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Abstract

A general non-linear and non-local heat transport equation is proposed in view to study
heat conduction at low temperature (< 25 K) in non-metallic crystals. It is shown that
the proposed relation generalizes the classical laws of Guyer and Krumhansl, Cattaneo
and Fourler. The problem is treated within the framework of Extended Irreversible Ther-
modynamics. Special emphasis is placed on the consistency of the results with the second
law of thermodynamics.
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1. Introduction

Our purpose s to provide a rather general review of constitutive equations
used to describe heat transport in rigid bodies. Of particular interest is the
problem of heat conduction at low temperature, say below 25 K in dielectric
crystals.

The best model for heat conduction in undeformable solids is undoubt-
edly Fourier's law which relates linearly the temperature gradient {the cause)
to the heat flux (the effect). Despite its success, Fourier’s law possesses some
deficiencies, pointed out by several people and in particular by L. ONSAGER
himself in his celebrated paper of 1931, where he noted that Fourier’s model
is in contradiction with the principle of microscopic reversibility. Quoting
ONSAGER [1], he writes that this contradiction ... is removed when we recog-
nize that [the Fourter law] is only an approzimate description of the process
of conduction. neglecting the time nceded for acceleration of the heat flow".
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In other terms, Fourler’s law has the unphysical properties that it lacks in-
ertial effects: if a sudden temperature perturbation is applied at one point
in the solid, it will be felt instantaneously and everywhere at distant points.
To eliminate this anomaly, CATTANEO [2] proposed a damped version of
Fourier's law by introducing a heat-flux relaxation term. After insertion of
the Cattaneo relation into the energy balance for a rigid solid., one obtains
a hyperbolic differential equation for the temperature. In one dimension,
this equation has the form of the well-known telegrapher equation allowing
for propagation of waves at finite velocity. However, even with Cattaneo’s
equation, not all the problems are alleviated. In particular, it does not
reproduce experiments on ultrasonic wave propagation in dilute gases and
cannot be used to describe heat pulse propagation in non-metallic crystals,
like Bi or Na F at very low temperature. This has motivated the search
for a further extension of Fourier’s law. GUYER and KRUMHANSL [3] solved
the linearized Boltzmann equation for a phonon field in dielectric crystals
at low temperature and derived an extension of Cattaneo’s equation involv-
ing nonlocal contributions. However, even Guyer and Krumhansl's model

‘presents some limitation: it is a linearized equation, further, when coupled
‘to the classical energy equation. it predicts infinite speed of propagation at
very large frequencies, finally it is unable to describe the non-linear features
characterizing second sound propagation at very low temperature.

These observations have motivated the formulation of a non-linear ex-
tension of Guyer-Krumhansl's result. In the present work, we propose a
derivation of such a generalized equation within the framework of Extended
Irreversible Thermodynamics (EIT). Particular attention will be paid on the
consequences placed by the second law.

The paper will run as follows. After a historical record of the Fourier,
Cattaneo and Guyer and Krumhansl equations. with emphas
modynamic theories underlying these relations

is on the ther-

section 2, we propose a

non-linear and non-local extension of Cattaneo’s model (section 3). Restric-

tions placed by the second law of thermodynamics are analyzed

21

The results are rewritten in terms of the tem

perature gradient
and concluding remarks are made in section 6.

The general hypotheses underlving the present work are isotropy of
the material, absence of deformation and no global convection.

2. Historical Record: from Fourier’s Model to
Guyer—Krumhansl’s Model

2.1. Fourier’s Model

Fourier’s law of heat conduction is one of the most popular laws in con-
tinuum physics, as it provides an excellent agreement between theory and



HEAT CONDUCTION AT LOW TEMPERATURE 187

experiment for more than 90% of the problems. It relates the heat flux
vector q to the temperature gradient VT through

q==AVT | (1

wherein A is the heat conductivity, depending generally on the temperature.
By combining (1) with the energy balance

T = -V - q, (2)

where ¢ 1s the heat capacity (measured per unit volume), one,ohtains a
parabolic differential equation for the temperature given by

0T =V - (\VT) . (3)

Such expression suffers from some pathological deficiencies: the most im-
portant is that it implies that heat signals propagate with an infinite speed.
Moreover, Fourier’s model is not adequate for describing heat transport at
very high frequencies and short wave lengths.

In view of future comparison, it is interesting to show how Fourier's
equation can be derived from nonequilibrium thermodynamics. Fourier's
law is well described within the framework of Classical Irreversible Ther-
modynamics [e.g., [4]]. The main pillar of this formalism is to assume that

even outside equilibrium, the entropy s (per unit volume) depends on the

same variables as in equilibrium ({local equilibrium hypothesis). For heat
conduction in rigid bodies, s depends only on the internal energy u per unit
volume:

s = s{u) (4)
or cast in differential form
J—— . o -
ds = T du (Gibbs equation} (5)
. -1 , Sy ; ;
with T7° = 0s/du, the so-called local equilibrium temperature. The entropy

obeys a balance equation of the form
pi ==V .J" 15 (c® > 0) . {6)

wherein the entropy flux J¥ and the positive entropy production ¢° are gi

.,
Z
i
o
=

respectively by

L1
Jc:fq., (7)
o =q-VI t>0. (%)

Assuming a linear relationship between the flux q and the driving force
VT L. one obtains

q=LvT !, (9)

. . . . R . - . P Wl
which is identical to Fourier’s law at the condition to set L = AT ~.
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2.2. Cattaneo’s Model

To circumvent the problems associated with Fourier’s law, CATTANEO [2]
proposes a time-dependent relaxational model of the form

gt q=—AVT , (10)

wherein 7 is the relaxation time which, in heat conduction, is extremely
small (- ~ 1071 s) at room temperature; it is the smallness of r which
accounts for the success of Fourier’s model. Substituting (10) in the energy
balance (1) vields, for constant values of 7 and ),

rOPT + 8, T = kypV°T | (11)
wherein w7 (= A/¢) denotes the heat diffusivity. Being of the hyperbolic
type, (11) possesses three important properties that the classical parabolic

equation, obtained by setting 7 = 0. does not. First, it predicts a finite
speed of propagation at infinite frequency given by
m V= ,/—. (12)
Jm V=
Secondly, unlike the parabolic equation which is irreversible in time, (11)
is reversible within periods of time of the order of the thermal relaxation
time. Thirdly, expression (11) is of second order in the time derivative, and
therefore not only the initial value of the temperature but also its rate of
change must be given at ¢t = 0, unlike the parabolic equation which permits
only the initial value to be specified.

Nevertheless, Cattaneo’s equation presents also some shortcomings.
Although it leads to a finite value for the wave velocity, the latter differs
from the value observed In experiments on ultrasonic propagation in dilute
gases. As shown in Fig. I, Cattaneo’s approach predicts that V/cs where ¢;
s Laplace sound velocity. tends asvmptotically to 1.6 instead of the value 2.1
found experimentally. In addition, Cattanec’s model is unable to provide a
complete interpretation of heat-pulse experiments at very low temperature
in very pure crystals [3].

It 1s well known that Cattaneo’s relation is backwarded by Extended Ir-
reversible Thermodynamics [e.g. [6]]. In this formalism. the entropy s(u,q)
is assumed to depend on the heat flux g besides the energy u: the corre-
sponding generalized Gibbs equation is now written as [6]

ds = T du — \lzq-qu (13)

b

It is also easily checked that the entropy flux keeps the classical form

J= —q. (14)
Tq
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Fig. 1. Ultrasonic wave propagation in dilute gases: comparison between Fourier’s
and Cattaneo’s models with experiments

while the entropy production reads as

1
CAT?

s

q-q. (13)

From the positiveness of ¢, it is inferred that A > 0 while from the convexity
property of s, it is shown that = > 0.

2.3. Guyer-Krumhansl's Model

Guyver—Krumhansl's equation is a non-local generalization of Cattaneo’s. It
is well adapted to the description of phonon gases where heat transport is not
only governed by diffusion (like in Fourier’s description) and second sound
(like in Cattaneo’s model) but in addition by ballistic transport. Guyer-
Krumhansl's equation reads as [3]

2

rOiq + q + AVIT = /2 <v3q+2vv-q) , (16}
the nonlocal corrective terms are collected in the r.h.s. of (16), {1 is a new
phenomenological coefficient with the dimension of a length.

There exist several ways to recover Guyer-Krumhansl's equation from
a thermodynamic description. A possible approach is to assume that s
depends on an extra ‘internal’ variable Q, besides v and g so that

s =s{u.q,Q) . (17)
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By comparison with the kinetic theory of gases, it is seen that Q. a tensor
of rank two, represents the flux of the heat flux vector. The corresponding
Gibbs equation is [6]

ds = T ldu —

o
q-q-naQ-dQ (18)
)\T)
wherein 71 and 7 are the relaxation times of q and Q respectively, and « is
a phenomenological coefficient. The entropy flux is no longer given by the
classical expression q/T but contains an extra contribution in Q - q

s 1
J° = —g+~Q -q. (19)
7 Q-q (19)
the entropy production takes the form
k) 1 0
o = re-at FaQ Q20 (20)

with A > 0. @ > 0 as a consequence of the positiveness of ¢*

As mentioned 1n section 1, Guyer and Krumhansl's equation provides
only partial answers to the questions raised by energy transport in phonon
gases. This has motivated the present work wherein an extension of Guyer-
Krumhansl's equation in the non-linear regime is proposed.

3. A Non-linear and Non-local Heat Transport Equation

In a first step, a transport equation of heat generalizing Guyer-Krumhansl's
equation will be formulated. Afterwards. some consequences resulting from
an analysis of the results within the frame of Extended Irreversible Ther-
modynamics (EIT) are established and analvzed.

The basic variables are selected as u and g in agreement with EIT.
Their evolution 1 the course of time and space is governed by ge neral bal-

=

ance equations taking the form
Ou ==V -gq+r, (21)
dg=~-V- -Q+

One recognizes the usual balance law of energy (21 with a source term r;
expressiom {22) is written in strict analogy with (21) wherein Q designates

the flux of the heat flux and o9 the corresponding source term. At this stage
of the analysis, neither Q nor ¢¥ are known which means that they must be
given by constitutive equations. Since one has in mind to develop a weakly
non-local and non-linear formalism, it is reasonable to select as constitutive
equations

Q=Al-Li(Vq) - Ls(V-q)l - L3(Vaq)' + Bqq . (23]
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0 = —aq —bVu +F - (Vq)+ (Vq)-H+ GV -q, (24)

where I (= d;;) stands for the identity tensor and (Vq)u for Oq;/0x;, super-
script T means transposition. The scalar coefficients a, b, A, L; (i = 1, 2,
3) depend generally on v and q - q and the vectors F, H G are assumed to
be linear functions of the vectors Vu and q:

F = oi(ujg + ag(u)Vu ,
H = Bl(u)q + JoVu
G = "i(w)g+ 2wV . (25)
For further purposes, one introduces also the following notation
1 04 b 7 OL; (26
a=-, +bh=x, = . 2
T u " ! Ju )

After substitution of (23) and (24) in (22), one obtains (when third order
terms in qzq. a-Vaq-Vq, q(Vu)", ... are omitted) the following evolution
equation for q:

1
dq= - sVu-—-q+a1q-(Vq)+51(Vq)-q

+ MiV-ogjg+aVu-(Vq)+ 532(Vg)-Vu + 1 (V.-q)Vu
+ LIVPq+LaV(V.q)+ L3V - (Vq)
+ Ll(VqJ~Vu+LQKV~qJsz~§Lngzl<(Vq)A (

[tV
-1

wherein J; and ~| stand for 3) + B, 4| + B, respectively. In view of a better
apprehension of the above result, let us consider some particular cases.

~ Assume that the coefficients L; are constant and that a;. J;, v (1 =
1,2.3) vanish. Expression (27) then becomes a Guyer-Krumhansl-

type equation

1
qu.——hVu——q-——LITq LryVV -q+ L3V - (Vqg) . (28)
- If. in addition. it is supposed that L; = Ly = Ly = 0, one finds
rodiq= ~7kV -u — q . (29)
which 1s reminiscent of Cattaneo’s equation.
- Finally by setting 7 = 0 {(but r & finite}. one recovers a Fourier-like
equation

q=—7:Vu . (30)
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4. Restrictions Placed by the Second Law of Thermodynamics

In EIT, it is assumed that there exists a non-equilibrium entropy s{(u.q),
which is a convex function of the basic variables and whose rate of production
o° is non-negative. In other terms, s obeys an evolution equation of the form

aiSZ—V'JS+US R (31)

with
o® > 0. (32)

Solving (31) with respect to o°, one has
0s =0s+V-J° >0, (33)

from which it follows that, the determination of ¢° implies the knowledge
of the constitutive equation expressing s and J° in terms of the variables u,
q and their gradients, these quantities should be a priori present as one has
in mind a non-local formalism; therefore

s =s{u,q.Vu.Vqj , (34)
J° = J%(u.q,.Vu.Vq} . (35)
As usually, let us define the non-equilibrium temperature 8 through [6]

g1 = O (36)

 ou

while for simplicity we shall assume that Js/0q is a linear function of q:
Js . o
o4 = flujg (37)

with f(u) an undetermined function of w. To explore the consequences
resulting from Inequality (33), we follow the procedure widely applied in
Rational [7] and Extended Thermodynamics [6]. More details about the
specific problem treated here can be found in [8], therefore, it is sufficient

here to recall the main results.

£

~ s is found to be independent of the gradients Vu and Vg so that, by
virtue of (36) and (37), the relevant Gibbs equation reads as

ds=6""du+ fq-dq. (38)

~ The entropy flux contains non-local and non-linear contribution in
q - Vq and writes as
1

JS:f]:q~f~1fq'(Vq)~L2qV~q—L3(Vq)~q- (39)
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- The entropy production is quadratic in q and its gradients

[

f T
o° = —=q-q-Lif(Va): (V) =L2(V-q)* = L3(Va) : (Va) > 0,
(40)
where a colon stands for the double scalar product A : B = 4;;B;;;
as a consequence of ¢° > 0. one has

Leo. Lf<o. (Li+lyf<0.  (Li-Iyf<o

- Since s 1s assumed to be a convex function of the variables u an(jl(;
[6]. it follows directly from 8%s/8q - dq < 0 that
Ff<0 (42)
and, by virtue of (41),
7 >0, Li>0. Ly >0, Ly > Ly >0. (43)

~ The coefficients Ly, o9, J2, v9. f are not independent but linked by

f a4 ! ! < B /
Lif =871, Lof =17f. Lyf = asf . 2vi = f,

(r-9) »

~ An expression of the non-equilibrium temperature is easily derived:
from the equality of the mixed derivatives of s (see (38)), it is found

that
o~ _
=79q. (40)
Jq ’ o
and, after integration,
-1 2 oo et e
f wq”) = Sf g+ T {uj . (46}

wherein T(u) is the temperature corresponding to zero heat flux, i.e.,
the local equilibrium temperature.

5. Results in Terms of the Temperature Gradient

For practical use, it is convenient to reformulate the transport equation (27)
in terms of the temperature gradient V@ rather than in terms of Vu. Since
8, like s depends only on u and g, one has

96~ 96!

Vol =T+ —  Vq. 47)
du - 0q 4 (47)
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Solving with respect to Vu and making use of the results of the previous
section, it is found that

A f , R
KVu = -Vl + 7q -Vaq ., (48)

wherein A is defined by
A\ = _W : (49)

As 7 > 0 and f < 0, it is clear that A is a positive quantity which will
be identified as the heat conductivity. In view of (48) and the results of
section 4, the heat transport equation (27) will be written as

1 /\

8q = -—q--V8+LViq+ LyVV T

+ L3V - (Vq)
+ a1(q-Vgq-Vag-q)+1(2q9-Vq+qgV - qj

+ (L +291L3) Vu -Vaq + (L + 271 Ly) VuV - g
+ (L} +24L1)Vq-Vu . (50)

This expression contains seven unknown parameters, namely A > 0 (heat
conductivity), 7 > 0 (relaxation time}, Ly, Ly, L3 (all three quantities are
positive and describe non-locality), a; and +; (whose sign is not determined
and which are related to non-linearities).

-~

Of particular interest is the case corresponding to f, Ly, Ly and Lj
constant. The evolution equation (50) then simplifies as

A 1 . .
drq = ~—jVT—jq+11V2q+LgVV-q+L:3V'(VQJ[+&1 (q-Vg—-Vg-q).

(51}

If, in addition, ¢y = 0 and Ly = Ly = L3, one obtains
A 1 9 .
dq=-=VT - —q+ L (Viq+2VV - q) . (52)

This is nothing but Guyver-Krumhansl's equation at the condition to identify
7 and Lq as

T =TR, Ly = —7nL

R
—td

(53)

Tp and 7N are the relaxation times associated to the resistive and the nor-
mal phonon-phonon collisions, respectively. At this point, two remarks are
in form. First, it is remarkable to observe that our purely macroscopic ap-
proach is able to reproduce the coefficient 2 of the term VV - q in the rh.s.
of (52). Secondly, it is easily checked that the entropy flux corresponding to
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Guyer-Krumhansl's equation is no longer given by the classical result q/T
but rather by

.1 ILyr . _ )
V' =79+ 7z la-(Va) "+ qV-q] . (54)

exhibiting the presence of non-linear terms in q - Vq and q(V - q).

6. Concluding Remarks

A rather general transport equation (50) has been proposed to describe non-
steady, non-local and non-linear effects of heat conduction in rigid solids.
Eqg. {50} contains seven undetermined parameters. Compatibility with the
second law of thermodynamics indicates that five of these seven quantities
are positive. More information about these parameters should be derived
either from experimental observations or from theoretical models based on
the kinetic theory statistical mechanics.

Transport equation (50) generalizes Fourler’s, Cattaneo’s and Guyer—
Krumhansl’s laws

To provide an overview of the domain of application of these various
laws, we have drawn a three-dimensional reference system (see Fig. £2): along
the y—"xxis we have represented the wave number &, along the z-axis is given
the frequency «w, while non-linearities are quantified by the z-axis. Since
Fourier’s law is valid for small & and w values, its range of application is
restricted to a small cube centered at the origin of the reference system.
oune covers the domain of applicability
of Cattaneo’s equation while the range of the linearized Guyer-Krumhansl

Now by moving along the z-ax

equation is represented by the horizontal @ — y plane. Finally, the volume
of the large box describes the range of expression {50), which incorporates
non-linear effects.

Another important result is that the previous analvsis displays the
strong correlation existing between dynamics, le., the transport equation,
and thermodynamics {through the entropy fluxj. Clearly, one cannot se-
lect the transport equation and the entropy flux independently of each
other. For instance, while the classical expression J° = q/7 is compat-
ible with the Fourier and Cattaneo laws, it is NOT compatible with the
Guyer——Krumhansl equation.

Finally, it should be mentioned that an explicit expression of the non-
equilibrium rempelarmo in terms of the heat flux has been derived. The
result is

6~ (zz,qg) =T u) + f'¢* . (55)

from which it follows clearly that 8 can be identified as the local equlhbrlum
temperature T either under the conditions that corrective terms in q are
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NON- LINEARITY

GUYER-FR?

ﬁ/c*_-\:::a:cx)

Fig. 2. Domains of application of Fourier’s, Cattaneo’s, Guyer-Krumhansl's and
the generalized heat transport equations

omitted (linear approximation) or in the case of a constant value of the
coetfficient f.
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