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Abstract 

Robertson has derived from the Liouville equation an exact equation for the maxent 
distribution which depends on a set of moments. The exact equations for these moments 
verify predictions of Grad for the ?vlaxwell and Cattaneo relaxation equations in a dilute 
gas. I\onlinear reciprocity is applied to estimate contributions quadratic in heat flux Q, 
to thermal conductivity and to second-order effects in Q, diffusion fI ux k, and traceless ., 
pressure P cd in the reaction rate in a dilute gas mixture. All non-linear effects are too 
small to see· readily. 
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1. Introduction 

The maximum entropy formalism of JAY:\ES [1] (maxent) maximizes an 
entropy functional to obtain a distribution 0"(:1:, t) in the space of phase co

ordinates .1: which yields the best estimate (A) = Tr(AO") at time t of a 

dynamical function .4 (.l:), subject to specification of a set of values ({.4;}) 
(1 ::; i ::; I)) representing the available measured information at t. From 0" 
we calculate 

5 = -f{. Tr (0" In 0") (1 ) 

which yields the information-theoretic model of entropy. Since 0" depends on 
only a finite number of moments, it is not a solution of the Liouville equation. 
Jaynes constructed a solution p(t) of the latter at t' > t by setting 

p(t') = exp[-ii (t' - t)]O"(t) (2) 

where L is the Liouville operator. 
To obtain a statistical derivation of the evolution equations of extended 

thermodynamics (ElT). we need to express p(t) as a functional of values of 
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the (rL) at t or over a range of times. \Ve shall proceed in the next section to 
consider two much-used ways of using (J" to construct approximate solutions 
of the Liouville equation. 

To prove that non-linear reciprocity does or does not exist and investi
gate whether terms introduced from symmetry [2,3] into the rate equations 
really belong there, we need an exact equation for iT of the type introduced 
by ROBERTSO:\ [4]. We study the latter in the third section. Specific exam
ples for a dilute gas are discussed in the fourth section. 

In the fifth section. \ve use the phenomenology to estimate the quad
ratic term in 

(3) 

for dilute-gas thermal conductivity. with Q = heat flux. The 0(Q2) will be 
found to be very small. 

The sixth section uses maxent to calculate chemical potentials {~l;} 

in a reacting gas mixture in which there is a heat flux. a diffusion flow. or 
a 

a traceless pressure. P =!= O. The reaction rate IS proportional to ~l;ii;. 

\\·here the {i
'
;} are stoichiometric coefficients. 

2. Derivation of ElT from Approximate Solutions to the 
Liouville Equation 

If we haw an approximate solution p(t} of the Liouyille equation which 
depends on a finite set of moments. we can substitute this expreSSiOn into 
the right-hand member of 

/j=-iLp 

and tai~e moments. This yields self-consistent moment equations which. 
together with the ansatz for p(t). soh'e Eg. (-lo) when the number of moments 
becomes infinite. 

-:;'he simplest such approach is the GRAD ansatz used in the clilute-
gas Boltzmann equation. The GRAD expression linearizes a function 
which maximizes the entropy functional. A similar approach lllay be made 

to the LioU\'ille equation. Let {Ai )} (1 :S i :S z;) be a set of phase functions 

which are even under momentum reversal. Then {Ai(:r)} == {if } are odd. 
Defining 

g( G. c.') .I pU a d.l' 

.1 P:3 L'a d.l' . 

.I po(.r) exp(ii t)L'a d.l' .' 

c') . (.5) 

(6) 

(7) 
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with PS the equilibrium canonical distribution, we set up the probability 

amplitude 9 for the numerical values of {--id, {.-i;}. \Ve assume equilibrium 
with a heat bath at temperature T. 

H. GRABERT [I] introduces a projection operator P into an identity 

for exp(iit). This leads to an eyolution equation for g(a,v): 

og 
at 

t 

(8) 

+! ds L ~! Dij(a, a', t - s)( -;) [g(a', s)/P3(a' 1] da' dv' . 
.. 00) at')' o I) 

I -1 " 
. Pg pgL'aA.i d:r . (9) 

qi ! PSI L'a (ii)2 AiP3 ch . (10 ) 

D· I) !d.rp3L'a'( )2Aj(1 - P)exp [ii(l 

The maxent expression for g(a. cl is [8]: 

g(a, v, t) == ! O'(.r)L'a('l') d.l' = ZcP3(a. v) exp [3F(0.. 1/)+ 

+ ~{(j);(o..rl)(o.i - Cli) + cI>;(o..II)(lli - t' i )}]. ( 12) 

where 0'(.1') maximizes the functional in (1) subject to the concli tion~: 

(.4.;(.1')) = o.i . ( ... 1.;(.r ) ) 'Ii (1 ::; ! ::; 1/) . (13) 

Zc is the canonical partition function and F( 0.. 'I) the Helmholtz function. 

0'(.1') is consistent with the Gibbs equation provided.3 (hT)-l and (j)i. cI>i 
are thermodynamic forces. 

If we substitute (1:2) into (8) and calculate first moments. these rep .. 
resent a self .. consistent approximation in the sense of Gracl. If we know the 
moments at time i. 9 in (1:2) is the distribution at t. Substinnillg this into 
the right hcmd member of we can calculate g(t) + (og/ot)6t which is a 
sufficient approximation if :'::"'i is short. a fraction of the relaxation time of 
fast variables. 

The moment equations resulting from use of gin (8) have the form 

(\i 

'h 

""" (2)::. 
'Ii = LLij 'l'j. 

j 

""" L ( :3) ,", . ..L """ L ( -±) ,f.. . L 0~) I L 0~) 

j j 

(l-.±) 

(15) 
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1>i and cI>j are nonlinear in deviations of the variables from equilibrium. and 
(k) - (k) 

the Lij are nonlinear 1>- and 1>-expansions to all orders. The Lij are not 
unique and satisfy reciprocity to arbitrary order in the expansions: 

(2) 
-L·· Jl 

L
(4) 
Jl . 

(16) 

(1 I) 

Eqs. (16), (17) purport to justify nonlinear reciprocity under very general as
sumptions. A better approximate solution of the Liouville equation has been 
given by ZUBAREV [9]. One assumes a set {9i} of state variables which are 

classical or quantum mechanical operator averages (f;). The corresp onding 
maxent distribution is [10. ll] 

0"( t, 0) = exp [-In Z (t) J(t)H + "L ~La(t)j\-a - "L !31>;(t)fij 
a I 

( IS) 

The zero argument in 0" indicates that the Na and f; operators are time-in

dependent. Number operators 'Ya provide for particle non-conservation. 
The Zubarev approximate solution has the form: 

[ c_j~_' PE (t) = exp c ~~ 11nO(t',t't l dt'] (19) 

where the operators in (IS) are here taken to be Heisenberg operators e,'al
uated at t l 

- t. \-Vith PE' one calculates phenomenological equations in the 
form 

0; (20) 

3. The Exact Robertson Approach to Derivation of ElT 

\Ve generalize the foregoing results to a non-uniform system where the ther
modynamic variables dep end on position 1", 

(1 < I < v) . (21 

The maxent distribution IS 

O"(t) = Z-l exp [- J dr t An(r. t)Fn(r .. r) - JHj. (22) 
71=1 
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where the {An} are Lagrange multipliers determined to satisfy Eq. (21) 

identically. The {in} may be quantum mechanical. We assume equilibrium 
with a heat bath at T = 1/ K.3. although \ve can relax this assumption later. 

Jaynesian statistical inference [1] predicts that CT(t) is the phase-space 
distribution provided we can derive exact equations for the {oi(r. t)}. The 
moment equations will be exact if CT plus these moment equations provide 
an exact solution for RobertsoIl's equation. The latter is derived from the 

Liouville equation by introducing a non-Hermitian operator PR with the 

property that er = PRfj . where er soh'es Eg. (4). \Ye define 

FR(th(:r) == t f dr[OCT(t)/OOn(r.t)] Tr [tn(i:·,.rlt] (23) 
71=1 ' 

Here 00/00 71 is a functional derivati\·e. 

Operating with PR on the Liouville equation. ROBERTSO:\ cleriws [4]: 

er -iPrdt (t)CT(t) 
t 

./ elf' F R ( t) i (t )i (t , t') i 1 

o 

where i(t. t') 1" Cl solution of 

aT 
'""' '1 p' 't,JL~",t",I. 1,<'/ Il- - RI IJ 

fi) 1 ' 
\--=1 

(25) 

:\lultiplying (24) by Fi(i".,r) and taking tile nace. we obtain equations for 

the 0i. COlltributions from the first term on the right in (24) yield ami

reciprocal relations to all orders in the {/\,,}, ::\oll-Henniticity of PR has 
frustrated the search for non-linear reciprocity from ,·he second term in (24). 
ROBEIlTSO:\ derives it only for the linear case. Hcm·ever. V'-C' call learn 
much from the first term. 

Let (r .. r) be Cl classical phase fUllction. e\'f'n under mOmeI11:um re-

H.'rsal. "'e have. on multiplying (24) by and integrating O\'er phase space: 

CJ.li(r. t) \',7. ,Z',)'/\ = 1(1,7 '\' L(2) (,7 ,7) \ \',7 ") , L in" /n .(. 

, nEO 

(26) 

where the sum i~ O\'er forces /\, / j odd uncleI' time re\'ersal. If Fj IS odd 
under momentum re\'ersal. 

,i f /-1 '\' L(3)- -I I (-I ' 'l'j = CT' L jll (r.T' )/lnJ .t) 
• n'::;:c 

+ ... (2, ) 
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where the sum is over even forces. and the ellipsis refers to Onsager symmet

ric terms, mainly from the i term in (24). The detailed derivation shuws 
that 

L (2) (-; -;<) = _L(3) (-;< 7) 
IJ 7.7 nl 7 .7 (28) 

to all orders in the Pn}. 

4. Examples: Cattaneo-Vernotte and Maxwell Stress Relaxation 
Equations 

\Ve now derive from (24) the linear evolution equations for heat flux Q(T'", t) 
o 

and traceless pressure P a 3(r. t) in a dilute gas. The operators are: 

Q(r, x) 

H(r, .r) 

Y 

L [UlT (2771) 
;=] 

.Y 

7Jl -] L Pi a Pi 3 is( 17; - '-'") . 

;=] 

jJ; il(r;). 
.Y 

L(p;L /2ln )S(r; n. 
;=1 

The maxent distribution (221 for this choice of variables lS 

:-<PQir.t). Q(;'""c) + ~ <Po;!.Pii,".tlPOJii:-"C)}] 
Cl: ,j 

In linear approximation. which suffices here. the COllditioIl~ 

yield 

110 Q + ... 

POP o .3+··· 

where 

(29 ) 

(30) 

(31 ) 

(32) 

(33) 

(34 ) 

(35) 

(3G) 
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(37) 

(38) 

If we substitute 17(t) from (33) into (24), multiply by Q(r,.r) and Fof3(r,x). 
and then integrate over phase space. we obtain the time-evolution equations: 

o· 

Po:] 

EQ 

o 

(;;,T/m)'Vp - EQ('VT/T) .(Cattaneo) (39) 
o _ 

-(1/Tp)P o 3 - (4j.5)('VQ)5 - Ep('Vii)S, (?-.Iaxwell) (40) 

1 - - T --
2[(VQ) + ('VQ)] V· Qr5. (41) 

5N(;;T)2 

2Fm 
2..'Y;;T 

\' 

(42) 

(43) 

The terms invoh'ing IQ. 'I' stem from the second term on the right in (24) 
and the remaining terms from the other term in (24). The coefficients of 

o _ 

vp and (VQ)$ agree exactly with Grad theory. This answers questions 
previously raised [12. 13] about the need for these terms. 

o 
The structure of (39). (40) shows that the fiuxes of Q. p can be ex-

pressed in terms of these variables. To take these fiuxes as members of 
a hierarchy of internal variables. thus modifying the exact moment equa
tions. is equinllent to postulating an entropy model inconsistent with the 
information-theoretic one. _ _ S 0 

If we write the identities Q = Q and p = p in the form: 

o 

Pn3 

(44) 

(45) 

then. to linear terms. we esta blish an anti-symmetric Onsager coupling be

tween the - T 1 vT term in (39) and the ~O term in (44) and between the 
(VU)$ term in (40) and the <I>o3.p term in (4.5). Such a coupling should be 

valid to all orders since it is a necessary condition for positive definiteness 
of irreversible entropy production. 

5. Non-Linear Heat Conduction 

The anti-reciprocal coupling in (39) and 44) can be applied to estimate 
/\2 in Eq. (3) for a dilute gas. \\'e extend 53) to the non-linear regllne by 
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writing: 

Q LiPQ - EQT-1YT , (46) 

L 
') 4 

Lo + L2Q- + O(Q ), (47) 

EQ !\O + E2Q2 + 0(Q4), (48) 

~q 
- 2 - -± -I/O Q + //2 Q Q + 0 (Q Q), (49) 

° c 
If P is proportional to (v U)5, "'hen YU 7'= 0, we can reasonably take P = 0 

° -in steady heat conduction if u = 0, In 0-( t) we take P = 0 and Q as yariables 

and keep iPQ and ~a3,p' \Ve find that the presence of ~a3,p modifies //2 but 
not I/O, Then 

19 1/51{T 
2 F 2 m ' 

(50) 

/10 and /12 differ from (37) by a factor F, since here we take a small. homo
geneous system and do not integrate oyer r, Fi'om (44) and (49), we get 
[14]: 

-!\ 0 l/O 

-E 0/12 - E2J/0 

F, 

O. 
(51 ) 

(52) 

Setting Q o in (46) and comparing the result with Fourier's law. we get: 

-1 !\O -T --
10 I/O 

(53) 

E·) !\O _T- 1 _-_ + T- 1 ----::-

10 1/(1 ( I 0 I/O 
(54) 

\Ve estimate 12 by supposing that TQ = (Iz'ul-1 1/1' \\'here r = mean free 
path and /' is nns speed. calculated from maxent. Finally, we obtaill: 

(0:) I 

For the case of A.r at 1O-2 atm. 0 °C. Q=1.209·10 6 ';/m 2 5 corresponding to 

I ~ 7.3 ' lO'1\:/m. we find 1'~2Q2 //\ul ~ 6.6 .10-4
. Large IVT! yields a 

second-order effect probably below the threshold of obserntbility. 

6. Second-Order Perturbations in Chemical Gas Kinetics 

The quasi-steady reaction rate J in a dilute gas mixture is proportional to 

a chemical force 
(56) 
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VVe have for the Helmholtz function differential. dF. when {N;} are numbers 

of molecules and ~ D the thermodynamic force associated with a binary 

diffusion flux. k: 

L if?o.:3.pdP 0.:3 + L ilidNi - if?dJ . 
0.3 

The choice of variables is inspired by GARCL-\-COLI" et a1. [15]. 
The two vector forces in (51) are. in linear approximation: 

-Z/qqQ - I/qDJ~ , 

-Z'DqQ - l/DD·JD . 

(5T) 

(.58) 

(59 ) 

These can be calculated from maxent. using (29). (30). For a four
component mixture with _Y3 . _Y1 negligible. we get I/qD = 0 = l/Dq and 

l/DD 

2\'2 

5(hT)2 Li(-Yi /111 i) 
\-2 

m1-Y1 

o 

(60) 

(61) 

Contributions quadratic in Q. JD and p to the ~li can be calculated from the 
integrability condition and substituted into _-1 gi\'en by (56). For dissociation 
of :'\02 at 1125 E and Po =1 atm. we find the fractional change ':':::'J /J = 

(1/3)(P.cy /PO)2 produced by shear stress p.ry . \\-e estimate that a shear 
;Cl 1;Cl lOG-I .. I 1 'J'J -0-') F .) rateVI1.r/U.I!'" S Isreqellrec tOlna.;:e.:...\./. "'1 -. or an equlInoar 

mixture of D2 and HCI at 600 E at the start of the reaction 

D:2 HC) -i- DH -;- DCI (62) 

we estimatE" that. to haw ':':::'J/J ",10-2 we need IvTi = 2.;) .10.5 Elm when 
the concentratioll gradient vanishes and IVPI i = 9.0 kg/m-i when vT = O. 
Very large gradients are needed for observability. 
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