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Abstract

A critical assessment is presented of ONSAGER'’s original derivation of recxprocal relations.
These relations hold if the irreversible fluxes (time derlxatn es of state variables) are linear
functions of the driving forces, but the latter may themselves be nonlinear functions of the
state variables. Thisis an example amongst others of nonlinear behaviour that falls within
the framework of (qua<i) linear thermodynamics of irreversible processes. The discussion
includes the variation principle of the least dissipation of energy.
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1. Introduction
At a meeting of which a main theme is formed by reciprocal relations for
irreversible processes within the framework of nonlinear thermodynamics it
may be desirable to take once again a look at Onsager’s reciprocal relations
in order to ascertain how far the:r validity is limited to a strictly linear
theory.
ONSAGER’s reciprocal relations were the culmination, at the time of

o

their establishment, of a long history [1], which has its roots in the first
half of the nineteenth century when interest arose in heat conduction in
crystals. Both DUHAMEL [2] in 1828, and STOKES [3] in 1851, studied this

phenomenon from a theoretical point of view and came for different reasons

and without absolutely convincing arguments to the conclusion that the heat
conductivity tensor should be symmetric. Experimentally this conjecture
was confirmed by SORET [4] and more accurately by VoiaT [3]

In the meantime, W. THOMSON [6]. Lord KELVIN, had established in
1854 a reciprocal relation for thermoelectric phenomena, characterizing the
coupling between heat- and electric conduction in an isotropic system. To
derive the reciprocal relation. THOMSON makes the assumption, which he
considers extremely plausible, that the thermoelectric process is reversible.
By similar quasi-thermodynamic arguments symmetry relations had been
derived for a variety of other cases. HELMHOLTZ [7] established a relation
for the crosseffects between electric conduction and diffusion, while EAST-
MAN [8] and WAGNER [9] found one_between heat conduction and diffusion.
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All these reciprocal relations were confirmed by experiment. However,
the fundamental principles of thermodynamics alone were not sufficient to
justify their derivations. As pointed out already by BorTzmaxny [10], the
second law of thermodynamics only leads to a number of inequalities for the
coeflicients occurring in the phenomenological equations.

ONSAGER published his derivation of reciprocal relations in two pa-
pers in 1931 [11]. He had already announced the essential result that these
relations could be derived without reference to a particular case from the
principle of microscopic reversibility at two meetings [12] in 1929 and 1930.
But this major achievement remained largely without response for a sur-
prising number of years. It finally gained wider acceptance as a result also
of a paper by CasiMIR [13]. In this paper CASIMIR presents a streamlined
and compact version of ONSAGER’'s derivation, which is the one generally
presented and which we therefore shall review here.

2. Derivation of ONSAGER’s Reciprocal Relations

Consider an adiabatically insulated and aged system, characterized by the
fluctuations a;(: = 1,2....,n) of a set of (macroscoplic) variables with respect
to their equilibrium, or most probable, values. The entropy § of the system
has a maximum Sy at equilibrium so that AS = 5 — S5y can be written as a
quadratic expression

1< 9%s
AS = —— [T e OX oS (7T O T e—— (1)
5 izk«/zk 1Qh Gik aCzjan L)

where gj; 1s a positive definite form. With Boltzmann’s entropy postulate

one has for the probability density of the a;
£ M r Ny A’/L Ny
Flajanan) = f0. .0 k8, (2]

where kg is BOLTZMANN's constant.
ONSAGER also introduces conjugated variables
Jln f IAS
Xi=hkg—= = - ik Qke (3)

Jda;

which are linear combinations of the a;.
The proof of the reciprocal relations can be

it follows from the definition (3}, that
<ag_\:j> = —1\735,']' (65 =0 if 1 £ 7 §; =1). (4)

where the brackets {...) denote an average over the distribution function (2.
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Next one must state the requirement of microscopic reversibility for the
time behaviour of fluctuations in an aged system. Here ONSAGER imposes a
restriction on the class of variables studied and takes only those into account
which are even functions of the velocities of individual particles. To state
the property of microscopic reversibility, he focuses attention on their time
correlation functions. For these, time reversal invariance of the microscopic
equations of motion results in the equality
{lai(tiaj(t + 7)) = {aj(tai(t + 7). (5)
We now come, after the two results (4) and (3) of general statistical me-
chanics, to the third ingredient of ONSAGER’s theory: his mean regression
hypothesis. Suppose that in a certain domain, not too far from equilibrium.
but not necessarily in the range of equilibrium fluctuations, the variables a;
obey linear macroscopic equations

de;(t) , - «
—_— = —Z;\fijaj(f) = ZLgk‘X}C(t). (6)
J k

dt
where the so-called ONSAGER coefficients L;; are defined as

Lig = Y Mg . (7)
i

and where the X; are the variables conjugated to the o; according to Eq. (3).
ONSAGER’'s hypothesis is that fluctuations evolve in the mean according to
the same macroscopic laws, and that one therefore has, when evaluating a
correlation function {a;(¢)a;(t + 7)) for short time intervals r. according

to (3]

cilt+ 1) =ajlt)+ 7Y LipXg(t) (8)
k

Using then FEg. (8} for both members of Eq. (5. and observing the result

{6). one obtains the reciprocal relations
Ly =Ly (9)

In other words, the matrix of coefficients L;; must be symmetric.

In this version of ONSAGER’s derivation of reciprocal relations it would
seem that their validity has been established for the case in which the phe-
nomenological equations are ordinary linear differential equations in the a's
and moreover the thermodynamic forces, the conjugated variables are in
turn also linear functions thereof. Indeed, at the first I[UPAP International
Conference on Statistical Mechanics, held 1948 in Florence, CASIMIR [14]
presented a paper ‘On some aspects of ONSAGER’s theory of reciprocal rela-
tions’ in which he remarks ‘... in its present form ONSAGER’s theory applies
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only to Equations of type [of Eg. (6)]. As soon as the situation arises where
the macroscopic equations are not of the type [of Eq. {6)] a new investigation
becomes necessary.’

ONSAGER, who attended the conference in question offered the follow-
ing comment [153]: ‘Linear relations between rates of flow and driving forces
(gradients of temperature and potential) are assumed in my derivation of
reciprocal relations.” He then concludes his comment with a second sentence
to which we will presently return.

3. Modified Version of ONSAGER’s Derivation; Validity of
Reciprocal Relations

It is not entirely clear from ONSAGER’s comment whether he agrees that
his theory only applies to equations of the type (6). With this in mind, we
now restate the derivation given in the previous section, in a modified form.
We again consider an adiabatically insulated system in the state described
by the fluctuations ¢; of a set of macroscopic variables with respect to their
equilibrium values. The entropy, 5, has a maximum, Sp, at equilibrium, but
AS need not be a quadratic form, and can be a more general function of
the o’s:

OAS
§ =S5+ AS(ai....an) ( ) =0, (10)
8&5 a=0

The probability density of the a; is of the form (2}, but with a more gen-
eral function AS(«) in the exponent, so that the conjugated variable Xj,
the thermodynamic forces, are no longer necessarily linear combinations of
the ay :

IAS Jdln f

Xila) = = kg
e do; B Do

It follows again from the definition that:

{11}

(a; Xj) = —kpdy; (05 =0 1f 1 &£ 55 05 = 1).

while the property of microscopic reversibility retains the form (cf. Eg.

e
‘C_,:(

lai(t)aj(t + 7)) = (ajt)ai(t + 7)) (13)

Suppose now that the macroscopic laws for the time rates of change of the
a; are linear in the thermodynamic forces

da;

= L X (8) . (14)
7t }; b AT 1<)
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ONSAGER’s regression hypothesis.then implies that one has. in the mean,
when evaluating a correlation function for small time intervals, r:

aj(t +7) = aj(t) + 7y LixXi(t). (15)
) k

Introducing Fgq. {15) into both members of Eq. (13) one then finds, with
property (12),

Lij = Ly;. (16)
The reciprocal relations are thus obtained here for the case that the macro-
scopic equations are linear in the thermodynamic forces, without being linear
also in the state variables of which they describe the rates of change.

In the first version, the coefficients AM;; are the basic kinetic coefficients,
and the ONSAGER coecfficients L;; are defined by multiplying the kinetic
coefficients by the thermodynamic quantities g]-_klt c.f. Egs. (1) and (7). In
the modified version, the ONSAGER coefficients play themselves the role of
basic phenomenological coefficients, defined by the regression laws (13).

Even though ONSAGER in the paper containing the derivation gives
the quadratic form (1) (which, as he indicates, is sufficient to calculate
fluctuations of the o; with the distribution function (2)). it may be argued
that the derivation that is given by him is essentially identical with the
modified version.

The conclusion is therefore that ONSAGER’s reciprocal relations are
valid for macroscopic laws, linear in the thermodynamic forces. It is this
linearity of the dissipative laws in the driving forces which characterizes the
scheme of linear thermodynamics of irreversible processes. The correspond-
ing differential equations for the state variables are nonlinear if. as in the
above derivation. the thermodynamic forces are nonlinear functions.

However, if the thermodynamic forces are linear{ized) in the variables
@i, the corresponding differential equations considered above form a linear
'stem of equations: this is the fully linearized scheme of thermodynamics

[’
e

iy

of irreversible processes.

We shall return to the characteristics of linear thermodynamics of ir-
reversible processes in our final conclusions. For the present discussion of
the validity of ONSAGER’s reciprocal relations. a few remarks are of more
immediate relevance.

1. It has been assumed in the course of the derivation that the macro-
scopic laws, which hold in the mean for macroscopic values of the a;.
also remain valid for initial states in the domain of an average equi-
librium fluctuation. CaSIMIR [13] makes the following comment: ‘Of
course the fact that the macroscopic laws are linear partly justifies an
extrapolation to very small deviations, but in principle one may imag-
ine a pseudolinearity holding at reasonably large amplitudes.” How-
ever., experiments i equilibrium systems have shown that time cor-
relation functions (whose dominant contributions lie in the range of
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equilibrium fluctuations) have indeed the form predicted on the basis
of macroscopic laws [16].
2. Using FEq. (15) it follows that

lim §{a;(t)a;(t + 7))/é7 = —Lyj. (17)

On the other hand, microscopic reversibility {cf. condition (13)) de-
mands that (a;(t)a;(t)) = 0. The apparent contradiction here (which
is not really there if one accepts that (a;(¢)a;(¢+ 7)) has a discontinu-
ity at 7 = 0 ) is removed if one realizes that the macroscopic laws are
valid on a hydrodynamic time scale 7, such that 7, « 7 « 7., where
70 is a characteristic molecular time and 7 a typical macroscopic re-
laxation time. The linear laws (6) or (13) therefore only hold after a
time lag 79 <« 7. ONSAGER himself draws attention to this fact in [11]
and remarks that ‘for practical purposes the time lag can be neglected
in all cases that are likely to be studied, and -this approximation is
always involved in the formulation of laws like [Eq. (13)].

3. ONSAGER briefly mentions that in the presence of external magnetic
fields B (or of Coriolis forces), when microscopic reversibility demands
that particle velocities as well as fields be reversed, the reciprocal

relations (15) must be modified and become

Lij(B) = Lji(-B). (18)

Finally, he also shows that in the absence of external magnetic flelds, and
for the even variables considered, the reciprocal relations demanded by mi-
croscopic reversibility are equivalent to the variation principle of the least
dissipation of energy. We shall discuss this principle in the next section.

4. The Principle of the Least Dissipation of Energy

The quantity referred to here by ONSAGER [11] as dissipation of energy is
essentially the entropy production o, which for the adiabatically insulated
closed system is given by:

dS(a) as . .
G = ez Gy (19}
dt - da;
Introducing into this expression the definition of the thermodynamic forces
{11} as well as the macroscopic laws (14) we obtain for o the positive
quadratic form:

o= Z a; Xila) = ZL;J'_X—,‘_X’]‘ . (20)
i i,
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With this quadratic form in the thermodynamic forces X;, ONSAGER shows

that a general principle of ‘least dissipation of energy holds for the macro-

scopic phenomenological equations, if the reciprocal relations are obeyed.’
For the purpose of demonstration one defines the function P

P= QZ & X; — ZL,»j_xy;x:j : (21)
1 1.0

The extremum of this function for given fluxes. «, and with respect to
variations of the thermodynamic forces, is determined by the conditions

o1 .
o == Z(Lij + Lj;)X;=0. (22)
Td

These conditions are equivalent to the macroscopic laws when the reciprocal
relations (16) are satisfied.

As a special case of this principle ONSAGER then observes that recip-
rocal relations must hold if one demands that the entropy production has
an extremum at the stationary state (a statement which is the converse
of PRIGOGINE’s[17] well-known theorem of minimum entropy production).
This then provides an explanation for the fact that quasi thermodynamic
theories led to correct reciprocal relations: THOMSON's hypothesis [6] that
the thermoelectric effect is reversible, is tantamount to demanding that the
entropy production for this phenomenon has a minimum at the stationary
state when no electric current flows.

It should however be noted and must be emphasized that the equiv-
alence between the reciprocal relations and the variation principle breaks
down in the presence of an external magnetic fleld, so that the variational
requirement cannot replace the more fundamental principle of microscopic
reversibility in the derivation of these relations.

5. Concluding Remarks

We have seen above that ONSAGER's reciprocal relations are valid for dis-
sipative laws (fluzes). linear in the thermodynamic forces, and that this
linearity is compatible with a nonlinearity of the forces in the state vari-
ables which leads to nonlinear differential equations for the latter.

It was shown later [18] that for transport processes reciprocal relations
can also be derived within the framework of the kinetic theory of gases, and
follow again from microscopic reversibility (of the binary collision process).
Although the class of systems for which the derivation holds is more re-
stricted {dilute gases) it is once more valid for dissipative fluxes linear in
the driving forces, but includes now for the differential equations describing

the phenomena’s time behaviour a greater variety of sources of nonlinear
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behaviour. Such additional sources of nonlinear behaviour are e.g. the pres-
ence of convection terms and the dependence of the transport coefficients on
the state variables. But all these nonlinearities still occur within a domain
for which linear thermodynamics of irreversible processes holds.

ONSAGER’'s comment at the IUPAP meeting of 1949, quoted above,
remains fully applicable to the present considerations and underscores the
importance of investigating concrete genuinely nonlinear cases[19]. At the
time ONSAGER concluded his brief comment with a second sentence: ‘The
possibilities of useful generalizations have not been fully explored; none have
been found so far.’
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