution

& € Ne(A), A= —6W/da. (29)

where N¢ denotes the ‘cone of outward normals’ to a convex set C in A
space (compare to elastoplasticity in MAUGIN [13]). An interesting feature
here is that only one generalized conjugate force A intervenes although we
introduced gradients of «. This, in our opinion, is much more preferable
than the proposals of some authors {e.g.. AIFANTIS [14]).
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4. Jump Relations

The important classes of singular surfaces exhibiting jump discontinuities in
the field and/or derivatives of the fields are shock waves and phase-transition
fronts. The first class, although implied by dissipation, see the structure of
shock waves, is based on the consideration of jump relations associated with
a strictly conservative system and takes internal energy (function of entropy)
as the primary energetic ingredient. The second class involves generally
dissipation and builds essentially on the notion of free energy {Landau) so
that in our materially-oriented mind, we shall consider the second class of
greater interest. Henceforth we focus on this class in an even more restricted
way by considering so-called coherent phase-transition fronts at which two
allotropic phases of the material co-exist at a single temperature 8. This last
condition imposes that the jump of 8, [8], be zero at the phase-transition
front ¥, a sufficiently regular surface with unit normal N (from phase— to
phase+) uniquely defined at all of its points and material velocity V. It was
shown in previous works (MAUGIN and TRIMARCO [13], TRIMARCO and
MAUGIN [16]) that the coherency condition (no defect such as dislocations
along ¥ or continuity of lattice sites at T} in time, reads as follows on the

material manifold ([f] = f7™ — f7):
Vi=0. (30)
It is also shown that
V= (V- N =VJ=Vy. (31)

The problem consists now in writing down the jump relations at &, which
are associated to the balance laws (1}, (2), (13). (23) and (26).This is solved
by applying the formalism of weak soluiions according to which (see, e.g..
BazeER and ERICSON [17]) we can formally replace the partial differential
operators Vg and &/0t| X applied to a function f(X.¢) by the operators
N-[] and —\—\f] respectively. and introduce as yet unknown source terms
in those jump relations that correspond to non-strict conservation laws.

Applying this strategy we have at once the following jump relations at &

(32)
(33)
(34)
, (35)
N.[SV -8 =05 >0, (36)
while the heat equation (Eg. (26) multiplied by §) yields
N -

[0SV — Q] —gz = 0. (37)



THERMOMECHANICS OF HETEROGENEOUS MATERIALS 169

We have accounted for the fact that [6] = 0 across . Egs. (32), (33), (35)
and (38) are ‘classical’ jump relations. Fgs. (34) and (37) are additional
relations which must be consistent with the first set. It is this consistency
condition that will yield useful information. First, consistency of (37) with
(36) leads to

gz > 0. (38)
Secondly, we know the formal expressions of T. p. b, P, H, M and S.

It remains to find, if possible, the expression of fy. For this purpose we
evaluate the power expanded by fr in a motion of I, that is we compute

P(fg)=1fs-V. (39)

Without making any assumptions as regards the time evolution of a, we let
the reader prove first that

B [N Y da
o o= Mo — [IN -/ —_—
qs o 3t

where the time derivative is taken fixed at x (i.e., an Eulerian time deriva-
tive) and further that the following result holds:
Theorem 2. At points X € T the following thermodynamic restriction

holds:
da
D >0, (41)
X

S |5

where the scalar functional HU{GO (57) reads

X7 . R Jda
g = —VNHUGO — ([N ,\/IJ<-8‘{

, o da
HUGO (SF) = [W — (N - T)&% —~ (N \4)%} : (42)

in which 8/0N = N - Vp denotes the normal derivative and (f) = %(f++
+f7 ) denotes the average value at . The proof of the theorem is somewhat
perilous and will be given in full in another paper [6]. Notice, that the proof
does not require any hypothesis of quasi-staticity so that, indeed, it is always
the free energy W which appears in HUGO, and that in agreement with
original thoughts of JJW. Gibbs and P. Duhem, kinetic energy does not
contribute to the local structural rearrangement accompanying the phase
transition at X. This result is here proven as kinetic energy and inertia
were present in the other equations (33), (34) and (35). But it is Fq. {41)
which govemns the wrreversible progress of ©. Expression (41) would not be
very useful if it remained of this general form. But it happens that the
quantity within large parentheses vanishes identically in all known cases.
Indeed, either a is of the internal variable of state type or it is an additional
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internal degree of freedom carrying its own inertia. In the first case, the
conditions

da |
L
at Iy

are, respectively, the natural jump relation associated with the non-linear
evolution-diffusion equation for o, and the condition of coherency, for the
variable «, at . In the second case (43)7 still is the admitted additional
condition of coherency and [N - M] is expressible in terms of the jump of
the inertia associated with a. This., multiplied by (Ja/0t|;). would render
zero after combination with a kinetic-energy term and a flux of canonical
momentum which would have appeared is (35) and {34), had we envisaged
this possibility from the start. Hence, in all cases we have the following
important result for coherent phase-transition fronts:

N M] = =0 (43)

et

ox =gz = fuVN 20, (44)

and

o=

o+ HUGO =0 at T (43)
The latter is a surface balance equation involving the scalar driving force
7. which is restrained, and therefore determined, by the local dissipation
inequality (44), and the Hugoniot-Gibbs functional HUGO which depends
on the field solution on both sides of £. Clearly: (i) Egq. (44) refers to a
normal growth of one phase in the other (this normality is related to the
absence of defects at T) and (ii) this equation can be used to devise an
engineering criterion of progress of ¥ In agreement with the second law.
This is very similar to what happens in elastoplasticity for the progress of
the plasticized zone. or in fracture with the progress of the crack tip curve,
or still in damage with the progress of a damaged zone. As a matter of
fact, all these phenomena of irreversible progress belong in the same picture
of driving forces acting on defects following the inclusive view of Eshelbian
mechanics on the material manifold. The ultimate result will reside in a
more or less regular relationship

N = V{fs:8) (46)
with

Contrary to other mentioned cases, whose progress may only be in one
en

direction, V y may have here a positive or negative sign depending on the

sign of HUGO !

'Literary minded readers will have noticed that Vi, essentially the component of a
‘vector’, is the thermodynamical conjugate of HUGO. We feel ‘miserable
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5. Examples of Applications

The range of applications of the formulation of Sections 3 and 4 is extremely
large by virtue of the very generality of expression (9). In particular, o may
be either an observable or an internal variable of state. The simplest exam-
ple is that of the classical theory of elastic conductors of heat for which we
simply ignore « in (9) or, rather, one of the a’s is none other than § but Vgé
is not present in W - see References [15. 16] for phase-transition fronts and
DascarLu and MAuGIN [18] for applications to thermoelastic fracture. This
applies to the case of shape-memory alloys. Another straightforward appli-
cation is the quasi-electrostatics of linear or non-linear electrelastic bodies
{e.g., plezoelectric ceramics). In this case o is taken as the electrostatic po-
tential ®(X,?) in the material description so that the material electric field
is given by E = —V p®. Gauge nvariance requires that W does not depend
explicitly on @, so that we are left with W = W(F,E = -V p®.0;X). With
I = —0?/0}57 the material electric polarization, there is no real local elec-
tric dissipation at regular material points unless we account for some electric
relazation (see MAUGIN et al. [19] for the formulation of this phenomenon}.
The formulation that follows from Section 3 is entirely compatible with that
obtained in a different manner in the study of electroelastic fracture (Das-
cALU and MAUGIN [20]). As to the case of phase-transition fronts (Sect. 4),
on account of the natural electric jump condition N-[D] = 0. where D is the
material electric displacement, and of the ‘gauge’ condition [0®/0t|{x] = 0 at
T, an expression of the type (44) follows for the power of the scalar driving
force with the thermoelectroelastic Hugo functional given by (cf., MAUGIN
and TRIMARCO [21])

HUGO = W(F,E,§) - N . ((T)-F~ (D)2 E)-NJ. (48)
where I is the electric enthalpy and D = —9W /9E = JpC™! . E + 1L
One could also consider the cases where o is a damage parameter, a
degree of moisture, a scalar quasistatic magnetic potential, the wave func-
tion of superconducting pairs (in elastic superconductors [22]), or a rota-
tional internal degree of freedom such as in polar elastic crystals or in liquid
crystals (see Ref. [6] for a discussion of these cases). But the case of elas-

tic ferromagnets is particularly enlightening because of peculiar features of
magnetic-spin inertia.

In elastic ferromagnets, taking one o
potential @, such that the material magnetic field be given by H = -V @,
and the other o as the actual magnetization per unit mass p(X,t), and
applying a gauge condition to get rid of the explicit dependence upon @, we
consider (9) in the following form:

T the a’s as the scalar magnetic

W =W(F,H u Ve 8:X). (49)
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Detailed elements of the now classical theory of finitely deformable ferro-
magnets may be found in Chapter 6 of MaUGIN [23]. Applving the for-
malism of Fq. (13) it can be shown that the right-hand side gives rise to a
ferromagnetic material force {compare to FOMETHE and MAUGIN [24]):

fferro - pOBeff . (VRILL)T ) (50)

where B®// is the effective magnetic induction which defines the Larmor
frequency of the magnetic-spin precession by

w= B B = _prtswysp, (51)
where ~ is the gyromagnetic ratio. With
Ou/otly —wxpu=0, (32)

the spin-precession equation respecting the saturation condition |u| =
= const., it is shown that the ferromagnetic material force {50) is none other
‘than a Dalembertian way of taking the magnetic-spin inertia into account as
the latter, in a classical continuum formulation, cannot be integrated into
a definite kinetic energy (gyroscopic feature) or £7e770 ritten as the time
derivative of a canonical ferromagnetic momentum P/¢"7°. Simultaneously,
if we do not envisage spin-lattice relaxation, (14) transforms into a strict
conservation law and (26) holds without any intrinsic entropy source. The
formalism of Section 4 above holds good, in particular Eg. (43), and thus
(44), because of the spin-boundary condition and of the coherency condition
applied to the spin dynamics. We refer the reader to FOMETHE and Mau-
GIN [25] for details and further developments along these lines. We expect
that the above-given examples, although sketchy., demonstrate the power
and wide applicability of the presented formulation.
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