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Abstract

Robertson has derived from the Liouville equation an exact equation for the maxent
distribution which depends on a set of moments. The exact equations for these moments
verify predictions of Grad for the Maxwell and Cattaneo relaxation equations in a dilute
gas. Nonlinear reciprocity is applied to estimate contributions quadratic in heat flux g.
to thermal conductivity and to second-order effects in @, diffusion flux jD, and traceless
pressure 1%&5 in the reaction rate in a dilute gas mixture. All non-linear effects are too
small to see readily.
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1. Introduction

The maximum entropy formalism of JAYNES [1] (maxent) maximizes an
entropy functional to obtain a distribution o(x,?) in the space of phase co-
ordinates z which yields the best estimate (4) = Tr(Ao) at time ¢ of a
dynamical function ~i(z) subject to specification of a set of values <{riz})
(1 €1 < v) representing the available measured information at ¢. From o
we calculate

S=—-xTr(clno) (1)

which vields the information-theoretic model of entropy. Since ¢ depends on
only a finite number of moments, it is not a solution of the Liouville equation.
Jaynes constructed a solution p(¢) of the latter at ¢’ > ¢ by setting

p(t') = exp[—iL (¥ = t)]o(t) (2)
where I is the Liouville operator.

To obtain a statistical derivation of the evolution equations of extended
thermodynamics (EIT). we need to express p(t) as a functional of values of
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the (4,) at t or over a range of times. We shall proceed in the next section to
consider two much-used ways of using ¢ to construct approximate solutions
of the Liouville equation.

To prove that non-linear reciprocity does or does not exist and investi-
gate whether terms introduced from symmetry [2, 3] into the rate equations
really belong there, we need an exact equation for ¢ of the type introduced
by ROBERTSON [4]. We study the latter in the third section. Specific exam-
ples for a dilute gas are discussed in the fourth section.

In the fifth section, we use the phenomenology to estimate the quad-
ratic term in

A= Ag + Q%+ 0(0Y) (3)

for dilute-gas thermal conductivity, with @ = heat flux. The 0(Q?) will be
found to be very small.
The sixth section uses maxent to calculate chemical potentials {g;}

in a reacting gas mixture in which there is a heat flux, a diffusion flow. or
=}

a traceless pressure, P # 0. The reaction rate is proportional to ;7.
where the {7;} are stoichiometric coefficients.

2. Derivation of EIT from Approximate Solutions to the
Liouville Equation

If we have an approximate solution p{t) of the Liouville equation which
denends on a finite set of moments, we can substitute this expression into
the right-hand member of

o~

and taie moments. This vields self-consistent moment equations which,
together with the ansatz for p(¢), solve Eq. {
becomes infinite.

4} when the number of moments
The simplest such approach is the GRAD ansatz used in the dilute-
gas Boltzmann equation. The GRAD expression linearizes [6] a function
which maximizes the entropy functional. A similar approach may be made

to the Liouville equation. Let {4;(z)} (1 < ¢ < v} be a set of phase functions
which are even under momentum reversal. Then {4;(z)} = {iL A;} are odd.
Defining

v = [[0(A; = a)dlAi —vi) = 8(A - a)(A — v (5)

7
gla,v) = /pzjza dr = / pg(.z#)exp(z'f,t)p"a dz (6)
P; = / pavedr {7)
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with pg the equilibrium canonical distribution, we set up the probability
amplitude g for the numerical values of {4;}, {4;}. We assume equilibrium
with a heat bath at temperature 7.

H. GRABERT [7] introduces a projection operator P into an identity
for exp(iif). This leads to an evolution equation for g(a,v):

Jg a
Flle _Z{@az (Tig) + (a )(ng)}
(8)
t
d , L
TO/ ds%:—a—g/l)ij(a,a,f—a)(av}){ gla',s)/ps(d)] da" dv’

p3 pavads du . (9)

Il

D

i depgie (L1 A;(1 — Pyexp [iL(1 - P)(t 7, Ca(iD)2A; . (11)

ot
|
7]
—

Il

g = /1)3 z.a(zL) 2,03 dx | (10)

The maxent expression for g(a,v) is [8]:

gla,v,t) = /U(.t)'u?a(l?)dI = Zepgla,v)exp [BF(a,n)+

+Z{@i(0- nia; = a;) + ®;(a.n)(n; — v;)}J . (12)

where o(x) maximizes the functional in (1) subject to the conditions:

(Ailz)) =ai . (@) =n (1 <i<v). (13)
Z. 15 the canonical partition function and F(a,n) the Helmholtz function.
o(z) is consistent with the Gibbs equation provided 4 = («T}7! and @;. 3;
are thermodynamic forces.

f we substitute (12) into (8) and calculate first moments, these rep-
resent a self-consistent approximation in the sense of Grad. If we know the
moments at time ¢, § in {12) is the distribution at ¢. Substituting this into
the right hand member of (8), we can calculate g(¢) + (9g/9t)At which is a
sufficient approximation if Atf is short, a fraction of the relaxation time of
fast variables.

The moment equations resulting from use of § in (8) have the form [3}:

e _ZL' & (14)

. (3) 4) = TS

M o= ZLE-J-)@J'-%ZL,%)@J'. (15)
i j

Il

G
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®; and @; are nonlinear in deviations of the variables from equilibrium, and

the Lgf) are nonlinear ®- and ®-expansions to all orders. The L(l-c)

;; are mot
unique and satisfy reciprocity to arbitrary order in the expansions:
3y _ (2)
Ly = —Lj (16)
(4) (4) -

Fgs. (16), (17) purport to justify nonlinear reciprocity under very general as-
sumptions. A better approximate solution of the Liouville equation has been
given by ZUBAREV [9]. One assumes a set {¢;} of state variables which are
classical or quantum mechanical operator averages \F,) The corresponding
maxent distribution is {10, 11]

o(t,0) = exp {— In Z(t) = B()H + > ja(t)Na = Y _52;(t)Fi| . (18)

The zero argument in o indicates that the N, and F; operators are time-in-

dependent. Number operators N, provide for particle non-conservation.
The Zubarev approximate solution has the form:

¢
pe(t) = exp 5/ e(t-t’)lllcr(z‘/,l"-t)dt/ . (19)
—r

where the operators in (18) are here taken to be Heisenberg operators eval-
uated at ¢ — ¢. With p.. one calculates phenomenological equations in the
form . .

6 =Tt [p(D)il £y . (20

3. The Exact Robertson Approach to Derivation of EIT

We generalize the foregoing results to a non-uniform system where the ther-
modynamic variables depend on position 7,

6:(7,1) = (Ei(F.2)) = Tr {azfi(f, B 1<i<y).

o
P

The maxent distribution is

o(t) = Z 7V exp {_/ dFZ M (FL)Fo(Foz) — BH | . (22)
=1
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where the {\,} are Lagrange multipliers determined to satisfy Eq. (21)
identically. The {]‘:'n} may be quantum mechanical. We assume equilibrium
with a heat bath at T = 1/x73. although we can relax this assumption later.

Jaynesian statistical inference [1] predicts that o(¢) is the phase-space
distribution provided we can derive exact equations for the {&;(7,¢)}. The
moment equations will be exact if ¢ plus these moment equations provide
an exact solution for Robertson’s equation. The latter is derived from the
Liouville equation by introducing a non-Hermitian operator Pr with the
property that ¢ = PR/j, where ¢ solves Eq. (4). We define

b2

Pr(t)x(x) /(ZF[da(t')/d(pn(F,z’)] Tr (F,I('F,;zr)\,} . (23)
1° )

I

n=

Here d0/60, is a functional derivative.

Operating with Pg on the Liouville equation, ROBERTSON derives [4]:

6 = —iPr(t)L(t)o(t)
t\
_ / dt' Pr1)L(#)T (t.¢') |1 — Pr(t")| Lit)o(t') (24

e ol ot .
where T(7,1') 1s a solution of

T (¢.1)
ot'

= iT(t.t) |1 = Prit)]

) L' (:

18V
it

Multiplying (24) by F;{7.2) and taking the trace. we obtain equations for

irst term on the right in (24} vield anti-

the ¢;. Contributions from the

=

reciprocal relations to all orders in the {A,}. Non-Hermiticity of Pg has
frustrated the search for non-linear reciprocity from the second term in (24).
ROBERTSON [4]
much from the

derives it only for the linear case. However. we can learn

term.
Let F;(7,2} be a classical phase function. even under momentum re-

versal. We have, on multiplying (24) by F; and integrating over phase space:

-
SV
(o)

=

P . ) 2 . ) )
) = GLE;(F.2)) = /dF’ ZLE;’(I;#),\U(#J'; . (:

where the sum is over forces A,/3 odd under time reversal. If F; is odd
under momentum reversal,

b, = /dF’ SISO E T A ()

n&e

o
=~
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where the sum is over even forces, and the ellipsis refers to Onsager symmet-
ric terms, mainly from the T term in (24). The detailed derivation shows

that
(3)(

- ond ¥
ni (7L T) (28)

L) = -L

to all orders in the {A,}.

4. Examples: Cattaneo—Vernotte and Maxwell Stress Relaxation
Equations

We now derive from (24) the linear eveolution equations for heat flux Oj(F,l‘)

o]
and traceless pressure Pog(7.t) in a dilute gas. The operators are:

. N
QF.z) = Y [(5}/2m) — (3/20T(7)| (Fifm)d(7i = 7). (29)
=1
N 7
Pus(Foz) = m™' Y ptmem - 7). (30)
=1
P = - ). (31)
N
H(F.z) = Y (5:%/2m)8(7i — 7). (32)
=1

The maxent distribution (22} for this choice of variables is

olt) = i/ exp {— / (ZFJ(_F){H(F,J')%—

+Oq(.t) - QiF. o) + D Bapp(FtiPag(Foai}| . (33)

In linear approximation, which suffices here. the conditions

vield
q)(.li}.p = /LlU];a;} I (36)

where
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—2m 3%V -

vg = —5\7——“ B (31)
-V

e 38

HO INKT(7) (38)

If we substitute o(t) from (33) into (24), multiply by @(F,I) and parg(f‘,l‘),
and then integrate over phase space. we obtain the time-evolution equations:

= —(1/79)Q — (xT/m) VP — Ko(VT/T) ,(Cattaneo) (39)

Pas = _(1/71,)15&3-(4/5)(&7@)5—1{,)(\7&)5, (Maxwell) (40
L 1 - . -
(VGr = (V) + (VG- V-G, (41)
_ o BN(kT2
kg = Vo = —(rg) ", (42)
) INKT _
K, = == ~(u)" (43)

The terms involving 7o, 7, stem from the second term on the right in (24)
and the remaining terms from the other term in (24). The coefficients of

<] —
VP and (VQ)® agree exactly with Grad theory. This answers questions
previously raised [12, 13] about the need for these terms.

— o]

The structure of (39), (40) shows that the fluxes of @. P can be ex-
pressed in terms of these variables. To take these fluxes as members of
a hierarchy of internal variables., thus modifying the exact moment equa-
tions, is equivalent to postulating an entropy model inconsistent with the
information-theoretic one.

If we write the identities @ = @ and P P in the form:

Q = {1/1/0}5@ + o= -RKo

(=

Q-+ (44)
Pag = (1//-10,)@03@ e = "]\'p@a;ﬁ.p- (45)

then, to linear terms, we establish an anti-symmetric Onsager coupling be-
tween the —T 7 'VT term in (39) and the CEQ term in (£4) and between the
—~(V@)® term in (40) and the @453, term in (43). Such a coupling should be
valid to all orders since it is a necessary condition for positive definiteness
of irreversible entropy production.

5. Non-Linear Heat Conduction

The anti-reciprocal coupling in (39) and (44) can be applied to estimate
{53

Ay in Eq. (3) for a dilute gas. We extend ) to the non-linear regime by
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writing:
0 = L&g- KT 'VT, (46)
L = Lo+ 1:Q" +0(Q"Y). (47)
Ko = Ko+ KQQQ —+ O(Q4) . (48)
Ciﬁq = ugé e z/ngé (Q Q (49)

el <
If P is proportional to (V¥ )®, when Vi # 0, we can reasonably take P = (

o P
in steady heat conduction if # = 0. In o(7) we take P = 0 and @ as variables

and keep 5@ and @43 ,. We find that the presence of @45, modifies vy but
not vg. Then
19 ug &T .
= 2 V2m | (50)
vg and v9 differ from (37) by a factor V. since here we take a small, homo-
geneous system and do not integrate over 7. From (44) and (49). we get
[14]:

—Kgrg = 1
—Kovg — Kovg = 0. (£

,—\
ot Ot
(AN

— e

Setting @ = 0 in (46) and comparing the result with Fourier’s law, we get:

—1 Bo v
N = Tl (53)
Lol/o
1 IO 1 I . PR
Ay = T — T —"‘——’IL)Z/O + Lowva). (54)
Lovg (Lovg )2
We estimate Ly by supposing that 7o = (Lrg)”" = [/v where £/ = mean free
path and v is rms speed, calculated from maxent. Finally, we obtain:
\y = X0(33/25 - (55)
A9 = Apla- ’;o)*—:——— (00 ]
TNV T )
For the case of Ar at IO“A)atm, OC @=1.209 106.]/11125 corresponding to
J I g

VT ~ 7.3 -107K/m. we find |\2Q?/\g| ~ 6.6 - 107%. Large |VT] yields a
second-order effect probably below the threshold of observability.
6. Second-Order Perturbations in Chemical Gas Kinetics

The quasi-steady reaction rate .J in a dilute gas mixture is proportional to

a chemical force
- E Liv; . (56)
i
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We have for the Helmholtz function differential, dF, when {N;} are numbers
of molecules and ®p the thermodynamic force associated with a binary

diffusion flux, Jp:

dF = -8 -dQ — 8p - dJp ~ Y @agpdPas+ 9 aidN; — @dJ . (57)
af i

The choice of variables is inspired by GARCIA-COLIN et al. [15].
The two vector forces in (57) are, in linear approximation:

39 = —vgQ —vepJp . (58)
5D = —I/Dq@ — I/DDjD . (59)

These can be calculated from maxent, using (29), (30). For a four-
component mixture with N3, Ny negligible, we get vyp = 0 = vpy and

212
v = - — 60)
Yag 5(}{1‘)22[(:\'1/'711‘) o
12
vpp = — . (61)
mi Ny

Contributions quadratic in Q— fD and }O> to the p; can be calculated from the
integrability condition and substituted into 4 given by (56). For dissociation
of NO» at 1125 K and Py =107? atm. we find the fractional change AJ/J =
—{1/3)(Pyy/? 1)? produced by shear stress FP.,. We estimate that a shear

; 5 ] - . . , D .
rate du, /Oy ~10%s7! is required to make AJ/J ~1072. For an equimolar
mixture of Dy and HCI at 600 X at the start of the reaction

Dy + HCI — DH + DCI (62)
. ; -2 - 5 = 5 1o
we estimate that. to have AJ/J ~107° we need [VTI| = 2.5-10° K/m when
. . . ; ¢ / 4 7 2
the concentration gradient vanishes and [Vp;| = 9.0 kg/m”™ when VI = (.

Veryv large gradients are needed for observability.
~ fw] [ o
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