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Abstract 

Studying heat conduction problems in linear and quasilinear ranges for stationary state 
one can be convinced that the principle of minimum entropy production is valid. but 
only under special conditions. By using variational calculus we show that the solution 
of the minimum principle accords totally with that of the energy balance equation for 
both cases. Of course, the Euler-Lagrange differential equations for linear and quasilil'ear 
cases do not give the same solutions and similarly. the temperature distributions differ. 
too. \'evertheless. according to a deeper analysis we can suspect that only non linear heat 
conduction exists. Investigations from the point of view of the picture representation and 
a special new method developed for the solution of the \'ariational problem refer to this. 
The empirical Fourier's law does not seem to fit the energy balance equation because 
this linear process does not appear exactly in this form in nature. The formal proof for 
Fourier's law with the energy balance equation very probably is delusive. 
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1. Linear Heat Cond uction 

From the Lagrange densities we can han" the solutions of the Euler-Lagrange 
differential equations for stationary state heat conduction of Fourier type 111 

different representational pictures [1. :2]: 

Fourier picture Energy picture 

6.T = 0 6.lnT = 0 
Entropy picture 

i.l.-O ~T -

The variational pro ced ure must be carried out according to Gyarmat i [1]. 
Here. in the linear case on the basis of the equality of the fhlXes in any 
picture the phenomenological coefficients can be considered to be constant 
but only independently of each other. The equality of fiuxes is: 

-L'vlnT 
1 Lv 
T 

(1) 
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(\Ve use A for the heat conductivity coefficent in Fourier's linear heat con­
duction law and ,\(T) for that in the constitutive equation of quasilinear 
heat conduction.) But if in a representational picture we consider the phe­
nomenological coefficient to be constant then from the point of view of 
the so-yielded differential equation and its picture. the differential equation 
elaborated in the same way gives us in another picture a quasilinear solution 
with temperature dependent phenomenological coefficient. 

2. Quasilinear Heat Conduction 

According to our prediction some quasilinear Euler-Lagrange equation for 
the Fourier picture appears in the linear Euler-Lagrange equation of the 
energy and the entropy pictures, respectively: 

Energy picture: 

6.lllT = v(vlnT) (
VT 

V 
T 

(VT)2 - T 6.T = 0: (2) 

Entropy picture: 

1 vT 0) 

6.
T 

= V(V1T) = V(- ) = 2(VT)- - T6.T = O. (3) 

For to the verification of these quasilinear Euler-Lagrange equations we 
'write the quasilinear differential equation with a temperature dependent 
phenomenological coefficient for heat conduction in Fourier picture [2]: 

(4) 

but more explicitly. 

(51 

where 

(6) 

Eqo (.'5) is a quasilinear partial differential equation. For the case of station­
ary state \ve can write. 

I 0) 

), (T)(vTr + ,\(T)6.T = O. (I) 
From the equality of the fluxes now in the quasilinear case we get that 
instead of -,\vT \ve have to \\Tite -,\(T)vT in the Fourier picture for the 
flux so that constants L~ and L will be 
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L~ = L\(T) and L = T 2 /\(T), (8) 

and using (8) we can compare equation (7) with equations (2) and (3). 
Therefore we can write in the energy picture that 

or in another form 

/\(T) .) 
-' -(vT)- - /\(T)VT = O. T . , . 

From the companson we can get for ,\(T) and ,\'(T): 

C') 
,\(Ti = -,. T and 

(9) 

(10) 

(11) 

which coincide totally with the results of statistical mechanics according 
to the l/T ratio in the high temperature range over 100 K [3. 4, 5]. It is 
known from the literature that the value of C2. e.g .. for germanium is about 
20000 \\'/m. On the other hemel. in the entropy picture we get from the 
comparison that 

.) 

2L(VT)- - LTvT = O. (12j 

and in another form 

(13) 

:\o\v we get for .\(T) anel ,\'(T): 

/\( TJ and (14) 

The ,\(T! nt!ues resulting from expressions (11 i and (14) are the same but 
\vith different C:; and Cl constants. where Cl = TC2. From the point of 
view of the tem p er a t ure distri bu t ions in st a tionary state we consider a one­
dimensional heat conduction problem. where heat is cone! uctecl through a 
plate. The thickness of the plate is I ane! the surfaces are kept at constant 
temperatures. The boundary conditions are 

T(.T = 0) To and T(:/' 

then the temperature distribution IS 

and 

T(.r) 
1 

(
T1-TO)) .£ 

Tl T:: I 

111 the enerO'\' o. picture. 

111 the entropy picture. 

(15 ) 

(16) 
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which are the solution of the quasilinear Euler-Lagrange equations for the 
Fourier picture with quasilinear phenomenological coefficients (11,13). 

Reminder: the temperature distribution with stationary-state heat 
conduction of constant phenomenological coefficient - i.e., Fourier's case 
differential equation of linear type in the Fourier picture IS 

6.T = O. 
:r 

T(z) = To + (Tl - TO)I' (17) 

which is the formal linear solution for the Fourier picture with linear phe­
nomenological coefficient. 

3. Direct Variation for the Quasilinear Case 

From the equality of the fiuxes \vith the expression 

1 
-)..(T)vT = -L ~vlnT = Lv-, 

T 
(18 ) 

we write for quasilinear case the Lagrange densities in different pictures. 

Table 1. 

Fourier picture, 

energy picture, 

entropy picture. 

::\ow we take the Euler-Lagrange differential equation in the Fourier picture 
according to Gyarmati . but for LT we substitute LinT or LIlT in order to 
extend the range of the admissible functions as a recency, then after haying 
solved the variation problem we can haye the quasilinear differential equa­
tions (2) and (3) again. It is due to the connections between the Lagrange 
densities, which come from the equality of the fiuxes. The Lagrange density 
according to the Fourier picture shows the existence of nonlinear heat con­
duction in stationary state but not that of the linear one. Generally we can 
write for the system of Lagrange densities the connections between linearity 
and quasilinearity in the different pictures, i.e., 

So it can be seen that the principle of minimum entropy production is 
valid for some quasilinear equation, too. As to the energy balance equation 
we can show the formal proof in the linear case 

v· [)..vT] = 6T O. (19 ) 

in the quasilinear case the real form is 

O. (20) 
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£T = 

£'nT = 
£l/T= 

Table 2. 

T'L £l/T(T) = T£'nT(T), 
T£l/T(T) = T-1£T(T). 
T-1£'nT(T) = T- 2 £T(T). 
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therefore, the Euler-Lagrange equations of the principle of minimum en­
tropy production and the energy balance equation coincide totally 111 the 
quasilinear range. 

4. Quasilinear Solutions for 
L(t) and L*(t) 

In the case of L(T) the differential equations are 

2'\('VT) + )"T 6T 0 In the Fourier 

2L*('VT)2 + L*T6T 0 In the ener"v o. 

In case of L*(T) the differential equations are 

picture, 

picture. 

/\('VT)2 + XT 6T 

3L('VT)2 + LT6T 

o 
o 

111 the Fourier picture, 

111 the entropy picture. 

(21 ) 

(22) 

(23) 

(24) 

The further procedure is the same as was in the case of (9) and (12), i.e., we 
express the differential equations with the aid of L(T) and L*(T) on the basis 
of the equality of the fiuxes, respectively. The temperature distributions to 
differential equations (21-24) are as follows: 

T(x) 

T(.r) 

T(:r) 

-1 
T(x) 

The boundary conditions for these solutions are as earlier. 
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5. Summary 

For stationary state heat conduction there are three differential equations 
for the linear case according to the three representational pictures. But this 
is an old view because we smv that Fourier's law in the linear case T = 0) 

does not exist in nature so there are only two right forms for linear heat 
conduction in the energy and entropy pictures. In the quasilinear case we 
can v;rite altogether six differential equations. i.e .. in each representational 
picture one can write the quasilinear differential equations of the two other 
pictures. Here. in accordance ,,;ith these facts. we can write only tWO nonlin­
ear differential equations for /\( T) in the energy and in the entropy pictures. 
The other four differential equations as solutions are only formal from our 
point of view. At the variational disposal we used Gyarmati's solution but 
with a principle of recency for the admissible function in the quasilinear 
case. Here. we emphasize that at the \'ariational problem the time deriva­
tive must be frozen. In a stationary-state heat conduction problem this is a 
very important requirement for the variational procedure .. -\s to the linear 
and quasilinear solutions. from time to time there are misunderstandings 
in the literature. frequently in connection with the principle of minimum 
entropy production. So. e.g .. in the linear and quasilinear solu tions for 
stationary state heat conduction could not be distinguished and for this rea­
son was the principle of the minimum entropy production criticized. The 
proper use of the representational pictures give~ a clear sight and it seems 
that the principle of the minimum entropy production [9. 10] operates well 
in the linear and quasilinear ranges of heat conduction problems. too. The 
temperature dependence of the phenomenological cod:ti('ient~. i.e .. the heat 
conduction coefficients show Cl good correlation v:irl! the re~ult~ of the solid 
state physics and of statistical lllc('hanic~ [11. 1:.2 . The yariational method 
is a good tool in the solutions of hea t transfer prohlems ~l. C]. It seems 
that heat conductior: is tlworeril'ally it Ilonlinear pro('('ss )3. 1]. Therefore 
remember that if you are smoking you can blow " rillg of smoke hur not 
CL half one. Realistic problellls ('llCO\lIltered ill applicatioll" are 
nonlinear. So is the situation v:ith Fourier's law in ,he mlture. hecause an 
experimental law must lw placed in a whole thcdrerind frame. qui 
agis pT'lldenter ago,' et ruplcc fm. 
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