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Abstract 

A general non-linear and non-local heat transport equation is proposed in view to study 
heat conduction at 10\,,' temperature « 2.') K) in non-metallic crystals. It is shown that 
the proposed relation generalizes the classical laws of Guyer and Krumhansl. Cattaneo 
and Fourier. The problem is treated within the framework of Extended Irre\'ersible Ther­
modynamics. Special emphasis is placed on the consistency of the results with the second 
law of thermodynamics, 
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1. Introduction 

Our purpose is to provide a rather general revie\\' of constitutive equations 
used to describe heat transport in rigid bodies, Of particular interest is the 
problem of heat conduction at low temperature. say below 25 E in dielectric 
crystals. 

The best model for heat conduction in uncleformable solids is undoubt­
edly Fourier's law which rela tes linearly the tem pera ture gradient (the cause) 
to the hea t flux (the effect). Despite its success. Fourier's law possesses some 
deficiencies, pointed out by several people and in particular by L. O:\SAGER 
himself in his celebrated paper of 1931. \vhere he noted that Fourier's model 
is in contradiction with the principle of microscopic reversibility, Quoting 
O:\SAGEIl [1], he writes that this contradiction", 'is removed when we recog­
nize that {the Fonrier law} is only an approximate desC7'iptiun uf the pruce$S 
uf cunduction, neglecting the time needed fur acceleration uf the heat fluw', 
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In other terms. Fourier's law has the unphysical properties that it lacks in­
ertial effects: if a sudden temperature perturbation is applied at one point 
in the solid. it will be felt instantaneously and everywhere at distant points. 
To eliminate this anomaly. CATTA:\EO [2] proposed a clamped version of 
Fourier's law by introducing a heat-flux relaxation term. After insertion of 
the Cattaneo relation into the energy balance for a rigid solid, one obtains 
a hyperbolic differential equation for the temperature. In one dimension. 
this equation has the form of the well-known telegrapher equation allowing 
for propagation of waves at finite velocity. However, even \"ith Cattaneo's 
equation, not all the problems are alle\-iated. In panicular. it cloes not 
reproduce experiments on ultrasonic wave propagation in dilute gases and 
cannot be used to describe heat pulse propagation in non-metallic crystals, 
like Bi or ::\a F at very low temperature. This has motivated the search 
for a further extension of Fourier's law. GCYER and KRl"\!HA:\SL [3] solved 
the linearized Boltzmann equation for a phonon field in dielectric crystals 
at low temperature and derived an extension of Cattaneo's equation invoh-­
ing nonlocal contributions. However. even Guyer and Erumhansl"s model 
presents some limitation: it is a linearized equation. further. \\-hen coupled 
to the classical energy equation. it predicts infinite speed of propagation at 
very large frequencies. finally it is unahle to describe the non-linear features 
characterizing second sound propagation at very low temperature. 

These ohservations have motivated the formulation of a non-linear ex­
tension of Guyer-Erumhansl's result. In the present work. we propose a 
derivation of such a generalized eq ua tion \vi thin the framework of Extended 
Irreversible Thermodynamics ). Particular attention will be paid on the 
conseq uences placed by the second lav;. 

The paper will run as follows .. -\fter a historical n~c()rd of the FourieL 
Cattaneo and Guyer and Erumhallsl ('qllClti()Il~. v;itb emphasis 011 the ther­
modynamic theories underlying thcse relations (section 2). \\"f' proposc et 

non-linear and non-local extensiOIl of C'artanco's model (section 31. Restric­
tions placed by the second law of thermoclYIlClmics are analyzed in section 4. 
The results are rewritten ill terms of the tcupel"Clture gradient in section :j 

and concluding remarks are made in section G. 
The general hypotheses underlying the present work are isotropy of 

the material. absence of deformatioll and no glohal convection. 

2. Historical Record: from Fourier's Model to 
Guyer-Krumhansl's l\10del 

2.1. F01Lrier's lvIudcl 

Fourier's law of heat conduction is one of the most popular laws in con­
tinuum physics. as it provides an excellent agreement between theory and 
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experiment for more than 90S{ of the problems. It relates the heat flux 
vector q to the temperature gradient vT through 

wherein /\ is the heat conductivity. depending generally on the temperature. 
By combining (1) \\·ith the energy balance 

COtT = -v . q. (2) 

\\·here C is the heat capacity (measured per unit volume). one.ob.tains a 
parabolic differential equation for the temperature gIven by 

(3) 

Such expression suffers from some pathological deficiencies: the most im­
portant is that it implies that heat signals propagate with an infinite speed. 
:\loreover. Fourier's model is not adequate for describing heat transport at 
very high frequencies and short wave lengths. 

In \·iew of future comparison. it is interesting to show how Fourier's 
eq ua tion can be derived from noneq uili brium thermodynamics. Fourier' s 
lav; is \\·ell described within the framework of Classical Irreversible Ther­
modynamics [e.g .. H]]. The main pillar of this formalism is to assume that 
even outside equilibrium. the entropy s (per unit volume) depends on the 
same variables as in equilibrium (local equilibrium hypothesis). For heat 
conduction in rigid bodies. s depends only on the internal energy u per unit 
volume: 

.) - s( u) . (4) 

or cast III differential form 

(1., = I-I clu (Gibbs equation i (5 ) 

with I-I = o.'3/ou. the so-called local equilibrium temperature. The entropy 
obeys a balance equation of the form 

(6) 

wherein the entropy flux J' and the positive entropy production 0'" are Q)ven 
respectiwly by 

1 
-q 
I 

er' = q . VI- l 2: 0 

(I) 

(8) 

Assuming a linear relationship between the nux q and the driving force 
VI-I. o~e obtains 

q = LvI-I. (9 ) 

which IS identical to FOllrier·s law at the condition to ~et L 
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2.2. Cattaneo's Model 

To circumvent the problems associated with Fourier's la-w. CATT.\\"EO [2] 

proposes a time-dependent relaxational model of the form 

( 10) 

wherein , is the relaxation time which. in heat conduction. is extremely 
small (, ;::::; 10-13 s) at room temperature: it is the smallness of , which 
accounts for the success of Fourier's model. Substituting (10) in the energy 
balance (1) yields, for constant yalues of , and /\, 

(ll ) 

wherein Ii:T (= ,~/c) denotes the heat diffusiyity. Being of the hyperbolic 
type, (ll) possesses three important properties that the classical parabolic 
equation. obtained by setting, O. cloes not. First. it predicts a finite 
speed of propagation at infinite frequency given by 

lim 
-.:-+:x: 

(12) 

Secondly. unlike the parabolic equation which 1S irreversible in time. (ll) 
is reversible within periods of time of the order of the thermal relaxation 
time. Thirdly. expression (11) is of second order in the time derivative, and 
therefore not only the initial ndue of the temperature but also its rate of 
change must be given at t = O. unlike the parabolic equation which permits 
onl,,:: the initial -mlue to be specified. 

:\" eyertheless. Cart aneo's equa lion presents also some shortcomings. 
Although it leads to a finite yalue for the wave \·elociry. the latter cliffer~ 

from the yalue obseryed in experiments on ultrasonic propagation in dilute 
gases. ,~s shown in Fig. 1. Cattaneo's approach predict~ that \'/c; where Cs 

is Laplace sound yelocity. tends asymptotically to 1.6 instead of the yalue 2.1 
founel experimentally. In aclditioll. Cattaneo's model is unable to prc)\'icle Cl 

complete interpretation of heat-pulse experiments at \'er:; lov; temperature 
in ':ery pure crystals [5]. 

It is well known that Cattaneo's relation is backwarded by Extended Ir­
renrsible Thermodynamics [e.g. [6]]. In this formalism, the entropy .5 (u. q) 
is assumed to depend on the heat nux q besides the energy u: the corre­
sponding generalized Gibbs equation 1S now written as [6] 

d.5 = T- 1 clu 
, 

. cl q . 

It 1S also easily checked that the entropy nux keeps the classical form 

1 
J = -q 

T 

13i 

( 1-1 ) 
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Fig. 1. lltrasonic wave propagation in dilute gases: comparison between Fourier's 
and Cattaneo's models \vith experiments 

while the entropy production reads as 

1 
/\T2 q . q (15) 

From the positiveness of (js. it is inferred that /\ > 0 while from the convexity 
property of s. it is shown that T > O. 

2.3. Gllyer-J(rum.hansl".3 lvIodcl 

Guyer-Erumhansl"s equation is a non-local generalization of Cattaneo·s. It 
is well adapted to the description of phonon gases where heat transport is not 
only governed by diffusion (like ill Fourier's description) and second sound 
(like in Cattaneo's model) but in addition by ballistic tramport. Guyer­
Erumhansl"s equation reads as [3] 

(16 ) 

the nonlocal corrective terms are collened in the L11.s. of (16). t] is a ne\\" 
phenomenological coefficient with the dimension of a length. 

There exist several ways to recover Guyer-Krumhansl"s equation from 
a thermodynamic description. A possible approach is to assume that .5 

depends on an extra 'internal" variable Q, besides u and q so that 

s (u.q. Q) . (11) 
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By comparison with the kinetic theory of gases. it is seen that Q. a tensor 
of rank two, represents the flux of the heat flux vector. The corresponding 
Gibbs equation is [6] 

1 '1 
d" = T- du - >.T2 q . q - '2etQ . dQ . (18) 

wherein '1 and '2 are the relaxation times of q and Q respectively. and et is 
a phenomenological coefficient. The entropy flux is no longer given by the 
classical expression q/T but contains an extra contribution in Q . q 

s 1 
J = T q + ~fQ . q 

the entropy production takes the form 

5 1 
(J" = -.-,) q . q + etQ : Q 2: 0 

/\T-

with /\ > O. et > 0 as a consequence of the positi\'eness of (J's. 

(19) 

(:20) 

As mentioned in section 1. Guyer and Krumhansl's equation pro\'ides 
only partial ans\\'ers to the questions raised by energy transport in phonon 
gases, This has motivated the present work wherein an extension of Guyer­
Erumhansl's equation in the non-linear reglme is proposed. 

3. A Non-linear and Non-local Heat Transport Equation 

In a first step. a transport equation of heat generalizing Guyer-Erumhansl's 
equation \"ill be formulated. Afterwards. some consequences resulting from 
an analysis of the results within the frame of Extended Irreversible Ther­
modynamics (ElT) are established and analyzed. 

The basic variables are selected as 11 and q in agreement with EIT. 
Their en)lntion in the course of time and space is governed by general bal­
ance equatic)ns taking the form 

EYtu=-v'q r. (:21 ) 

-v. Q + (J'CJ • (:2:2 ) 

One recognizes the usual balance law of energy (:21) with a SOlll'Ce term r: 
expression (:2:2) is written in strict analogy 'with (:21) wherein Q designates 
the flux of the heat flux and cr CJ the corresponding 50\1rCe term. At this stage 
of the analysis. neither Q nor (J"J are known which means that they must be 
given by constituti\'e equations. Since one has in mind to clen'lop a weakly 
non-local and non-linear formalism. it is reasonable to select as constitutive 
equations 

Q .--1.1 T Ll (vqj - L'2 (v' q) 1- L3 (vq) -i- Bqq . (:23) 
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(J"q = -aq - bVu + F . (vq) + (Vq) . H + Gv . q . (24) 

where 1(= clij) stands for the identity tensor and (vq)ij for aq;ja.I'j. super­

script T means transposition. The scalar coefficients a. b. A .. Li (i = 1. 2, 
3) depend generally on u and q. q and the vectors F. H. G are assumed to 
be linear functions of the \'ectors Vu and q: 

F odu)q + 02(U)VU 

H rJr(u)q+'h'vu. 

G 

For further purposes. one introduces also the following notation 

1 
Cl = 

T 

aA. 
-+b t{. a(l 

, aL; 
L·=-

I au 

(25) 

(26) 

After substitution of (23) and (24) 1Il (22). one obtains (when third order 

terms in qZq. q. vq . vq. q (Vu)Z .... are omitted) the following evolution 
equation for q: 

1 
-q + 01 q . (V q) + 3 1 (V q) . q 
T 

-;- -11 (V· q) q + C\Zvu . (vq) +:h (vq)· Vu -IZ (V . q) Vu 
.) 

LIV-q Lzv(v·q)+L:3 V ·(Vq) 

L'I (vq) . Vu + L~ (V . q) Vu L~Vu.(\q). (2/) 

wherein.h and -:1 stand forh +B. ~I B. respectively. In vie\,' of a better 
apprehension of .he aho\'e result. let us consider some particular cases. 

)..ssume tha. the coefficients Li are constant and that Cl;. 3;. -:i (i 
1. 2.3! vanish. Expression (2,) .hen becomes a Guyer-Krumhansl­
type equation 

If. 111 addition. i. 15 supposed that LI L:3 O. one finds 

(29) 

\\'hich is reminiscent of Cattanco's eqlla.ion. 

Finall)' by setting T ·0 (but T t{ finite). one recovers a FClllrier-like 
equation 

q Tt{\U . ( 30) 
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4. Restrictions Placed by the Second Law of Thermodynamics 

In ElT, it is assumed that there exists a non-equilibrium entropy 3 (It. q), 
which is a convex function of the basic variables and whose rate of production 
(78 is non-negative. In other terms. 3 obeys an evolution equation of the form 

Ot 3 = - \7 . J 5 + (78 • (31 ) 

with 
(78 ::: 0 

Solving (31) with respect to (7$. one has 

(32) 

(7 S = Ot 3 + V . J S ::: 0 (33) 

from which it follO\vs that, the determination of (78 implies the knO\vledge 
of the constitutive equation expressing 3 and JS in terms of the variables u. 
q and their gradients. these quantities should be a priori present as one has 
in mind a non-local formalism: therefore 

As usually, let us define the non-equilibrium temperature 8 through [6] 

03 
8- 1 = - . 

ou 

(3-± ) 

(35) 

(36) 

while for simplicity we shall assume that o.s/oq is a linear function of q: 

08 
oq 

I(ulq (31 ) 

with I( u) an undetermined function of u. To explore the consequences 
resulting from ineq t:ali ty (33). we follow the pro (pd ure widely applied in 
Rational [7] and Extended Thermodynamics [6]. :\Iore dptails about the 
specific problem treated here can be found in . therefore. it is sufficient 
here to recall the main results. 

3 is found to be independent of the gradients Vu and Vq so that. by 
virtue of (36) and (3i). the relevant Gibbs equation reads as 

d.s = 8- 1 d u + Iq· d q . (38) 

The entropy flux contains non-local and non-linear contribution in 
q . vq and \Hites as 

S 1 
J = T"q LIIq· (\7q) - L2qV· q - L:l (Vq)· q . (39) 



HEAT CO"DliCTlOS AT LOW TE:'IPERATliRE 193 

The entropy production is quadratic in q and its gradients 

as = - f q. q _ L 1 f ( V q) : (V q ) T - L 2 (V . q) 2 
- L 3 (V q) : (V q) 2 0 , 

T 

(40) 
where a colon stands for the double scalar product A : B = AijBji: 

as a consequence of as 2 O. one has 

Since s is assumed to be a convex function of the 
.) 

[6]. it follows directly from o-s/oq· oq < 0 that 

f < 0 

and, by virtue of (41). 

L2 > 0 

(L1 - L3)f < O. 

(41 ) 
variables u and q 

(42) 

(43) 

The coefficients L 1 . 02. 32. -:2. f are not independent but linked by 

(f' = Of) . 
OU. 

(44) 

An expreSSlOn of" the non-equilibrium temperature IS easily derived: 
from the equality of" the mixed derivatives of s (see (38)). it is found 
that 

and. af"tpr impgration. 

D8- 1 

oq 
,., 

.T q (45) 

1 ,·f·) T- I . - ,- (]- + (u i 
:2' . .' 

(46) 

whel"Pin T( u) is the temperature corresponding to zero heat nux. i.e .. 
the local equilibrium temperature. 

5. Results in Terms of the Temperature Gradient 

For practical use. it is cOIwellient to reformulate the transport equation (:271 
in terms of the temperature gradient v8 rather than in terms of Vu. Since 
8, like .~ depends only on u and q. one has 

D8- 1 08- 1 

--v8+--·vq Du . Dq (4/) 
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Solving with respect to Vu and making use of the results of the prevlOUS 
section. it is found that 

K.VU 
.\ l' -ve + -q. Vq 
T f 

(48) 

wherein /\ IS defined by 
T 

(49) 

As T > 0 and f < 0, it is clear that /\ is a posItIve quantity v:hich will 
be identified as the heat conductivity. In view of (48) and the results of 
section 4. the heat transport equation (27) will be written as 

1 /\ 
--q - -Ve 

T T 

+ et 1 (q . V q - V q . q) + -; 1 (2q . V q + qV· q) 

+ (L~ + 2-;1L3) Vu . Vq + (L~ + 2-flL2) VuV . q 

+ (L I

1 +2-Il L 1 )Vq·Vu. (50) 

This expression contains seven unknown parameters, namely /\ > 0 (heat 
conductivity). T > 0 (relaxation time), L1. L2: L3 (all three quantities are 
positive and describe non-locality). 01 and -ll (whose sign is not determined 
and \vhich are related to non-linearities). 

Of particular interest is the case corresponding to r L 1. L2 and L3 
constant. The e\'olution equation 1.50) then simplifies as 

(51 ) 
If. in addition. 01 o and L 1 = L2 L:3. one obt ains 

This is nothing but Guyer-Erumhansl's equation at the condition to idcntify 
T and L1 as 

T = TR . (53) 

TR and TS are the relaxation times associated to the resistive and the llor­
mal phonon-phonon collisions, respectively. :'l.t this point. two rcmarks are 
in form. First. it is remarkable to obsen'c that our purely macroscopic ap­
proach is able to reproduce the coefficient 2 of the term VV . q in the Lh.5. 
of (52). Secondly. it is easily checked that the entropy flux corresponding to 
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Guyer-Krumhansrs equation is no longer given by the classical result qjT 
but rather by 

T
l q + LIT [')q. (vq)sym..L qv. q'l 

/\T2 ,- '. 

exhibiting the presence of non-linear terms 111 q . vq and q (v . q). 

6. Concluding Remarks 

(.')4) 

A rather general transport equation (50) has been proposed to describe non­
steady, non-local and non-linear effects of heat conduction in rigid solids. 
Eg. (.')0) contains se\'en undetermined parameters. Compatibility with the 
second law of thermodynamics indicates that five of these seven quantities 
are positive. =Vlore information about these parameters should be derived 
either from experimental observations or from theoretical models based on 
the kinetic theory statistical mechanics. 

Transport equation (50) generalizes Fourier·s. Cattaneo's and Guyer­
Krumhansl's lav;s. 

To provide an oven'iew of the domain of application of these various 
laws, \ve have drawn a three-dimensional reference system (see Fig. 2): along 
the y-axis, we have represented the wave number k. along the ,r-axis is given 
the frequency i.;..', while non-linearities are quantified by the z-axis. Since 
Fourier's law is valid for small l,: and ll' values. its range of application is 
restricted to a small cube centered at the origin of the reference system. 
\,ow by mO\'ing along the .r-axis. onc covers the domain of applicability 
of Catt aneo' s equation whilp the range of the linearized Guyer-Krumhansl 
equation is represented by the horizontal.r .If plane. Finally. the volume 
of the large hox describes the range of expression (:)0), which incorporates 
non-linear effects. 

Another important result i" that the prevlOUS analysis displays the 
strong correlation existing between dynamics. i.e .. the transport equation. 
and thermodynamics (through the ent ropy flux). Clearly. one cannot se­
lect the transport equation and the entropy flux independently of each 
other. For instance, while the classical expression JS = qjT is compat­
ible with the Fourier and Cattaneo laws. it is \'OT compatible with the 
Guyer-Krumhansl equat ion. 

Finally. it should be mentioned that an explicit expression of the non­
equilibrium temperature' in terms of the heat flux has been derived. The 
result is 

-1 ( ") e 1I,q- (55 ) 

from which it follows clearly that e can be identified as the local equilibrium 
temperature T either uncleI' the conditions that corrective terms in q2 are 
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Fig. 2. Domains of application of Fourier·s. Cattaneo·s. Guyer-Krumhansl's and 
the generalized heat transport equations 

omitted (linear approximation) or III the case of a constant value of the 
coefficient f. 
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