PERIODICA POLYTECHNICA SER. CHEM. ENG. VOL. 41, NO. 2, PP. 205-211 (1997}

ON THE PRINCIPLE OF MINIMUM ENTROPY
PRODUCTION IN QUASILINEAR CASE AND ITS
CONNECTION TO STATISTICAL MECHANICS

Endre Kiss

Department of Chemical Physics
Technical University of Budapest
H-1521 Budapest, Hungary

Received: March 13, 1997

Abstract

Studying heat conduction problems in linear and quasilinear ranges for stationary state
one can be convinced that the principle of minimum entropy production is valid, but
only under special conditions. By using variational calculus we show that the solution
of the minimum principle accords totally with that of the energy balance equation for
both cases. Of course, the Euler~Lagrange differential equations for linear and quasilinear
cases do not give the same solutions and similarly, the temperature distributions differ,
too. Nevertheless, according to a deeper analysis we can suspect that only nonlinear heat
conduction exists. Investigations from the point of view of the picture representation and
a special new method developed for the solution of the variational problem refer to this.
The empirical Fourier’s law does not seem to fit the energy balance equation because
this linear process does not appear exactly in this form in nature. The formal proof for
Fourier’s law with the energy balance equation very probably is delusive.

Keywords: entropy, statistical mechanics.

1. Linear Heat Conduction

From the Lagrange densities we can have the solutions of the Euler-La

differential equations for stationary state heat conduction of Fourier
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different representational pictures [1, 2]:

Fourier picture Energy picture

AT =0 OLNlnT =0

The variational procedure must be carried out accordiug to Gyvarmati [1].

Here, in the linear case — on the basis of the equality of the fluxes — in any
1sidered to be constant

ty o
picture the phenomenological coefficients can be con

but only independently of each other. The equality of fluxes is:

1
—/\VT:—L‘VlnT:LVE; (1)
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{We use A for the heat conductivity coefficent in Fourier’s linear heat con-
duction law and AT) for that in the comstitutive equation of quasilinear
heat conduction.) But if in a representational picture we consider the phe-
nomenological coefficient to be constant then from the point of view of
the so-vielded differential equation and its picture, the differential equation
elaborated in the same way gives us in another picture a quasilinear solution
with temperature dependent phenomenological coefficient.

2. Quasilinear Heat Conduction

According to our prediction some quasilinear Euler-Lagrange equation for
the Fourier picture appears in the linear Euler-Lagrange equation of the
energy and the entropy pictures, respectively:

Energy picture:

2

v
Ahd‘zquMT>=t7<7f>=(VTV-TAI::& (2)

Entropy picture:

1 VT
A= = V(VIT) = v

= x~jﬂ):ﬂVTﬁ—TAT:O. (3)

For to the verification of these quasilinear Euler-Lagrange equations we
write the quasilinear differential equation with a temperature dependent
phenomenological coefficient for heat conduction in Fourier picture {2]:
0T AP ,
)t

but more explicitly,

/ ,»aT [T 82 £
chU\T)-—a—t— - XN (THVT) = NI4T = 0. {5)
where
P IA .
MN(T) = . (6)
‘ oT

Eq. (5} is a quasilinear partial differential equation. For the case of station-
state we can write,

N(THYT)? + MT)AT = 0. (7)

From the equality of the fluxes now in the quasilinear case we get that
instead of —AVT we have to write —A(T}VT in the Fourler picture for the
flux so that constants L™ and L will be
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L*=TMT) and L =T2NT), (8)

and using (8) we can compare equation (7) with equations (2) and (3).
Therefore we can write in the energy picture that

LY(VT)2 - [*TAT =0, ()
or in another form
NMT .
(T]‘ ‘)(VT)Z - MTOHVT = 0. (10)

From the comparison we can get for M(T) and N (T):

C- C.
MT) == and N(T)=—==,
T T2

which coincide totally with the results of statistical mechanics according
to the 1/T ratio in the high temperature range over 100 K [3, 4, 5]. It is
known from the literature that the value of €, e.g., for germanium is about
20000 W/m. On the other hand, in the entropy picture we get from the

o
comparison that

(11)

7L(VT > _LTYT = 0. (12)
and in another form
2MT) > »
—j_—-—(VT)' - MT)AT = 0. (13)

Now we get for MT'} and /\'(T):

o 20
MT) = — and N(Ty = =t (14)
| T T3

The AT values resulting from expressions (11) and (14) are the same but
with different Cv» and C) constants, where ), = TC». From the point of
view of the temperature distributions in stationary state we consider a one-
dimensional heat conduction problem. where heat is conducted through a
plate. The thickness of the plate is [ and the surfaces are kept at constant
temperatures. The boundary conditions are

Tz =0) =Ty and T(e =1) =11,
then the temperature distribution is
/ . . rs -
T(x}y = To(Ty /Ty )x/l in the energy picture, {15)

and

T(z) = . in  the entropy picture, {16)
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which are the solution of the quasilinear Euler-Lagrange equations for the
Fourier picture with quasilinear phenomenological coefficients (11,13).

Reminder: the temperature distribution with stationary-state heat
conduction of constant phenomenological coefficient - ie., Fourler’s case
differential equation of linear type in the Fourier picture - is

T

AT =0, T(z) =T0+(T1—T0)l (17)

which is the formal linear solution for the Fourier picture with linear phe-
nomenological coefficient.
3. Direct Variation for the Quasilinear Case
From the equality of the fluxes with the expression
i 1
~MT)VT = -L7VInT = LV?, (18)

we write for quasilinear case the Lagrange densities in different pictures.

Table 1.
MT\WVIVT= Lp(T) = T?0, Fourier picture,
/\(T)VTV—'Y:‘C =Ly =To = L‘(—Y%, energy picture,
/\(T)VT% =Ly r=0=1L WTI;)“. entropy  picture,

Now we take the Euler-Lagrange differential equation in the Fourler picture
according to Gyarmati [1], but for L1 we substitute L, or Ly in order to
extend the range of the admissible functions as a recency, then after having
solved the variation problem we can have the quasilinear differential equa-
tions (2) and (3) again. It is due to the connections between the Lagrange
densities, which come from the equality of the fluxes. The Lagrange density
according to the Fourler picture shows the existence of nonlinear heat con-
duction in stationary state but not that of the linear one. Generally we can
write for the system of Lagrange densities the connections between linearity
and quasilinearity in the different pictures, i.e.,

So it can be seen that the principle of minimum entropy production is
valid for some quasilinear equation, too. As to the energy balance equation
we can show the formal proof in the linear case

V- -[M\&WWT| = AT =0, {19)
in the quasilinear case the real form is

V- MT)VT] = N(THYT)? + MT)VT = 0. (20)
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Table 2.
Lr =  T?Lyg(T) = TLixr(T).
LinT = Tﬁl/T(T) = T—IE.T(T),
Lyr= T Lwr(T) = T72L7(T).

therefore, the Euler-Lagrange equations of the principle of minimum en-
tropy production and the energy balance equation coincide totally in the
quasilinear range.

4. Quasilinear Solutions for
L{¢) and L*(t)

In the case of L(T) the differential equations are

2AVT)+ XTAT = 0 in the Fourier picture, (21)
2L*(VT)? + L*TAT = 0  in the energy picture.  (22)

In case of L*(T) the differential equations are

MVT)2 £ \TAT =
3L(VT)? + LTAT =

0 in the Fourier picture, (23)
0 in the entropy picture. (24)
The further procedure is the same as was in the case of {9) and (12), i.e., we
express the differential equations with the aid of L(T') and L*(T) on the basis
of the equality of the fluxes, respectively. The temperature distributions to
differential equations (21-24) are as follows:

T

T = Y- T+
T

1w = -1t T
/ T

T(x) = \J(TF -T)7 + 1§
T -1

) = (L) 2

s ) T

The boundary conditions for these solutions are as earlier.
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5. Summary

For stationary state heat conduction there are three differential equations
for the linear case according to the three representational pictures. But this
1s an old view because we saw that Fourier’s law in the linear case (AT = 0)
does not exist in nature so there are only two right forms for linear heat
conduction in the energy and entropy pictures. In the quasilinear case we
can write altogether six differential equations. l.e., In each representational
picture one can write the quasilinear differential equations of the two other
pictures. Here, in accordance with these facts, we can write only two nonlin-
ear differential equations for A(T) in the energy and in the entropy pictures.
The other four differential equations as solutions are only formal from our
point of view. At the variational disposal we used Gyarmati’s solution but
with a principle of recency for the admissible function in the quasilinear
case. Here, we emphasize that at the variational problem the time deriva-
tive must be frozen. In a stationary-state heat conduction problem this is a
very important requirement for the variational procedure. As to the linear
and quasilinear solutions, from time to time there are misunderstandings
in the literature, frequently in connection with the principle of minimum
entropy production. So. e.g.. in [8] the linear and quasilinear solutions for
stationary state heat conduction could not be distinguished and for this rea-
son was the principle of the minimum entropy ploductlc n criticized. The
proper use of the representational pictures giv

>s a clear sight and it seems
that the principle of the minimum entropy production [9, 10] operates well
in the linear and quasilinear ranges of heat conduction pr

temperature dependence of the phcnomeuologiczﬂ coefficient
conduction coefficients show a good correlation w
state physi

bleTnx too. The

i
is a good tool in the sol
hat heat conduction is t
remember that if vou are s
a half one. Realistic problems applications are
re. because an
Guidguid

nonlinear. Se is the situation with Fourler's law
experimental law must be placed in a whole
agis prudenter agas et respice finem.

References
{1} GyarMmati, L: Non-Equilibrium Thermodynamics, Field Theory and Variational
Principles. Springer. Berlin, Heidelberg, New-York (1970;.
[2] FEKETE, D.: A Systematic Application of Gy;;rmati', Wave Theory of Thermody-

namics to Thermal Waves in Solids. Phys. Siat. Sol. (b} Vol. 105, {1981) p. 161
KREHER, K.: Festkorperphysik. Wissentschaftliche 'I aschenbiicher, Band 103. Reihe
Mathematik und Physik. Akademie-Verlag. Berlin (1973).

[4] LinpeR, H.: Grundriss der Festkdrperphysik, VEB Fachbuchverlag Leipzig (1978).

—
[Ws)
[t}




MINIMUM ENTROPY PRODUCTION IN QUASILINEAR CASE 211

KitTEL, CH.: Introduction to Solid State Physics, 5th edition John & Sons, Inc.
BioT, M. A.: Variational Principles in Heat Transfer. Oxford Press (1970).

Kiss, E.: On the Validity of the Principle of Minimum Entropy Production, Periodica
Polytechnica, Ser. Chem. Eng., Vol. 38, (1994), pp. 183-197.

LampiNEN, M. J.: A Problem of the Principle of Minimum Entropy Production.
Short Communication, J. Non-Equilib. Thermodyn. Vol. 15 (1990}, pp. 397-402.
De Groot, 5.R. — Mazur, P.: Non-Equilibrium Thermodynamics North-Holland
Publishing Co., Amsterdam (1962).

GLANSDORFF, P. — PRIGOGINE, 1.: Thermodynamic Theory of Structure, Stability
and Fluctuations. London, New York, Sydney, Toronto: Wiley Interscience {1971)
Javorsky, B. - DETLAF, A.: Handbook of Physics. Mir Publishers, Moscow.
CuBo,R. - IcHiMura,H. - UsHul, T. — HasHiTsuMmE, N.: Statistical Mechanics
{(Netsugaku-tokeingaku) The Shokabo and Company, Tokyo.

VERHAS, J.: Non-Linear Thermodynamics. At#i Accademia Peloritana dei Peri-
colanti, (Messina, Italy, Sicily) Vol. 62 (1989) pp. 73-79.



