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Abstract 

Robertson has derived from the Liouville equation an exact equation for the maxent 
distribution which depends on a set of moments. The exact equations for these moments 
verify predictions of Grad for the ?vlaxwell and Cattaneo relaxation equations in a dilute 
gas. I\onlinear reciprocity is applied to estimate contributions quadratic in heat flux Q, 
to thermal conductivity and to second-order effects in Q, diffusion fI ux k, and traceless ., 
pressure P cd in the reaction rate in a dilute gas mixture. All non-linear effects are too 
small to see· readily. 
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1. Introduction 

The maximum entropy formalism of JAY:\ES [1] (maxent) maximizes an 
entropy functional to obtain a distribution 0"(:1:, t) in the space of phase co­

ordinates .1: which yields the best estimate (A) = Tr(AO") at time t of a 

dynamical function .4 (.l:), subject to specification of a set of values ({.4;}) 
(1 ::; i ::; I)) representing the available measured information at t. From 0" 
we calculate 

5 = -f{. Tr (0" In 0") (1 ) 

which yields the information-theoretic model of entropy. Since 0" depends on 
only a finite number of moments, it is not a solution of the Liouville equation. 
Jaynes constructed a solution p(t) of the latter at t' > t by setting 

p(t') = exp[-ii (t' - t)]O"(t) (2) 

where L is the Liouville operator. 
To obtain a statistical derivation of the evolution equations of extended 

thermodynamics (ElT). we need to express p(t) as a functional of values of 
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the (rL) at t or over a range of times. \Ve shall proceed in the next section to 
consider two much-used ways of using (J" to construct approximate solutions 
of the Liouville equation. 

To prove that non-linear reciprocity does or does not exist and investi­
gate whether terms introduced from symmetry [2,3] into the rate equations 
really belong there, we need an exact equation for iT of the type introduced 
by ROBERTSO:\ [4]. We study the latter in the third section. Specific exam­
ples for a dilute gas are discussed in the fourth section. 

In the fifth section. \ve use the phenomenology to estimate the quad­
ratic term in 

(3) 

for dilute-gas thermal conductivity. with Q = heat flux. The 0(Q2) will be 
found to be very small. 

The sixth section uses maxent to calculate chemical potentials {~l;} 

in a reacting gas mixture in which there is a heat flux. a diffusion flow. or 
a 

a traceless pressure. P =!= O. The reaction rate IS proportional to ~l;ii;. 

\\·here the {i
'
;} are stoichiometric coefficients. 

2. Derivation of ElT from Approximate Solutions to the 
Liouville Equation 

If we haw an approximate solution p(t} of the Liouyille equation which 
depends on a finite set of moments. we can substitute this expreSSiOn into 
the right-hand member of 

/j=-iLp 

and tai~e moments. This yields self-consistent moment equations which. 
together with the ansatz for p(t). soh'e Eg. (-lo) when the number of moments 
becomes infinite. 

-:;'he simplest such approach is the GRAD ansatz used in the clilute-
gas Boltzmann equation. The GRAD expression linearizes a function 
which maximizes the entropy functional. A similar approach lllay be made 

to the LioU\'ille equation. Let {Ai )} (1 :S i :S z;) be a set of phase functions 

which are even under momentum reversal. Then {Ai(:r)} == {if } are odd. 
Defining 

g( G. c.') .I pU a d.l' 

.1 P:3 L'a d.l' . 

.I po(.r) exp(ii t)L'a d.l' .' 

c') . (.5) 

(6) 

(7) 
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with PS the equilibrium canonical distribution, we set up the probability 

amplitude 9 for the numerical values of {--id, {.-i;}. \Ve assume equilibrium 
with a heat bath at temperature T. 

H. GRABERT [I] introduces a projection operator P into an identity 

for exp(iit). This leads to an eyolution equation for g(a,v): 

og 
at 

t 

(8) 

+! ds L ~! Dij(a, a', t - s)( -;) [g(a', s)/P3(a' 1] da' dv' . 
.. 00) at')' o I) 

I -1 " 
. Pg pgL'aA.i d:r . (9) 

qi ! PSI L'a (ii)2 AiP3 ch . (10 ) 

D· I) !d.rp3L'a'( )2Aj(1 - P)exp [ii(l 

The maxent expression for g(a. cl is [8]: 

g(a, v, t) == ! O'(.r)L'a('l') d.l' = ZcP3(a. v) exp [3F(0.. 1/)+ 

+ ~{(j);(o..rl)(o.i - Cli) + cI>;(o..II)(lli - t' i )}]. ( 12) 

where 0'(.1') maximizes the functional in (1) subject to the concli tion~: 

(.4.;(.1')) = o.i . ( ... 1.;(.r ) ) 'Ii (1 ::; ! ::; 1/) . (13) 

Zc is the canonical partition function and F( 0.. 'I) the Helmholtz function. 

0'(.1') is consistent with the Gibbs equation provided.3 (hT)-l and (j)i. cI>i 
are thermodynamic forces. 

If we substitute (1:2) into (8) and calculate first moments. these rep .. 
resent a self .. consistent approximation in the sense of Gracl. If we know the 
moments at time i. 9 in (1:2) is the distribution at t. Substinnillg this into 
the right hcmd member of we can calculate g(t) + (og/ot)6t which is a 
sufficient approximation if :'::"'i is short. a fraction of the relaxation time of 
fast variables. 

The moment equations resulting from use of gin (8) have the form 

(\i 

'h 

""" (2)::. 
'Ii = LLij 'l'j. 

j 

""" L ( :3) ,", . ..L """ L ( -±) ,f.. . L 0~) I L 0~) 

j j 

(l-.±) 

(15) 
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1>i and cI>j are nonlinear in deviations of the variables from equilibrium. and 
(k) - (k) 

the Lij are nonlinear 1>- and 1>-expansions to all orders. The Lij are not 
unique and satisfy reciprocity to arbitrary order in the expansions: 

(2) 
-L·· Jl 

L
(4) 
Jl . 

(16) 

(1 I) 

Eqs. (16), (17) purport to justify nonlinear reciprocity under very general as­
sumptions. A better approximate solution of the Liouville equation has been 
given by ZUBAREV [9]. One assumes a set {9i} of state variables which are 

classical or quantum mechanical operator averages (f;). The corresp onding 
maxent distribution is [10. ll] 

0"( t, 0) = exp [-In Z (t) J(t)H + "L ~La(t)j\-a - "L !31>;(t)fij 
a I 

( IS) 

The zero argument in 0" indicates that the Na and f; operators are time-in­

dependent. Number operators 'Ya provide for particle non-conservation. 
The Zubarev approximate solution has the form: 

[ c_j~_' PE (t) = exp c ~~ 11nO(t',t't l dt'] (19) 

where the operators in (IS) are here taken to be Heisenberg operators e,'al­
uated at t l 

- t. \-Vith PE' one calculates phenomenological equations in the 
form 

0; (20) 

3. The Exact Robertson Approach to Derivation of ElT 

\Ve generalize the foregoing results to a non-uniform system where the ther­
modynamic variables dep end on position 1", 

(1 < I < v) . (21 

The maxent distribution IS 

O"(t) = Z-l exp [- J dr t An(r. t)Fn(r .. r) - JHj. (22) 
71=1 
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where the {An} are Lagrange multipliers determined to satisfy Eq. (21) 

identically. The {in} may be quantum mechanical. We assume equilibrium 
with a heat bath at T = 1/ K.3. although \ve can relax this assumption later. 

Jaynesian statistical inference [1] predicts that CT(t) is the phase-space 
distribution provided we can derive exact equations for the {oi(r. t)}. The 
moment equations will be exact if CT plus these moment equations provide 
an exact solution for RobertsoIl's equation. The latter is derived from the 

Liouville equation by introducing a non-Hermitian operator PR with the 

property that er = PRfj . where er soh'es Eg. (4). \Ye define 

FR(th(:r) == t f dr[OCT(t)/OOn(r.t)] Tr [tn(i:·,.rlt] (23) 
71=1 ' 

Here 00/00 71 is a functional derivati\·e. 

Operating with PR on the Liouville equation. ROBERTSO:\ cleriws [4]: 

er -iPrdt (t)CT(t) 
t 

./ elf' F R ( t) i (t )i (t , t') i 1 

o 

where i(t. t') 1" Cl solution of 

aT 
'""' '1 p' 't,JL~",t",I. 1,<'/ Il- - RI IJ 

fi) 1 ' 
\--=1 

(25) 

:\lultiplying (24) by Fi(i".,r) and taking tile nace. we obtain equations for 

the 0i. COlltributions from the first term on the right in (24) yield ami­

reciprocal relations to all orders in the {/\,,}, ::\oll-Henniticity of PR has 
frustrated the search for non-linear reciprocity from ,·he second term in (24). 
ROBEIlTSO:\ derives it only for the linear case. Hcm·ever. V'-C' call learn 
much from the first term. 

Let (r .. r) be Cl classical phase fUllction. e\'f'n under mOmeI11:um re-

H.'rsal. "'e have. on multiplying (24) by and integrating O\'er phase space: 

CJ.li(r. t) \',7. ,Z',)'/\ = 1(1,7 '\' L(2) (,7 ,7) \ \',7 ") , L in" /n .(. 

, nEO 

(26) 

where the sum i~ O\'er forces /\, / j odd uncleI' time re\'ersal. If Fj IS odd 
under momentum re\'ersal. 

,i f /-1 '\' L(3)- -I I (-I ' 'l'j = CT' L jll (r.T' )/lnJ .t) 
• n'::;:c 

+ ... (2, ) 
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where the sum is over even forces. and the ellipsis refers to Onsager symmet­

ric terms, mainly from the i term in (24). The detailed derivation shuws 
that 

L (2) (-; -;<) = _L(3) (-;< 7) 
IJ 7.7 nl 7 .7 (28) 

to all orders in the Pn}. 

4. Examples: Cattaneo-Vernotte and Maxwell Stress Relaxation 
Equations 

\Ve now derive from (24) the linear evolution equations for heat flux Q(T'", t) 
o 

and traceless pressure P a 3(r. t) in a dilute gas. The operators are: 

Q(r, x) 

H(r, .r) 

Y 

L [UlT (2771) 
;=] 

.Y 

7Jl -] L Pi a Pi 3 is( 17; - '-'") . 

;=] 

jJ; il(r;). 
.Y 

L(p;L /2ln )S(r; n. 
;=1 

The maxent distribution (221 for this choice of variables lS 

:-<PQir.t). Q(;'""c) + ~ <Po;!.Pii,".tlPOJii:-"C)}] 
Cl: ,j 

In linear approximation. which suffices here. the COllditioIl~ 

yield 

110 Q + ... 

POP o .3+··· 

where 

(29 ) 

(30) 

(31 ) 

(32) 

(33) 

(34 ) 

(35) 

(3G) 
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(37) 

(38) 

If we substitute 17(t) from (33) into (24), multiply by Q(r,.r) and Fof3(r,x). 
and then integrate over phase space. we obtain the time-evolution equations: 

o· 

Po:] 

EQ 

o 

(;;,T/m)'Vp - EQ('VT/T) .(Cattaneo) (39) 
o _ 

-(1/Tp)P o 3 - (4j.5)('VQ)5 - Ep('Vii)S, (?-.Iaxwell) (40) 

1 - - T --
2[(VQ) + ('VQ)] V· Qr5. (41) 

5N(;;T)2 

2Fm 
2..'Y;;T 

\' 

(42) 

(43) 

The terms invoh'ing IQ. 'I' stem from the second term on the right in (24) 
and the remaining terms from the other term in (24). The coefficients of 

o _ 

vp and (VQ)$ agree exactly with Grad theory. This answers questions 
previously raised [12. 13] about the need for these terms. 

o 
The structure of (39). (40) shows that the fiuxes of Q. p can be ex-

pressed in terms of these variables. To take these fiuxes as members of 
a hierarchy of internal variables. thus modifying the exact moment equa­
tions. is equinllent to postulating an entropy model inconsistent with the 
information-theoretic one. _ _ S 0 

If we write the identities Q = Q and p = p in the form: 

o 

Pn3 

(44) 

(45) 

then. to linear terms. we esta blish an anti-symmetric Onsager coupling be­

tween the - T 1 vT term in (39) and the ~O term in (44) and between the 
(VU)$ term in (40) and the <I>o3.p term in (4.5). Such a coupling should be 

valid to all orders since it is a necessary condition for positive definiteness 
of irreversible entropy production. 

5. Non-Linear Heat Conduction 

The anti-reciprocal coupling in (39) and 44) can be applied to estimate 
/\2 in Eq. (3) for a dilute gas. \\'e extend 53) to the non-linear regllne by 
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writing: 

Q LiPQ - EQT-1YT , (46) 

L 
') 4 

Lo + L2Q- + O(Q ), (47) 

EQ !\O + E2Q2 + 0(Q4), (48) 

~q 
- 2 - -± -I/O Q + //2 Q Q + 0 (Q Q), (49) 

° c 
If P is proportional to (v U)5, "'hen YU 7'= 0, we can reasonably take P = 0 

° -in steady heat conduction if u = 0, In 0-( t) we take P = 0 and Q as yariables 

and keep iPQ and ~a3,p' \Ve find that the presence of ~a3,p modifies //2 but 
not I/O, Then 

19 1/51{T 
2 F 2 m ' 

(50) 

/10 and /12 differ from (37) by a factor F, since here we take a small. homo­
geneous system and do not integrate oyer r, Fi'om (44) and (49), we get 
[14]: 

-!\ 0 l/O 

-E 0/12 - E2J/0 

F, 

O. 
(51 ) 

(52) 

Setting Q o in (46) and comparing the result with Fourier's law. we get: 

-1 !\O -T --
10 I/O 

(53) 

E·) !\O _T- 1 _-_ + T- 1 ----::-

10 1/(1 ( I 0 I/O 
(54) 

\Ve estimate 12 by supposing that TQ = (Iz'ul-1 1/1' \\'here r = mean free 
path and /' is nns speed. calculated from maxent. Finally, we obtaill: 

(0:) I 

For the case of A.r at 1O-2 atm. 0 °C. Q=1.209·10 6 ';/m 2 5 corresponding to 

I ~ 7.3 ' lO'1\:/m. we find 1'~2Q2 //\ul ~ 6.6 .10-4
. Large IVT! yields a 

second-order effect probably below the threshold of obserntbility. 

6. Second-Order Perturbations in Chemical Gas Kinetics 

The quasi-steady reaction rate J in a dilute gas mixture is proportional to 

a chemical force 
(56) 
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VVe have for the Helmholtz function differential. dF. when {N;} are numbers 

of molecules and ~ D the thermodynamic force associated with a binary 

diffusion flux. k: 

L if?o.:3.pdP 0.:3 + L ilidNi - if?dJ . 
0.3 

The choice of variables is inspired by GARCL-\-COLI" et a1. [15]. 
The two vector forces in (51) are. in linear approximation: 

-Z/qqQ - I/qDJ~ , 

-Z'DqQ - l/DD·JD . 

(5T) 

(.58) 

(59 ) 

These can be calculated from maxent. using (29). (30). For a four­
component mixture with _Y3 . _Y1 negligible. we get I/qD = 0 = l/Dq and 

l/DD 

2\'2 

5(hT)2 Li(-Yi /111 i) 
\-2 

m1-Y1 

o 

(60) 

(61) 

Contributions quadratic in Q. JD and p to the ~li can be calculated from the 
integrability condition and substituted into _-1 gi\'en by (56). For dissociation 
of :'\02 at 1125 E and Po =1 atm. we find the fractional change ':':::'J /J = 

(1/3)(P.cy /PO)2 produced by shear stress p.ry . \\-e estimate that a shear 
;Cl 1;Cl lOG-I .. I 1 'J'J -0-') F .) rateVI1.r/U.I!'" S Isreqellrec tOlna.;:e.:...\./. "'1 -. or an equlInoar 

mixture of D2 and HCI at 600 E at the start of the reaction 

D:2 HC) -i- DH -;- DCI (62) 

we estimatE" that. to haw ':':::'J/J ",10-2 we need IvTi = 2.;) .10.5 Elm when 
the concentratioll gradient vanishes and IVPI i = 9.0 kg/m-i when vT = O. 
Very large gradients are needed for observability. 
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