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Abstract 

A critical assessment is presented of O"SAGER's original derivation of reciprocal relations. 
These relations hold if the irreversible fluxes (time derivatiH's of state \'ariables) are linear 
functions of the driving forces. but the latter may themselves be nonlinear functions of the 
state variables. This is an example amongst others of nonlinear behaviour that falls within 
the framework of (quasi) linear thermodynamics of irreversible processes. The discussion 
includes the variation principle of the least dbsipation of energy. 
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1. Intro cl uctio 11 

At a meeting of which a main theme is formed by reciprocal relations for 
irreversible processes within the framework of nonlinear thermodynamics it 
may be desirable to take once again a look at Onsage7"s reciprocal relatio/l;) 
in order to ascertain how far their validity is limited to a strictly linear 
theory. 

O:\SAC ER's reciprocal relations v;ere the culn::ination. at the time of 
their establishment. of a long history [1]. which has its roots in the first 
half of the nineteenth century when interest arose in heat conduction in 
crystals. Both Dl"HA:'lEL [:2] in 18:28. and STOKES [31 in 1851. studied this 
phenomenoIl from a theoretical point of view and came for different reasons 
and without absolutely con\'incing arguments to the cOIlclusion that the heat 
conductiviry tensor should be symmetric. Experimentally this conjecture 
\,'as confirmed by SORET and more accurately by '-O](;T 

In the meantime. \\-. THO\ISO:\ [6]. Lord EELY]:\. had established in 
18.54 a reciprocal relation for thermoelectric phenomena. characterizing the 
coupling between heat- and electric conduction in an isotropic system. To 
derive the reciprocal relation. THO\lSO:\ makes the assumption. which he 
considers extremely plausible. that the thermoelectric process is reversible. 
By similar quasi-thermodynamic arguments symmetry relations had been 
derind for a variety of other cases. REDl HO LT Z [7] est ablished a relation 
for the crosseffects between electric conduction and diffusion. while EAST­

:'lA:\ [8] and \YAC:\ER [9] found one" between heat conduction and diffusion. 
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All these reciprocal relations were confirmed by experiment. Ho,vever, 
the fundamental principles of thermodynamics alone were not sufficient to 
justify their deriyations. As pointed out already by BOLTZ\!..\,.:\:\ [10]. the 
second law of thermodynamics only leads to a number of ineqnaiities for the 
coefficients occurring in the phenomenological equations. 

ONSAGER published his deriyation of reciprocal relations in two pa­
pers in 1931 [11]. He had already announced the essential result ,hat these 
relations could be deri\'ecl without reference to a particular case from the 
principle of microscopic reyersibility at nvo meetings [12] in 1929 and 1930. 
But this major achieyement remained largely without response for a sur­
prising number of years. It finally gained wider acceptance as a result also 
of a paper by CASI\lIR [13]. In this paper C..\,.SI\lIR presents a streamlined 
and compact version of O:\SAGER's derinnion. which is the one generally 
presented and which we therefore shall revie\\' here. 

2. Derivation of O:\SAGER'S Reciprocal Relations 

Consider an adiabatically insulated and aged system. characterized by the 
fluctuations odi = l. 2 .... n) of a set of (macroscopic) variables \\'ith respect 
to their equilibrium. or most probable. \·alues. The entropy 5 of the system 
has a maximum 50 at equilibrium so that i::;.5 5 50 can be written as a 
quadratic expression 

:::"5 (1) 

where gik is a posJtn'e definite f()rm. \\"ith Boltzmann's t'lltropy postulate 
one has for the probability density of the 0i 

N. .' - "( 0 o· '::"S/k B .I \0, .... Un) -.T ..... )e . (2) 

where kB is BOLTZ\l.-\:\:\·s constant. 
O:\S.-\GER also introduces conjugated variables 

aOi 
(3) 

which are linear combinations of the 0i. 

The proof of the reciprocal relations can lw gin'll ill three steps. Fir,;t. 
it follows from the definition (3). that 

where the brackets ( ... ) denote an an'rage o\,er the cli:"rrihutioll function (2L 
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::"iext one must state the requirement of microscopic reversibility for the 
time behaviour of fluctuations in an aged system. Here O-,SAGER imposes a 
restriction on the class of \'ariables studied and takes only those into account 
which are even functions of the velocities of individual particles. To state 
the property of microscopic reversibility. he focuses attention on their time 
correlation functions. For these. time reversal invariance of the microscopic 
equations of n-lotion results in the equality 

(5) 

\Ye now come. after the two results (-1) and (5) of general statistical me­
chanics. to the third ingredient of O-,SAGER's theory: his mean regression 
hypothesis. Suppose that in a certain domain. not too far from equilibrium. 
but not necessarily in the range of equilibrium fluctuations. the variables 0; 

obey linear macroscoplC equations 

do; 

elt 
- I:: ).Jij Clj (t) 

j 

v;here the so-called O"SAGER coefficients Lile are defined as 

I:: J1ij 9 ji/ . 
j 

(6) 

(I) 

and where the Xi are the \'ariables conjugated to the 0i according to Eq. (3). 
O"SAGER's hypothesis is that fluctuations evolve in the mean according to 
the same macroscopic laws. and that one therefore has. v;hen e\'aluating a 
correlation function ;(t)o j (t T ) for short time internils T. according 
TO (8) 

OJ(t) + T I:: L)kXk 

k 

(8) 

"[sing then El]. (8) for both members of Eq. (5). and observillg the result 
{C). one obtains the reciprocal relations 

(9) 

In other words. the matrix of coefficients L1) muse be symmetric. 
In this version of O"SAGER's derivation of reciprocal relations it would 

seem that their validity has been established for the case in which the phe­
llomenological equations are ordinary linear differential equations in the 0' s 
and mOH'over the thermodynamic forces. the conjugated variables are in 
turn also linear functions thereof. Indeed. at the first IrPAP International 
Conference on Statistical :"Iechanics. held 1948 in Florence. CASI\IIR [14] 
presented a paper 'On some aspects of O:\SAGER's theory of reciprocal rela­
tions' in which he remarks .... in its present form O"SAGER's theory applies 
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only to Equations of type [of Eg. (6)J. As soon as the situation arises ,\"here 
the macroscopic equations are not of the type [of Eg. (6)J a new investigation 
becomes necessary.' 

O;-';SAGER, who attended the conference in question offered the follow­
ing comment [1.j J: 'Linear relations bet,\-een rates of flow and driving forces 
(gradients of temperature and potential) are assumed in my derivation of 
reciprocal relations.' He then concludes his comment with a second sentence 
to which we ,,;ill presently return. 

3. Modified Version of O\SAGER's Derivation; Validity of 
Reciprocal Relations 

It is not entirely clear from 0\5.-'\G ER's comment whether he agrees that 
his theory only applies to equations of the type (6). "-ith this in mind. we 
now restate the derivation given in the pre\-iou~ section. in a modified forlll. 
'Ve again consider an adiabatically in:"ulated system in the state described 

'by the fluctuations Cl; of a set of macroscopic variables with respect to their 
equilibrium values. The entropy. 5, has a maximum, 50. at equilibrium. but 
:::"5 need not be a quadratic form. and can be a more general function of 
the Cl'S: 

(
0:::"5 ) 
00; u=o 

5 = 50 + :::,.5(°1 .... 071) o. (10) 

The probability density of the 0i is of the form (2). but ,vith a more gen­
eral function 65(Cl) in the exponent. so that the conjugated \-ariable Xi. 
the thermodynamic forces. are no longer nece:"sarily linear combinations of 
the Ok : 

0:::"5 

OOi 

It follows agam from the definition that: 

iJ In r 
kB--' . 

00; 
(11 ) 

= 1). ( 12) 

while the property of microscopic re,-ersibility retains the form (cl. Eg. (5)): 

(13) 

Suppose now that the macroscopic laws for the time rates of change of the 
0; are linear in the thermodynamic forces 

dO i 

cIt 
LLikXk(f) 

k 

(14) 
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0\ SAG ER's regression hypothesis then implies that one has. in the mean. 
when evaluating a correlation function for small time intervals, T: 

OJ(t + T) = OJ(t) + T LLjkXdt). 
k 

(15 ) 

Introducing Eq. (15) into both members of Eq. (13) one then finds, with 
property (12). 

(16 ) 

The reciprocal relations are thus obtained here for the case that the macro­
scopic equations are linear in the thermodynamic forces. without being linear 
also in the state variables of which they describe the rates of change. 

In the first version. the coefficients IV!ij are the basic kinetic coefficients, 
and the O\SAGER coefficients Lij are defined by multiplying the kinetic 

coefficients by the thermodynamic quantities g';2, c.f. Eqs. (1) and (7). In 

the modified version. the O\SAGER coefficients play themselves the role of 
basic phenomenological coefficients. defined by the regression laws (13). 

Even though O\SAGER in the paper containing the derivation gives 
the quadratic form (1) (which. as he indicates. is sufficient to calculate 
fluctuations of the 0i with the distribution function (2)). it may be argued 
that the derivation that is given by him is essentially identical with the 
modified version. 

The conclusion is therefore that O\SAGER's reciprocal relations are 
valid for macroscopic laws. lineal' in the thel'7nodynamic jOl'ces. It is this 
linearity of the dissipative laws in the driving forces which characterizes the 
scheme of linear thermodynamics of irreversible processes. The correspond­
ing differential equations for the state variables are nonlinear if. as in the 
abo\'e clerinltion. the thermodynamic forces are nonlinear functions. 

Howeyer. if the thermodynamic forces are linenr( ized) in the variables 
0i. rhe corresponding differential equations considered above form a linear 
system of equations: this i~ rhe fuily linearized scheme of thermodynamics 
of irreversible processes. 

\\'e shall return to the charClcteristi('~ of linear rlwrmodynamics of ir­
reyersi ble pro cesses in our final conclusions. For the present discussion of 
the vaiidity of O\SAGER's reciprocal relations. a few remarks are of more 
immediate relevance. 

1. It has been assumed in the course of the deri"ation that the macro­
scopic laws. which hold in the mean for macroscopic values of the Cti. 

also remain valid for initial states in the domain of an average equi­
librium fluctuation. c."Sl\! IR [13] makes the following COlllment: 'Of 
course the fact that the macroscopic laws are linear partly justifies an 
extraEolation to very small de\'iatiolls. but in principle one may imag­
ine a pseudolinearity holding at reasonably large amplitudes.' How­
ever. experiments in equilibrium systems hc1\'e shown that time cor­
relation fUIlctions (whose dominant contributions lie ill the range of 
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equilibrium fluctuations) have indeed the form predicted on the basis 
of macroscopic la,vs [16]. 

2. Using Eq. (15) it follows that 

( 11) 

On the other hand. microscopic reversibility (cf. condition (13)) de­
mands that (Oi(t)Qj(t)) = O. The apparent contradiction here (which 
is not really there if one accepts that (Oi(t)QjU T)) has a discontinu­
ity at T = 0 ) is removed if one realizes that the macroscopic laws are 
valid on a hydrodynamic time scale T. such that Te « T « T r , where 
Te is a characteristic molecular time and Tr a typical macroscopic re­
laxation time. The linear laws (6) or (13) therefore only hold after a 
time lag TO « T r . O:\SAGER himself draws attention to this fact in [llJ 
and remark" that 'for practical purposes the time lag can be neglected 
in all cases that are likely to be studied. and this approximation is 
always invoh'ed in the formulation of laws like [Eq. (13)].' 

3. O:\SAGER briefly mentions that in the presence of external magnetic 
fields B (or of Coriolis forces). v,-hen microscopic reversibility demands 
that particle velocities as well as fields be reversed. the reciprocal 
relations (15) must be modified and become 

Lij(BJ (18) 

Finally. he also shows that in the absence of external magnetic fields. and 
for the e\'en yariables considered. the reciprocal relations demanded by mi­
croscopic reversibility are equi\'alent to the variation principle of the least 
dissipation of energy. \\-e shall discuss this principle in the next section. 

4. The Principle of the Least Dissipation of Energy 

The quantity referred to here by O:\S.·\GER [ll] as dissipation of energy is 
essentially the entropy production er. which for the adiabatically insulated 
closed system 15 glH>n by: 

(19 ) 

Introducing into this expression the definition of the thermodynamic Ii)rces 
(ll) as well as the macroscopic laws (14) we obtain for 0 the positi"e 
quadratic form: 

er = L cti X;(o) LL;jX;Xj 
i.j 

(20) 
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\Yith this quadratic form in the thermodynamic forces Xi, O:--':SAGER shows 
that a general principle of 'least dissipation of energy holds for the macro­
scopic phenomenological equations, if the reciprocal relations are obeyed.' 

For the purpose of demonstration one defines the function P 

P = 2L 0; Xi - LL;jX;Xj 
;.j 

(21) 

The extremum of this function for given fluxes, 0, and with respect to 
variations of the thermodynamic forces, is determined by the conditions 

1 
0; -; L(L;j + Lj; )Xj = 0 , (22) 

- j 

These conditions are equivalent to the macroscopic laws when the reciprocal 
relations (16) are satisfied, 

As a special case of this principle O:--':S.-\GER then observes that recip­
rocal relations must hold if one demands that the entropy production has 
an extremum at the stationary state (a statement which is the converse 
of PRIGOGI:\E's[l T] well-known theorem of minimum entropy production), 
This then pro\'ides an explanation for the fact that quasi thermodynamic 
theories led to correct reciprocal relations: THO\ISO:--':'s hypothesis [6] that 
the thermoelectric effect is reversible, is tantamount to demanding that the 
entropy production for this phenomenon has a minimum at the stationary 
state when no electric current flows. 

It should however be noted and must be emphasized that the equiv­
alence betv;een the reciprocal relations and the variation principle breaks 
down in the presence of an external magnetic field, so that the variational 
requirement cannot replace the more fundamental principle of microscopic 
reversibili ty in ;:he deriva tion of these relations. 

5. Concluding Remarks 

\Ye h,n'e seen aboH> that O:\S.-\GER's reciprocal relations are valid for dis­

sipative lawo' , linea7' in the thermodynamic forcec', and that this 
linearity is compatible \"ith a nonlinearity of the forces ill the state vari­
ables which leads to nonlinear differential equations for the latter. 

It was shown later [18] that for transport processes reciprocal relations 
can also be derived \\-ithin the frame\\'ork of the kinetic theory of gases, and 
follow again from microscopic reversibility (of the binary collision process). 
Although the class of systems for which the deri,-ation holds is more re­
stricted (dilute gases) it is once more valid for dissipati\-e fluxes linear in 
the driving forces, but includes now for the differential equations describing 
the phenomena's time beha\-iour a greater variety of sources of nonlinear 
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behaviour. Such additional sources of nonlinear behaviour are e.g. the pres­
ence of convection terms and the dependence of the transport coefficients on 
the state variables. But all these nonlinearities still occur 'within a domain 
for which linear thermodynamics of irreversible processes holds. 

Oi\SAGER's comment at the I"CPAP meeting of 1949. quoted above. 
remains fully applicable to the present considerations and underscores the 
importance of im'estigating concrete genuinely nonlinear cases[19]. At the 
time Oi\SAGER concluded his brief comment with a second sentence: 'The 
possibilities of 'useful generalizations have not been fully explored: none ha\'e 
been found so far.' 
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