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Abstract

The general laws governing thermodynamic processes and phenomena are recapitulated and com-
pleted with new results of kinetic thermodynamics (‘Thermo-kinetics’). The treatise consists of three
parts. The first one is a recapitulatory of the properties of the fundamental participants of equilibrated
macroscopic systems: the densities (C) of the conservative entities (energy, mass) and the set of
potentials (F), the equations of state, force laws, cross symmetries, the product-sum of C and F and
their differentials. The second part deals with the basic thermodynamic processes, absolute ( j ) and
net fluxes, dynamic force laws, time reversal and cross symmetries, the product-sum of j and F , their
various (exact, non-exact, second) differentials. The third part is the story of the inequalities, the
‘arrows’: the Second Law, force arrows and time arrows. The origins of time changes, the evolution
toward equilibrium or non-equilibrium steady states. All relations and laws are positioned into a
general system of the three basic entities (C , F , j ), the three products (C · F , j · F and C · j ), and
the three levels of their spatial and/or time-derivatives. Some conventional formulations are modified
or generalised. The treatise does not extend over material systems without temperature, nonlinear
chemical reactions and instabilities far from equilibrium.

Keywords: thermodynamics, thermokinetics, processes, time-reversibility, reciprocities, evolution.

Introduction

Thermodynamic system is a macroscopic material body having temperature, inter-
nal energy and a multitude of microscopic elements (atoms, molecules, electrons,
photons, phonons etc.). A number of aspects are known for interpretation and
description of thermodynamic systems and laws. There are different viewpoints,
applications, aims. Contrary to the classical mechanics, e.g. motion of a single
rigid body, the coordinates are fixed here to a given point of place: ‘local’ vs.
‘substantial’ representation. The discussion is ‘material-centered’ (objectivistic)
and not ‘man-centered’ (observers, engineers, analysts). In this sense, we will
mainly deal with ‘processes’ instead of ‘operations’. We know that the behaviour
of the material at a given point depends mainly on its local environment and not
on the distance from the wall. We will therefore prefer the ‘local’ vs. ‘global’
treatise (volume element vs. macroscopic system, densities or concentrations vs.
macroscopic extensive properties). This treatment proved to be more simple and
‘nature-centered’. As the statements, relations and laws discussed are mainly ap-
plied by chemists and physico-chemists, the notations and formulations used here
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will be familiar for them. The old thermodynamics of the 19. century was a theory
of energetics (heat and work). The central problem was to operate the heat en-
gines. Here we strive to get rid of historical, energetic aspects, the classical forms
of the ‘Zeroth, First, Second, Third Law’ will be replaced by their generalised and
modernised equivalents. We will prefer entropic (e.g., using 1/T instead of T ) vs.
energetic representation, because experiences proved that, doing so, formulisms are
more simple and symmetric. And last, we will strive for minimizing the number of
postulates.

1. Thermostatics

1.1. The Conservative Properties. The First Law.

The Gibbs State Space

It was Willard Gibbs who laid down the foundation of a systematic theory of macro-
scopic equilibrium systems [1, 2, 3]. The mean concepts (internal energy, entropy,
chemical potential, heat, work, etc.) were introduced and defined under the field of
energetics. (‘Energy representation’). The fundamental thermodynamic properties
are the variables of the ‘Gibbs state space’. The coordinates of this state space are
E1, E2, . . . , En , the independent, extensive, additive, conserved quantities (‘invari-
ants’).

‘Extensive’ means that the property Ei (italic letters) is proportional to the size of
the system.

‘Additive’ means that if the quantity Ei of two subsystems are E(I )
i and E (I I )

i ,
respectively, then for the ensemble of the two subsystems

E (I+I I )
i = E (I )

i + E (I I )
i . (1)

‘Conservativity’ is of a certain kind of ‘symmetry’. This type of symmetry is formu-
lated by ‘Noether‘s theorem’ which asserts that every continuous symmetry of
the dynamical behaviour of a system (i.e., of the dynamical equation and the
mechanical potential) implies a conservation law for the system. The symme-
try of dynamical laws has important significance under time translation. All
fundamental dynamical laws of physics (Newton’s law, Maxwell’s equations
and Schrödinger’s equation) are unchanged by the translation t → t′ + t0. If
the external potential is independent of time, Noether’s theorem predicts the
existence of a conserved quantity, called the energy.

The First Law

The first general law expresses the conclusion of the negative experiences of produc-
ing energy from nothing: It is impossible to construct energy producing ‘perpetuum
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mobile’. The introduction of the concept ‘internal energy’ has lead to more exact
formulations: The internal energy of an isolated system is constant. Or for an open
system (permeable boundaries): The flux of the energy (JU ) has no production.

The classical ‘First Law’ asserts that the internal energy of a thermodynamic
system, similarly to other mechanical energies, is conserved. Up to this point this
law is restricted to the energy. Callen [3] has called the attention that thermodynam-
ics is a general, and not only an energetic theory of macroscopic material systems.
He proposed a generalization of the First Law extending the conservativity postulate
on the momentum and the angular momentum (symmetry under spatial translation
and rotation). In most real cases the centre-of-mass of the body is defined as to
be in rest, so that the overall momentum and angular momentum disappears. Now
a further generalization is needed: extension of the symmetry on other motions
such as phase transfers, chemical transformations, in general, transfer from one
subsystem into another one. The law can be formulated as follows:

Law of Conservativity

‘Conservative’ means that if Ei passes from a subsystem (I ) into another one (I I ),
then

�E (I )
i = +�E (I I )

i , (2)

no matter if other properties (temperature, pressure, density etc.) of the subsytems
are the same or not.
Conservative properties are:

the internal energy (U),
the mole numbers (Nk),
the electric charge,
the overall momentum,
the overall angular momentum,
the volume (V ), (or the surface).
At chemical reactions, the mole numbers are not conservative anymore, one

has to calculate with atoms instead of molecules. The common property is the lack
of ‘production’.

dEi

dt
= −div Ji . (3)

Important: only fluxes of conservative quantities have physical meaning. The
independent conservative quantities are the coordinates of the Gibbs state space.

Carriers, Carried Properties, Charges

A macroscopic body is an ensemble of particles. Let C∗z be the density of the
z’th kind of elementary component (z’th carrier particle). The group of the carrier
particles involves more subgroups differring in energy, chemical configuration etc.
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Some of the Ei ’s (e.g., the energy) are bound to particles. The appropriate carried
(molar or partial molar) quantities are called the ‘charges’ (Piz ). Such charges are:
partial molar energy, molar mass, Faraday-charge etc. In this sense

Ei =
∑

z

Piz · C∗z , (4)

where: C∗z is the mole density of the z’th particles.
Piz is the charge of the i’th property carried by a unit of the z’th carrier.

Natural units. In many applications the additive Ei ’s are placed on the exponent.
In this case they must be divided by a ‘natural unit’. For the energy the quantity RT
is widely used as natural unit, where R is the gas constant (R = 8.314 J/K · mol)
and T is the absolute temperature. RT is defined as

RT ≡ lim
P→0

(P · V ), (5)

where P is the pressure and V is the molar volume of an ideal gas. RT has a
statistical meaning as well:

1

RT
= − ln xi − ln xk

Ei − Ek
, (6)

where xi is the fraction of the particles of energy Ei etc. This relation is the integral
of

−R · d ln x = 1

T
dE . (7)

The natural unit of the volume is the ‘characteristic (hyper-) volume’ V∗ defined as
the average cell volume of the configuration phase space

V ∗ =
(

h P

p

)s

, (8)

where h P is the Planck-constant and p is the average (‘thermal’) momentum and s
is the degree of freedom. (At motion of a mass point in a three-dimension space,
s = 3).

1.2. Entropy and the Third Law

About the physical sense of the quantity called ‘entropy’ uncertainties prevail up
to now. The origins of the obscurity are in the quite different definitions and
interpretations in use. What is entropy really? Reduced heat? The measure of
disorder? Or the probability? The degree of the lack of information? ‘The entropy
increases’. What is the background of the increase? The time arrow? Has a system
entropy out of equilibrium, or not? Is the entropy really zero at zero absolute



GOVERNING LAWS OF THERMODYNAMICS 7

temperature? Is the entropy finite when the temperature is infinite or negative?
Has a system entropy without temperature? When does exist entropy and when
does not at all? Which is the most general definition of the entropy? What is sure,
the entropy is closely related to the distributions. The most general definition of
entropy, of which all special ‘entropies’ can be deduced is as follows:

If a system is composed of more elements and the set of the elements can be
classified into more subsets (fractions), then the (dimensionless) entropy (S) is

dS = −
∑

z

ln xz · dxz, (9)

where the xz’s are the fractions (not probabilities!) of the elements similar (indis-
tinguishable) in one and different (distinguishable) in another respect.

No requirements are what kind of distinctions are to be made. The elements
may differ in energy, chemical character, colour, mass, may be words of different
length, people of different mother language and so on. This general entropy can
be defined for any (eventually irregular) distribution. In this sense any system has
entropy! The entropy is, consequently, optional to some extent. (E.g. the isotopic
composition of a given element is to be taken into account only if it undergoes a
change. If not, the appropriate entropy-term is superfluous). From this property
of entropy results the apparently contradictory statement that entropy always exists
(may be defined and calculated) for any kind of regular or irregular distributions.

Thermal entropy: The entropy of the energy-distribution is the ‘thermal’
entropy (S), its dimension is J/K · mol. The natural unit of the thermal entropy is
the gas constant (R). The dimensionless entropy S is the thermal entropy divided
by the gas constant.

Entropy is an extensive and additive but non-conservative quantity. This
property results from the fact that the macroscopic entropy is a sum of products
of invariant extensive quantities (Ei ) and ‘intensive’ factors (the potentials, Fi ). It
can be proved that if all Ei ’s are conservative, S cannot be. Because of the ‘non-
conservativity’ of S, one cannot speak of an ‘entropy-flux’ (the quantity often called
‘entropy-flux’ is a special product-sum discussed later).

The Third Law

If the entropy of every element in its stable state at T = 0 is taken as zero, every
substance has a positive entropy which at T = 0 may become zero, and does become
zero for all perfect crystalline substances, including compounds [4].

It results from the definition that the Third Law refers only to the ‘thermal’
entropy and thus is a law of limited validity.
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1.3. The Potentials. Transitivity. The Zeroth Law

Global System, Energy Representation

In the Gibbsian energetic system the internal energy (U) plays the role of prin-
cipal quantity and the entropy is one of the extensive coordinates (even if non-
conservative).

At local equilibrium U is unique function of the Ei ’s. The derivative F∗i is
called the i’th (‘energetic’) potential. An appropriate potential is accompanied to
any Ei .

Fi =
(

∂S

∂ Ei

)
. (10)

The potentials play important roles in thermodynamics: The most important poten-
tials are:

Ei F∗i
. . . . . . . . . .
S → T

Nk → µk
V → −P,

where: T is the absolute temperature (K ),
µ is the chemical potential (J/mol),
P is the pressure (Pa).

The existence of the potentials infers the existence of equilibrium. For the
temperature:

Global equilibrium: T exists, ∇T = 0;
Local equilibrium: T exists, ∇T �= 0 is possible.
Local non-equilibrium: T does not exist.

Transitivity

If A is in equilibrium with B and B is in equilibrium with C, then A is in equilibrium
with C and all (independent) potentials (Fi ) equalize,

F∗A(Eq) = F∗B(Eq) = F∗C(Eq) (11)

In a non-equilibrium state the differences of F∗’s (X) are the ‘driving forces’ of the
equilibration processes.

F∗A − F∗B = X AB, (12a)
F∗B − F∗C = X BC (12b)

At equilibrium the driving forces (X) vanish.
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The transitivity is the consequence of the directed Force- and the Time-arrow
(Section 4).

The classical ‘Zeroth Law’ is a statement referring only to the thermal equi-
librium.

Zeroth Law

If A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then
C is also in thermal equilibrium with A.
Dependency: If some of Ei ’s are associated to each other (e.g. ion and an electric
charge, stoichiometry), the set of potentials are to be transformed into an indepen-
dent one (e.g. the chemical potential is to be added to the molar electric charge:
µe = µ + z · F). The transformations are to be carried out under keeping the
fundamental balance invariant.

1.4. The Fundamental Balances

Gibbs’ space is called the space of state of the Ei ’s as ‘coordinates’.
The potentials convert the coordinates into energy. The products of Ei and

F∗i can be terms of a general energy balance. For a global system the balance is:

H︷ ︸︸ ︷
U = T︸ ︷︷ ︸

A

· S − P · V︸ ︷︷ ︸
Kramers

+
G︷ ︸︸ ︷∑

k

µk · Nk (13)

Some partial sums are often used:

The Gibbs free energy: G ≡
∑

k

µk · Nk = H − T · S, (14)

The enthalpy: H ≡ U + P · V = G + T · S, (15)
The Helmholtz free energy: A ≡ U − T · S = G − P · V, (16)
The Kramers-potential: T · S − P · V = G −U, (17)

where:
U, V, Nk are extensive (italic letters), additive and conservative quantities,
S, H, A, G are all extensive and additive but non-conservative quantities.
T, P, µk are the potentials (non-additive, non-conservative).

The characteristic variables follow from Legendre transformations.

U(S, V, Nk), S(U, V, Nk), H(S, P, Nk), A(T, V, Nk ), G(T, P, Nk ).

The so-called Born-square illustrates the relationships (neglecting here Nk’s).
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  ��  P             G           T   

Fig. 1. The Born square

The arrows point at the derivatives (opposite direction: negative).
The differentials are:

GIBBS dU = T · dS − P · dV+
∑

k

µk · dNk, (18)

GIBBS–DUHEM 0 = S · dT − V · dP +
∑

k

Nk · dµk, (19)

‘Second differential’ δ2U ≡ dS · dT − dV · dP +
∑

k

dNk · dµk > 0. (20)

The conservative properties are here underlined to point out that the product sums
contain mixed conservative and non-conservative quantities.

Note the asymmetric form of (19) and the positivity of (20).

a. Energy- or entropy representation?

Both disharmonies indicate that the global energy-representation is not the most
practical one. The sum can be expressed as function of the energy and the entropy.
Energy representation:

U is the principal, S is the ‘thermal’ term.
The thermal potential is the temperature.

Entropy representation:
S is the principal, U is the thermal term.
The thermal potential is the reciprocal temperature.

dS = (1/T ) · dU+ (P/T ) · dV+
∑

k

(−µk/T ) · dNk . (21)

Doing so, the sum consists of products including only conservative extensive quan-
tities.

Experiments proved that use of the entropy-representation is more practical in
evaluations of temperature-dependence measurements: to make plots of logarithms
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of vapour pressures (or rate constants or equilibrium constants etc.) vs. 1/T (and
not T ) is advisable. As to the chemical potential, µ is always negative and explicitly
temperature-dependent, in contrast to−µ/T which is positive and less temperature-
dependent.

b. Global or local system?

The energy representation is burdened by the singularity problem: the number of
variables is greater than the number of dimensions of the Gibbs space. In other
words, the variables are not all independent, one of them is superfluous. A con-
sequence is that the matrix of the second derivatives of the entropy is singular,
its reciprocal cannot be established. The problem is solved by choosing the local
system. The ‘local system’ is a small area of given fixed volume without any phys-
ical walls. The space of state is then spanned by the densities (in other word, the
concentrations), defined as

Ci = lim
V→0

(Ei/V ). (22)

By definition, the density of the volume is unity and dV ≡ 0. The superfluous
variable, the volume disappears (densities do not depend on the volume). In this
way, Ck’s form an independent set. Instead of the expansion or contraction (dV/dt)
the change in the density (dC/dt) or the divergency of the flux appears.

The Fundamental Balances in Local Entropy Representation

At local equilibrium the entropy density is a homogeneous function of first order
of the densities of the conservative extensive quantities (Ci):

dS =
∑

i

Fi · dCi , (23)

and the derivation leads to another set of potentials (Fi )

Fi =
(

∂S

∂ Ei

)
. (24)

The two most important potentials are (the entropy density is denoted as S):

Ci Fi
. . . . . . . . . . . . .
CU → 1/T
Ck → −µk/T



12 K. OLÁH

The local versions of the Gibbs and the Gibbs–Duhem relations appear as the
differentials of S and −P/T , respectively [5]. The sums are full differentials of
� ≡ S − P/T , the density of the entropic ‘Kramers-potential’

� = S − P/T . (25)

S is a function of the concentrations, and is the principal quantity of the ‘density-
space’

dS = (1/T ) · dCU +
∑

k

(−µ/T ) · dCk =
∑

i

Fi · dCi . (26)

−P/T is a function of the potentials, and is the principal quantity of the ‘potential-
space’

d(−P/T ) = CU · d(1/T )+
∑

k

Ck · d(−µk/T ) =
∑

i

Ci · dFi . (27)

d(−P/T ) is the Legendre-transform of dS. The partial derivatives show symmetry

Fi =
(

∂S

∂Ci

)
, Ci =

(
∂ (−P/T )

∂ Fi

)
. (28)

Remind that for ideal gases P/T = R · C and d(P/T ) = R · dC = R · C · d ln C .

(a) Density space (b) Potential space

Fig. 2.

What may mean the differentials ‘d’? In thermodynamic formulas the differentials
are widely used. ‘d’ is only an abbreviation with several physical meanings. Some
of them are:

a. A relatively small change, ‘deformation’ of the state.
b. Change in space, gradient of a local property (∇C , or ∇F).
c. Change in time: d/dt .
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In the cases b. and c. the fundamental Gibbs-relations refer not only to
equilibrium balances but to non-equilibrium and/or non-stationary processes as
well.

1.5. The Equations of State (EOS). Cross Symmetry

In local equilibrium the potentials are functions of the densities

dFi =
∑

k

�ik · dCk, (29)

and inversely, the densities are functions of the potentials

dCi =
∑

k

�−1
ik · dFk, (30)

�ik =
(

∂ Fi

∂Ck

)
and �−1

ik =
(

∂Ci

∂ Fk

)
. (31)

The elements �ik form a quadratic matrix (‘state matrix’). The diagonal elements
(i = k) represent the self-effects (e.g. dependence of the internal energy on the
temperature). �ik ’s (i �=k) are responsible for the cross-effects between the i’th and
the k’th interaction.

Three important properties are worth to study: Symmetry, Rank, Negativity.

Cross Symmetry of the State Matrix (Maxwell’s Reciprocity Relations (MRR))

�ik = �ki (all i, k). (32)

MRR can be proved in several different ways: first, as the symmetry of a second
derivative matrix; second, as a transformed diagonal matrix; and third, tested by
experiments.

1. �ik ’s are the elements of the second derivative matrix of the entropy density
and �−1

ik ’s are the second derivatives of−P/T . It follows from the elementary
theorem of calculus that matrix � must be symmetric [6]

�ik =
(

∂ Fi

∂Ck

)
=
(

∂2S

∂Ci∂Ck

)
=
(

∂2S

∂Ck∂Ci

)
=
(

∂ Fk

∂Ci

)
= �ki (33a)

�−1
ik =

(
∂Ci

∂ Fk

)
=
(

∂2 (−P/T )

∂ Fi∂ Fk

)
=
(

∂2 (−P/T )

∂ Fk∂ Fi

)
=
(

∂Ck

∂ Fi

)
= �−1

ki .

(33b)

The symmetry may be subject of experimental testing. All observations
confirmed that MRR is generally true. As a consequence one may state that:
the existence of the entropy is an experimental fact.
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b. Expressed Ci as carried by the z’th carrier density C∗z

Ci =
∑

z

Piz · C∗z , (34)

−d ln C∗z = dF∗z =
∑

i

Piz · dFi , (35)

dCi =
∑

z

Piz · dC∗z +
∑

i

C∗z · dPiz =

= −
∑

k

(∑
z

Piz · C∗z · Pkz + ∂2 F∗z
∂ Fi∂ Fk

)
· dFk . (36)

The expression in the brackets (matrix �) is invariant against interchanging
i and k.

Independence, the rank: If the rank of an n × n matrix is smaller than n, then the
matrix is singular, there is dependence between two rows or columns. In such case
the determinant is zero and the reciprocal matrix cannot be calculated.

Energy representation: dependent balance.
Entropy density representation: independent balance.
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Summary of Part 1. 

 

Part 1. has dealt with the relationships of the following quantities 

                            Ci                                              Fi    

                  Conservative property.                 Transitivity of potentials. 

                 Generalised First Law.                   Generalised Zeroth Law. 

                                 Cz*                                            Fi*  =   ln Cz* 

                    Elementary carriers                         Elementary potentials    

Ci  =  ∑z Piz .Cz*             and            Fi*  =  ∑i Piz .Fi 

 d ln Cz*   =   ∑i Piz .dFi 

d Ci  =  ∑k Γik . d Fk 

Maxwell`s cross symmetry relation (MRR): 

ΓΓΓΓik   =   ΓΓΓΓki 

The Kramers-function (Ξ), the entropy-density (S) and - P/T: 

∑i Ci . Fi   ≡ 

≡    Ξ    = 

=   S    +   ( P/T)    

The integrals of the non-exact differentials: 

d S   =   ∑i Fi.dCi       and      d ( P/T)  =  ∑i Ci.dFi 

2. Processes, Symmetries

2.1. Thermodynamic Processes

Processes and Anti-Processes. Thermokinetics

The thermodynamic system differs from the mechanical one in that, that it consists
of a great number of similar elements (particles). Thermodynamic systems are
‘living’ systems in the sense that intensive internal motions take place not only in
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‘irreversible’ processes but in equilibrium states as well. Despite all appearances
the equilibrium is not a motionless, dead, but a living state, place of a number of
intensive internal motions, processes. The word ‘thermo’ means that the system
has temperature, the sign of life. Thermodynamic processes are carried by motions
or transformations of these elements taking place in space and time. In the kinetic
theory ‘Thermokinetics’ the ‘absolute’ process rates play dominant roles [7, 8]. The
three fundamental groups of thermodynamic processes are:

a. Transfers passing a boundary of two (equilibrated) phases:
Vaporization/condensation across a liquid-vapor surface.
Solution/precipitation on a solid/liquid interface.
Electric charge transfer on a metal/electrolyte interface (‘anodic’ and ‘ca-
thodic’).
Energy (heat) two-way traffic between two phases.
Radiative emission/absorption, etc.

b. Conductive motions inside a phase:
Convective or diffusive mass fluxes.
Heat flow carried by molecules, electrons, phonons, photons.
Momentum flow.
Electric conduction carried by electrons or ions.

c. Scalar processes:
Chemical transformations.
Relaxation processes (restoring the equilibrium structure).

The types of the process rates are:
The product of the surface density and a frequency (moles/m2 · 1/s).
The product of the density and the speed (moles/m3 ·m/s).
The product of a density and a frequency (moles/m3 · 1/s).

2.1.1. Hierarchy

The processes can be sorted into three levels of hierarchy.

level 0: j→ and j← ‘Absolute rates’
level I: ∇2 j ‘Net rates’ (Onsagerian rates, J )
level II: ∇2 j ‘Evolution rates’ (div J = −dC/dt)

Other known hierarchies are:
level 0: Point in space; Location at a moment; Concentration (C); Temperature
level I: Direction; Velocity; grad C ; grad T
level II: Curvature; Acceleration; div grad C ; div grad T

Up to the end of the 20th century, only concepts of levels I. and II. are mainly
used. However, the zeroth level provides more advantages:

a. Resolution of the net process into time reverse components (‘anti-processes’)
makes possible to apply time reverse symmetry laws.

b. Knowing all about the relations of the zeroth level, one knows all the relations
of levels I. and II.



GOVERNING LAWS OF THERMODYNAMICS 17

     Phase I.                       Phase II. 

                                a.  

                                                             c. 

            b, 

Fig. 3. Time reverse processes

2.2. Time Reversal Invariance of rates

(Transformation t →−t)

As it is known, all fundamental process rate relationships in mechanics, electro-
dynamics and quantum mechanics show time reversal symmetry: the equations
describing the process rates are invariant under the transformation of t → −t
and p → −p (if a magnetic field is present, H → −H ). The particles of a
thermodynamic system all obey the general physical laws and, as it is to be expected,
they preserve the time symmetry as well. As it was shown, all the processes listed
above have this sort of duality. Any elementary event may take place in two opposite
directions. These process pairs are in time-reverse relation with each other. This
behavior was put in words by FOWLER (1924) [9]: ‘any one process of exchange
acting in a particular direction must be invariable companied by an analogous
reverse process’.

EXAMPLES. Evaporation and vapor condensation, the flux of particles of a fluid
in directions +x and −x , the anodic and cathodic electrode current and chemical
reaction ‘from left to right’ and ‘from right to left’.

The Law of Detailed Balance

Paul DIRAC wrote (1924) [10]:

‘It seems plausible, however, to suppose that all atomic processes are
reversible, or, more exactly, that if after any encounter all the velocities
are reversed, then the whole process would just repeat itself backwards,
the system finally leaving the scene of action being the same as the
original systems in the first process and having the reverse velocities.
With this assumption, to which there are no known exceptions, each
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kind of encounter must be just as likely to occur as its converse in
which every velocity has changed sign, the whole process taking place
backwards, since there is now perfect symmetry between past and future
time.’

This duality is preserved on the macroscopic level [11, 12].
At equilibrium all reverse macroscopic absolute process rates ( j→ and j←)

equilibrate, which is equivalent to the statement that: at equilibrium cycles are not
possible.

j→i (eq) = j←i (eq) (DB) (37)

 Does not occur                 Does not occur                   Real case 

Fig. 4. Cycles at a triangle reaction

The ‘triangular’ reaction systems can be used for experimental test.
Observing the changes in the concentrations of B and C after a sudden jump

in the concentration of A, a cycle could be detected. The result was [13]: No traces
of equilibrium cycles were found.

2.3. The Kinetic Mass-Action Law (MA)

The absolute process rate can be formulated as function of the concentrations.
The rate of a process is proportional to the number densities of the partici-

pants.

j = k ·
∏

k

Cνk
k (38)

or
ln j = ln k +

∑
k

νk · ln Ck. (39)

The factor of proportionality (k) is the rate constant.
Ck is the molar concentration (number density) of the k’th participant
νk is the stoichiometric coefficient of the k’th participant (‘charges’).

This law is called the ‘Mass Action Law’ (MA) declared by GULDBERG and
WAAGE, 1872, [14]. The law, though it was not declared, was employed since
the first half of the 19th century, first of all, for chemical processes. Boltzmann,
Maxwell, Einstein, Tolman, Onsager and many others up to now, calculated with rate
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equations of MA type. The sense of the law seems clear and self-evident. Though, in
some instances problems arose. One of them is the kinetic model of the light-matter
equilibrium studied by Albert EINSTEIN [15]. Here MA had lead to contradictions.
Another example: chemical processes taking place in non-ideal mixtures, where the
thermodynamic consistency requires ‘activities’ instead of concentrations. It has
turned out that the problems came from the inconsequent choice of the participants.
(Both problems could be solved recently by the author [16, 17]). Further problem
arises at chemical processes: the molecules are not conservative. It would be
preferable to calculate with the numbers of atoms. Chemical processes would be
the topic of another treatise.

The Law of Microscopic Reversibility (MR)

The ‘Law of Microscopic Reversibility’ declares the time reverse symmetry of the
rate constants.

k→ = k← (40)

The name was given by R. T. TOLMAN [18]. TOLMAN’s interest was elicited by
Einstein’s paper dealing with the mass-radiation equilibrium. In 1924 TOLMAN
published a paper referring to that of Einstein. Tolman guessed that the equality of
two rate constants may be a law of general validity. He wrote: ‘This assumption
should be recognized as a distinct postulate and might be called the principle of
microscopic reversibility’.

Many years before, BOLTZMANN in his kinetic derivation had used this sym-
metry successfully [19]. All the same, for many years the notions microscopic
reversibility, detailed balance, steady state and equilibrium had been confusing. It
is known, however, that at ‘macroscopic’ processes this law is not valid anymore.
For example, a chemical reaction

A↔ B + C (41)
j→ = k→[A] and j← = k←[B] · [C], (42)

and
k→ �= k← (43)

A question arises: Is the time reversal symmetry valid only at microscopic processes?
Some authors suspected that the origin of the violation of MR might be the

result of the going over from microscopic to macroscopic, multiparticle system
model and looked for a number of elements where the law MR began to be invalid.
Others believed that the violation of MR was a sign of the violation of the time
reversal symmetry [20]. The truth is that the rate relations chosen (the MA type
equations) are not convenient in this sense. The explanation is: the law of MR
is valid if the participants are ‘ultimate’, structureless particles or, their internal
structure does not suffer any change during the given process. (The participants
may be of macroscopic size as well, e.g. ideal, elastic billiard balls).
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2.4. The Charges

Charges are key parts of thermodynamic relations, playing multiple roles. Any
process is carried by flow or transfer of elementary carriers (e.g., flux of atoms,
molecules, electrons, photons, phonons, other quasiparticles) [21]. The word ‘el-
ementary’ means that these particles can be regarded structureless mass points or,
their internal stucture does not change in the process in question. Charges connect
carriers and carried process rates.

The absolute flux (transfer, transformation) of the i’th (additive, conservative)
quantity is

ji =
∑

i

Qiz jz, (44)

where: jz is the z’th carrier process rate (flux),
ji is the i’th carried process rate,

Qiz is the i’th quantity carried by a unit carrier flux.
The four most important charges are:

1. The thermal charge (temperature dependent):

Q th = E∗ + n · RT, (45)

where E∗ is the top of the potential energy barrier of the process, and n is the
power of the temperature in the ‘pre-exponential factor’ [22].

Fig. 5. Versions of the thermal charge

The thermal charge shows exact reverse symmetry:

E∗→ = E∗← and n→ = n←. (46)

2. The molar momentum (velocity):

Q P = Mk · u, (47)

where M is the molar mass, and u is the (average) velocity.
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3. The electric charge of a particle (ion) (electric potential):

Qe = zk · F, (48)

where zk is the number of charge of the k’th ion, and F is the Faraday-
charge. (If the particles have electric charges, then the flux of the particles
carries electric current).

4. The stoichiometric coefficients νki (affinity): The number of the k’th particles
as participants in the i’th process. (Caution! Problem at chemical reactions).

Another function of the charges is: The charges connect carrier and carried poten-
tials:

F∗z =
∑

i

Qiz · dFi . (49)

The double role of the charges is expressed by a twofold definition:(
∂ ji
∂ j∗z

)
= Qzi =

(
∂ F∗z
∂ Fi

)
. (50)

2.5. The ‘Potential-Action’ (PA) rate equations

PA type rate equations are called relationships where the absolute process rates are
expressed in terms of the independent potentials (Fi ) [7, 8].
Reciprocal temperature: 1/T ;
Chemical potential: −µk/T :
Electrochemical potential: −(µk + zk, F)/T ;
Affinity (forward, backward): −(

∑
k ν→k · µk)/T , −(

∑
k ν←k · µk)/T .

While MA is represented in the configurational space, PA in the potential-
space.

This representation exhibits more favourable properties: Unified, general
form of the rate equations. Analysis of all fundamental physicochemical processes
leads to a universal type rate relation. This rate law has the exponential character.

The General Rate Law

−R · d ln j∗z =
∑

k

Qkz · dFk, (51)

ji =
∑

z

Qiz · j∗z , (52)

Remember that
−R · d ln j∗z = dF∗z (53)
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The charges connect process rates and potentials.
The typical integral form of the absolute rate equations for heat/mass transfers

is
j = j 0 · T n exp(−E∗/RT ) · exp(µ0/RT ) · Cν, (54)

where the integration constant j0 is independent of temperature and composition.
Inserting different charges the appropriate process rate relations are resulted.

EXAMPLE. mass and heat transfer.

The thermal potential: F1 = 1/T ; the thermal charge: Q1 = E∗ + n · RT .
The material potential: F2 = −µ/T ; the material charge: Q2 = ν = 1 (or, νA, νB ).
The integral form is∫

(E∗ + n · RT ) · d(1/T ) = E∗/T − n · R · ln T, (55)

µ = µ0 + RT · ln C. (56)

Table 1.

E∗ n ν Absolute process rate Process

H n 1 j = j 0 · T n Heat conduction
H 4 1 j = j 0 · T 4 Radiation
Hvap 1/2 1 j = j 0 · T 1/2 · exp(−�Hvap/RT ) Evaporation
Hvap 1/2 1 j = j 0 · T 1/2 · P/RT Vapor condensation
H n 1 j = j 0 · T n · C Diffusion (gas)
HDiff 1/2 1 j = j 0 · T 1/2 · exp(−�HD/RT ) · C Diffusion (liquid)
H ∗ n νA , νB j = j0 · T n · exp(−�H ∗/RT ) · CA · CB Chemical reaction

The General Time Reversal Symmetry (TS)

All rate equations must harmonise with the two equilibrium symmetry laws [23].
The equilibration of the potentials (generalised Zeroth Law):

F I
i (Eq) = F I I

i (Eq). (57)

The equilibration of the absolute fluxes (Law of detailed Balance):

j→(Eq) = j←(Eq). (58)
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These requirements demand that, not only at equilibrium, the rate equations of the
time reverse potential-action absolute rates are identical:

j→i (F I
k ) ≡ j←i (F I

k ) (all i , k), (RS) (59)

The mathematical forms of the reverse j (F) rate equations are identical, and all
reverse constant parameters (charges) must have the same numerical values

Q→iz = Q←iz . (60)

This is a generalisation of the Law of Microscopic Reversibility, extending the
symmetry to all parameters (not only to the rate constant) and over macroscopic
rate processes.

EXAMPLE. PA rate equation of evaporation/condensation

Table 2.

j→(T ) = j0 · T 1/2 exp(−�Hvap/RT ) j←(T, P) = j0 · T 1/2 · P/RT

Evaporation Condensation

Common P A form:

= j0[T 1/2 · exp(−E∗/RT )] · exp(µ/RT )

j→(1/T,−µ/T ) ≡ j←(1/T,−µ/T ) =

�
�

�
���

�
�

�
���

2.6. The Dynamic Potential

The ‘Dynamic Potential’ is defined as the product-sum [24]

Z =
∑

i

ji · Fi . (61)
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Kinetic analogous of the Kramers density � ( ji , instead of Ci )

Z = Z j + ZF , (62)
dZ = dZ j + dZF , (63)

dZ j ≡
∑

i

Fi · d ji; dZF ≡
∑

i

ji · dFi , (64)

Z j ≡
∫ ∑

i

Fi · d ji; ZF ≡
∫ ∑

i

ji · dFi . (65)

(Z j is the analogous of S and ZF is that of P/T ). The derivatives are

Fi =
(

∂ Z j

∂ ji

)
; ji =

(
∂ ZF

∂ Fi

)
. (66)

As seen, ZF is a Legendre-transformed of Zj . As Z j is the principal dynamic
quantity of the kinetic ( j) space, ZF is the same for the potential (F) space.

(a) Z j in the dynamic space (b) ZF in the potential-space

Fig. 6.

2.7. Cross Effects. Reciprocity

The relation between d ji and dFi can be written formally

d ji =
∑

k

�ik · dFk, (67)
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where coefficients �ik map the process rate-space into the potential-space. In
many instances two or more internal processes may interfere with each other. Cross
effects represent the interdependence of the i’th flux and the k’th potential: �ik �= 0
(i �= k).

The physical origin of a cross effect is found at the charges. As told, an
appropriate type of charge belongs to any potential (or force field). The i’th force
field acts upon j∗z if and only if Qzi �= 0. For example, the electric potential acts
on the motion of a particle if and only if the particle carries electric charge (and, in
such case it carries electric current as well). The temperature acts on a process if it
carries thermal charge and in turn, this process (flux) carries heat transfer as well.
(Example: if the particles have electric charges then the electric field influences
their flux). Cross effect exists if one particle flux carries two or more different
charges.

The relation of ji and Fk is, supposing first that the Q’s are constants:

d ji = −1/R ·
∑

k

(∑
z

Qiz · j∗z · Qzk

)
· dFk =

∑
k

�ik · dFk . (68)

Taking into account that Q may depend on some potentials (e.g., the thermal charge
is temperature-dependent):

�ik = −1/R ·
∑

z

j∗z ·
(

Qiz · Qkz + ∂2 F∗z
∂ Fi · ∂ Fk

)
= �ki . (69)

The sum in the brackets (�ik ) is invariant against interchanging i and k. Cross
effects have been discussed by many authors. The earliest of them is due to W.
THOMSON on the thermoelectric phenomena [25]. In such cases reciprocities were
observed. A good reason to suspect is that the reciprocity may be a general property
of processes. If ZP exists and is a continuous function of the potentials, then �ik ’s
are elements of the second derivative matrix of ZP . The second derivatives are
always symmetrical [5]

The Dynamic Reciprocity Relations (DRR)

�ik =
(

∂ ji
∂ Fk

)
=
(

∂2 ZF

∂ Fi∂ Fk

)
=
(

∂2 ZF

∂ Fk∂ Fi

)
=
(

∂ jk
∂ Fi

)
= �ki , (70a)

�−1
ik =

(
∂ Fi

∂ jk

)
=
(

∂2 ZF

∂ ji∂ jk

)
=
(

∂2 ZF

∂ jk∂ ji

)
=
(

∂ Fk

∂ ji

)
= �−1

ki . (70b)
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The Dynamic Reciprocity Relation

�ik = �ki (DRR). (71)

(The dynamic equivalent of MRR). Validity of DRR does not depend on the func-
tional form j (F), consequently, is not confined to linearity. Similarly to the en-
tropy density, second differential elements (�ik) may be subjects of experimental
checking. Analysis of various known rate equations results that DRR is valid.
Consequently, one may declare that the existence of the dynamic potential is exper-
imentally confirmed.

2.8. The ‘Irreversible Thermodynamics’. Net process rates

The Onsagerian ‘irreversible thermodynamics’ (IT) has always dealt with ‘net’
fluxes (Ji ). (It is a puzzle why absolute rates got quite forgotten in the Onsagerian
and post-Onsagerian theories). IT, consequently, has lost any contact with thermo-
statics.

At non-equilibrium states there appear observable ‘net’ process rates (J )
[7, 8].

Any ‘net’ process rate (Ji ) is the difference of a ‘forward’ ( j→i ) and a ‘back-
ward’ ( j←i ) ‘absolute’ process rate:

Ji = j→i − j←i = −� j, (72)
or

Ji = −λ · ∇ ji . (73)

In equilibria net fluxes (and the forces) always vanish, the rate equations degenerate
into 0 = 0. Knowing the rate relations between ji and Fi , one knows everything
about the relations of their differences Ji and Xi . Onsager’s IT forms a part of
the kinetic theory as linear limiting case. The differences of the two main process
theories can be pictured as follows:

Table 3. Absolute and net fluxes, potentials and forces, IT and Thermokinetics
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Onsager’s Reciprocity Relations (ORR)

Lars ONSAGER with his two famous papers (1931, [26]) laid down the foundations
of the thermodynamic theory of non-equilibrium (‘irreversible’) systems. In this
work he declared the reciprocity between different processes as a general law.

ONSAGER supposed that, not far from equilibrium, the (net) fluxes (Ji ) are
linear functions of the forces (Xk)

Ji =
∑

k

Lik · Xk, (74)

where: Ji is the net rate of the i’th process,
Xk is the k’th thermodynamic driving force, (difference or gradient

of the k’th potential)
Lik is the appropriate rate coefficient.

This rate relation can be called the ‘Ohm’s laws’ of thermodynamics.
Onsager’s Reciprocity Relations (ORR) express the symmetry of the cross

coefficients
Lik = Lki . (75)

One must stress that Lik can be defined only by the assumed linear relations.
ONSAGER has tried to give a general proof of these relations. His approach

was based on the law of ‘microscopic reversibility’ (declared not long before), sup-
posing that it was a law of general validity responsible for all dynamic symmetries
in thermodynamics.

He derived the reciprocities by an argument borrowed from fluctuation theory,
with the assumption that the rate at which a fluctuation in an equilibrium ensemble
regresses equals the rate at which the ensemble average of the same quantity will
change in a nonequilibrium ensemble. For example, he supposed that the average
decay of temperature fluctuations obeys the ordinary laws of heat conduction. (His
first example was the heat flow in an anisotropic body). He wrote: ‘The principle
of microscopic reversibility demands that a displacement α1 = α′1 of energy in the
x1 direction, followed τ seconds later by a displacement α2 = α′′2 by α1 in the x2
direction, must occur just as often as α2 = α′′2 followed τ seconds later by α1 = α′1.
Consequently

α1(t) · α2(t + τ) = α2(t) · α1(t + τ)′′. (76)

This proof stands, however, on weak grounds. MEIXNER wrote [27] (1973): ‘the
Onsager-Casimir reciprocal relations yield more information than the fluctuation-
dissipation theorem combined with microscopic reversibility’. Onsager was in
searching a general proof for the ORR in a difficult position.

First, use of net (not absolute) fluxes restricted all statements to linear rate
relations.

Second, the Microscopic Reversibility concerns only to absolute reverse rates
of a single process and cannot do anything with cross effect of different processes.
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Third, the law of Microscopic Reversibility can be applied only to micro-
scopic, atomic processes.

Fourth, in deriving the relations of rate equations Onsager could use only
rate equations of j (C) type. As to the heat conductance example of Onsager,
another transformation is working here. Taking, namely, the coordinates parallel
to the axes of symmetry of the crystal, only three independent heat conductivities
(diagonal conductivity matrix) appear.

Transforming the coordinates into another, e.g. a Cartesian system, three
transformation parameters are inferred. The number of independent parameters is
then 3 + 3 = 6. But the transformed non-diagonal but symmetrical new matrix
consists of 33 = 9 elements. ORR (matrix L) and DRR (matrix �) are closely
related. Near to equilibrium

−� j ≈ J =
∑

i

Lik · Xk ≈
∑

i

Lik ·�Fk = −
∑

i

�ik ·�Fk . (77)

Consequently, symmetry of � is equivalent to the symmetry of L’s

Lik = −�ik = −�ki = Lki . (78)

The difference is that while ORR is restricted to linearity, DRR is of general validity.
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Summary of Part 2. 

Processes and symmetries 

A. Time reversal symmetries 

Processes are regarded as differences of two time-reverse components 

j
→

    and     j
← 

    

Law of Microscopic Reversibility of rate constants of MA rate equations: 

MR (Limited validity): 

k
→

  =   k
←

 

Equilibrium symmetry laws of PA  rate equations: 

              Law of Detailed Balance           The Law of Transitivity (Zeroth Law) 

                                DB                                                      ZL 

                         j
→

Eq   =   j
←

Eq                                     F
→

Eq   =    F
←

Eq 

The General Reversal Symmetry Law 

j
→

(F
→

)   ≡   j
←

(F
←

) 

Q
→

   =   Q
←

 

The fundamental process rate equations: 

��  d ln jz*  =  d Fz* 

ji  =  ∑z Qiz . jz*           and         d Fz*  =   ∑i Qiz . dFi  

B. Cross Symmetries 

The Dynamic Reciprocity Relations      Onsager`s Reciprocity Relations 

DRR                                             ORR 

d ji   =  ∑k Λik . d Fk                         Ji  =  ∑k Lik . Xk 

Λik  =  Λki                                     Lik  =  Lki 

                    (General validity)                 (Valid only for linear equations) 

                                            C.  The Dynamic Potential 

                                             Z    ≡   ∑i ji . Fi   =   Zj  +  ZF 

                                              The (non-exact) differentials: 

                              d Zj  =  ∑i Fi . d ji          and           d ZF  =  ∑i ji . d Fi 
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3. Arrows

3.1. The Second Law

The Second Law declares a negative experience: It is impossible to construct a
perpetuum mobile of second art.

There is a general property of the material world, the unidirectionality of
processes and the ‘driving forces’:

a. Deformation of the state and the (counter-) force (dC → dF).
b. Process rates and forces (d j → dF , ‘Force arrow’).
c. Directed change in time (‘Time arrow’).

These properties are expressed in mathematical language as inequalities (al-
ways negative or always positive) of some thermodynamic quantities. If any of
these inequalities (‘arrows’) would be violated then the Second Law would be in-
validated as well. Otherwise, these inequalities express the stability properties of
the equations of state (EOS) and the equations of rates (EOR). Unstable states are
not forbidden at all but such situations always have a short lifetime.

The introduction of the reverse ‘absolute’ process rates raises a question: is
this type of processes in contradiction with the Second Law or not?

‘Unnatural’ process rates and the Second Law

The thermal migrations of the particles of a system and the fluxes of the carried
conservative properties (flux of heat, momenta, electric charge, etc.) are not strictly
unidirected: they are differences of opposite absolute fluxes. The ‘naturally’ di-
rected fluxes are accompanied by ‘unnatural’ fluxes. At diffusion, there are mole-
cules migrating towards the greater concentration. There is a part of the heat flow
towards the higher temperature. There are anions migrating to the cathode, elec-
trons towards the negative end of a wire and so on. At equilibrium the ‘normal’ and
‘abnormal’ processes are equal (50–50 per cent). Contradicts all this the Second
Law, or not? The question needs an answer. The answer is satisfying: the Second
Law is valid! But the formulation is to be corrected with the dominance of the
‘natural’ directed processes. The ‘natural’ process rates are never less than the
‘unnatural’ counter-process rates.

3.2. The Force Arrow

3.2.1. Inequalities

The laws discussed in Sections 1. and 2. were equalities. The laws to be studied
next are formulated as inequalities. This behavior is in close relation with the
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following properties:

Monotony: The origins of the behaviors below are based on some properties of the
EOS (matrix �) and the EOR (matrix �). One of them is the monotony.

Stability: Stability means that any deformation of an equilibrated body generates
a counter-force. This force drives a counter-process and restores the equilib-
rium.

Definite state matrices: The thermodynamic system is stable when matrices � and
� are (negative) definite.

The second differentials: The negativity of matrices � and � is equivalent to the
negativity of the second differentials of the appropriate fundamental quanti-
ties, e.g., the entropy and the dynamic potential, respectively.

In general, a matrix A is positive/negative definite if for a system of linear
equations

y = A · x (79)

the scalar product of the vectors x and y is always positive (or negative)

A < 0 (or, > 0) if y · x < 0 (or, > 0). (80)

Negativity of the matrix A and of the scalar product y · x means that elements of y
are in monotonous degressive relation with the elements of x.

Definite Matrices:

In the present instances three main matrices are worth of attention.

dCi =
∑

k

�ik · dFk (non-linear) and matrix � ≤ 0, (81)

d ji =
∑

k

�ik · dFk (non-linear) and matrix � ≤ 0, (82)

d ji =
∑

k

�ik · dCk (linear) and matrix � ≤ 0, (83)

and
� = � · �. (84)

On the language of matrix calculus, for all diagonal minor-matrices of n-order

�n

�n−1
≤ 0,

�n

�n−1
≤ 0,

�n

�n−1
≥ 0. (85)

All diagonal elements of Gamma and � (and all minor determinants of even order)
are then negative and all minor determinants of � are positive. Consequently

�ii < 0, �ii < 0, and �ii > 0 (86)
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and the absolute values of the non-diagonal elements are limited:

�2
12 ≤ �11�22, �2

12 ≤ �11�22, and �2
12 ≤ �11�22. (87)

(E.g. the heat capacity, the heat conductance are always positive, the values of
expansion coefficient or the thermoelectric coefficient are limited). The geometrical
consequence is that the entropy density is convex (negative curvature) in the density
space (and −P/T is convex in the potential-space) and the dynamic potential is
convex in the process rate space. As told, all these are equivalent to the negativity
of the two scalar second differentials (not the second derivatives!). Remember that
symbol ‘d’ can mean (small or great) differences or gradients (∇), or time rates of
change (d/dt).

One can observe the analogy between Z and �, X and S, Y and −P/T , xi
and Ci , yi and Fi .

The potentials Fi are monotonous decreasing non-linear functions of the Ci’s,
and the potentials Fi are monotonous decreasing non-linear functions of the ji ’s,
and ji ’s are monotonic increasing linear functions of the Ci’s.

Factors �ik ’s are approximately constants but �ik ’s and �ik ’s are not (non-
linear).

3.2.2. Exact and Non Exact Differentials

Let be
Z(xi , yi) = X (xi )+ Y (yi) ≡

∑
i

yi · xi , (88)

X =
∑

i

∫
yi · dxi and Y =

∑
i

∫
xi · dyi , (89)

dX =
∑

i

yi · dxi and dY =
∑

i

xi · dyi , (90)

d2 X =
∑

i

yi · d2xi and d2Y=
∑

i

xi · d2 yi (91)

If function y(x) is linear then X = Y = Z/2
If function y(x) is non-linear then X �= Y .
If a unique function y(x) does not exist then X and Y do not exist as well.
An interesting nonlinear example is:

Yi = ln xi . (92)
Then

Z = X + Y =
∑

i

xi · ln xi , (93)
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X =
∑

i

xi · (ln xi − 1) and Y =
∑

i

xi , (94)

dX =
∑

i

ln xi · dxi and dY =
∑

i

dxi . (95)

The three fundamental product-sums of thermodynamics are:

Y ≡
∑

i

Ci · ji = YC + Y j , (96)

� ≡
∑

i

Ci · Fi = �C +�F , (97)

Z ≡
∑

i

ji · Fi = Z j + ZF . (98)

The six differentials and their integrals are

YC ≡
∫ ∑

i

ji · dCi ; Y j ≡
∫ ∑

i

Ci · d ji , (99)

�C ≡
∫ ∑

i

Fi · dCi; �F ≡
∫ ∑

i

Ci · dFi , (100)

Z j ≡
∫ ∑

i

Fi · d ji; ZF ≡
∫ ∑

i

ji · dFi . (101)

Some of them play important roles in thermodynamic calculations.

�C = S (the entropy density), (102)
�F = −P/T, (103)

if −d ji means the net flux (J ),

dZ j = −
∑

i

Fi · Ji (104)

the ‘entropy flux’.
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3.2.3. Second Differentials

The monotonic properties of the EOS and EOR lead to the negativity (or positivity)
of the appropriate second differentials (not second derivatives!).

δ2Y =
∑

i

dCi · d ji =
∑

i

∑
k

dCi ·�ik · dCk ≥ 0 (decreasing→ minimum)

(105)

δ2� =
∑

i

dCi · dFi=
∑

i

∑
k

dFi · �−1
ik · dFk ≤ 0 (increasing→ maximum)

(106)

δ2 Z =
∑

i

d ji · dFi =
∑

i

∑
k

d ji ·�−1
ik · d jk ≤ 0 (increasing→ maximum).

(107)

Symbol ‘d’ means spatial (‘∇’) or time change (d/dt).

The ‘Entropy Flux’

The product of net fluxes and the appropriate potentials ‘Entropy flux’ named:

JS ≡
∑

i

Fi · Ji (= −λ · ∇Z j ). (108)

Exactly, JS is not a real flux in a strict sense: this product is not a conservative
property (contrary to Ji). Exactly, JS is the change in the entropy due to the
transport passing the boundary (‘external entropy change’).The derivatives of JS
are important quantities:

∇ JS =
∑

i

Fi · ∇ Ji +
∑

i

Ji · ∇Fi = −
∑

i

Fi Ċi +
∑

i

Ji · Xi = −Ṡ+ PS . (109)

The Entropy Production

The second differential of the kinetic potential, δ2 Z has an outstanding importance.
The net fluxes and the forces are

d ji = λ · ∇ ji = −Ji and dFi = ∇Fi = Xi , (110)

then the inequality

λ · δ2
∇ Z ≡ λ ·

∑
i

∇ ji · ∇Fi = −
∑

i

Ji · Xi ≤ 0 (111)
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is equivalent to the positivity (and decreasing tendency) of the Entropy Production
(PS)

PS ≡
∑

i

Ji · Xi ≥ 0 (→ minimum). (112)

The Differentials of the Entropy Production

dPS = dJ PS + dX PS =
∑

i

dJi · Xi +
∑

i

Ji · dXi . (113)

If
Ji =

∑
i

Lik · Xk, (114)

and Lik ’s are constants, then

dJ PS =
∑

i

∑
k

Xi ·LikdXk =
∑

i

dX PS =
∑

i

∑
k

Ji ·L−1
ik dJk = 1/2d PS (115)

and ∫
dJ PS =

∫
dX PS = 1/2PS (116)

(called by PRIGOGINE as ‘Dynamic potential’ [28, 29]). ‘d’ may mean operation
‘∇’ or ‘d/dt’. For a single process (i = k = 1 and Lik = L).

dJ PS = L · d(X2) = dX PS = L−1d(J 2) = 1/2d PS. (117)

Summing up, the inequalities, expressing the ‘force arrow’, provide relations be-
tween quantities of the same generation, i.e. j − c, d j − dc, d2 j − d2C and so
on. These relations mark the tendencies toward the appropriate rest states, e.g.
equilibrium, homogeneity, steady state. Though the fluxes j , J contain the time
as a variable, about the rates of the evolution processes they cannot give enough
information.

One can ask another question: ‘Does the force drive the process or does the
process create the force?’

Remember that the ultimate elementary relationship has the form:

dF∗z = −d ln j∗z . (118)

It seems that the second statement stands nearer to the reality: the force is not an
external stress, it is rather an object of aim. Is then the ‘force arrow’ a triviality?
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3.3. The Time Arrow

Our next task is to analyse the relations between thermodynamic quantities and
their changes in time. A number of such relations are known, mostly belonging to
the group of the third generation. Examples: Fick’s second law, Fourier’s ‘second’
law (time change of the distribution of the concentration or the temperature).

3.3.1. Kinetic Origins of the Time Arrow

The Principle of Dissipation

In this section the rate of the time change will be designed by superscript ‘point’
(Ṡ).

Balances. Fluxes are transfers of carriers and carried properties from one
point (or subsystem, or state) to another. Being this property a conservative ad-
ditive quantity, in the process the participants are consumed and the products are
produced.

The direction is evident. A quantitative statement is expressed by the Mass
Action law: any process rate is proportional to the number (density) of the partic-
ipants.

As the most simple system consider a body of volume V (m3) containing Nz
moles of (carrier) particles (density: C∗z ) and a single absolute flux j∗z passing the
surface A (m2)

C∗z → j∗z , (119)

−Ṅ∗Z ≡ −V · Ċ∗Z = j∗z · A. (120)

If the flux carries i’th type charge (Qiz), the balance (BA) writes

−(V/A)Ċi = ji (BA) (121)

The ‘equation of rate’ expresses a proportionality between C and j

j = u · C (EOR), (122)

where u is the average speed of the particles in the direction of j . From BA and
EOR it follows the equation for the time rate of Ci

−Ċi = k · Ci (MA), (123)

where k (s−1) is the average frequency of the particles passing the surface and the
‘arrow’ is represented by the inequality

k > 0. (124)

Positivities or negativities of time derivatives of some second differentials express
trends toward the equilibrium. In a more general, open system
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Ċ

left Jin

left Jout

out J right

in J right

�

�

�

�

left Jin −left Jout︸ ︷︷ ︸− out J right −in J right︸ ︷︷ ︸
left J −right J︸ ︷︷ ︸

Ċ

�� j

↓
� j

↓
Ċ

div grad j

↓
−divJ

↓
Ċ

where: left Jin means the input flux from the left side environment,
out J right means the output flux to the right side environment, etc.

In a continuous system the general balance demands (λ is a characteristic
length)

Ċi = −λ · ∇2 ji . (BA) (125)
And last,

∇2 ji = u · ∇2Ci . (126)

In a compressed form

−λ · ∇2 ji = Ċi = −(A/V ) · ji = −k · Ci = (λ · u) · ∇2Ci . (127)

Here λ, A, V , k and u are all positive.

3.3.2. The Time Arrow Driven by the Force Arrow

In the former section only relations of the densities and process rates are studied. In
another group of relations the potentials (Fi) play important roles. Some derivatives
of product-sums

∑
i Fi · Ci and

∑
i Fi · ji deserve significant attention.

The time arrow points the direction of the evolution of some second differen-
tials [30].

∑
i d ji · dCi

↓
0 . . . . . . . . . . . 0

0 . . . . . . . . . . . . 0

↑∑
i dCi · dFi

0 . . . . . . . . . . . 0

↑∑
i d ji · dFi

IncreaseIncreaseDecrease

Time arrow
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a.
d

dt
(δ2
∇Y ) ≡ d

dt

(∑
i

∇ ji · ∇Ci

)
≥ 0, (128)

b.
d

dt
(δ2
∇�) ≡ d

dt

(∑
i

∇Ci · ∇Fi

)
≥ 0, (129)

c.
d

dt
(δ2
∇Z) ≡ d

dt

(∑
i

∇ ji · ∇Fi

)
≤ 0, (130)

and, because � ≤ 0, � ≤ 0, � ≥ 0,

d

dt
(∇ ji)

2 ≤ 0,
d

dt
(∇Fi )

2 ≤ 0,
d

dt
(∇Ci)

2 ≤ 0. (131)

a. The J = −∇ j flux act as smoothing effect on ∇C (→ homogeneity).
b. The trend toward the decrease of the forces (∇F) (→ equilibrium).
c. Time change of the Entropy Production (→ stationary state). In other form

dX

dt
PS ≤ 0. (132)

This inequality was declared by I. PRIGOGINE (1945) [30].

The ‘Fourth’ Differentials

The ‘fourth’ differentials measure the distance from the steady (linear) distribution.

Ċ = D · ∇2C = ∇2 j (Fick II.) (133)

D · (∇2C)(∇2 j) = (∇2 j)2 ≥ 0. (134)

Smoothing of the curvature of the concentration distribution.

3.3.3. The Production of the Entropy

From the time of Clausius up to now, the increase of the entropy (in an isolated
system, in absence of any outer supply!) is thought to be a unique phenomenon
in nature being of general validity. Clausius said: ‘The entropy of the Universe
is increasing’. A lot of questions are to be answered. What is really the entropy
increase? Does the asymmetry of the time (‘time arrow’) appear here? Is it the
measure of the ‘irreversibility’? Is it equivalent to the Second Law? Is the ‘pro-
duction of entropy’ identical with the ‘Entropy Production’ function? Is it a unique
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phenomenon or occur other entities having similar property as well? Cannot en-
tropy decrease? Many answers are given, but no one of them represents the full
truth. The entropy does not increase when the densities are constant in time, e.g.
at equilibrium and in a steady (but, may be, ‘irreversible’) open system as well. In
the latter case, as we will see, the ‘entropy production’ does not vanish. What is
known:

a. The increase of entropy takes place only in special conditions (isolated sys-
tem).

b. Other conditions lead to ‘time-directed’ change of other quantities.

Recapitulating some relations and definitions.

Ċi = −div Ji = λ · div grad ji = λ · ∇2 ji . (135)

Three entities are worth mentioning:

a. The time change of the entropy density (may be positive or negative):

Ṡ = 1

λ
· ∇2 Z j =

∑
i

Fi · ∇2 ji =
∑

i

Fi · Ċi . (136)

b. The Entropy Production (always non-negative) [31]–[33]:

PS = −λ ·
∑

i

∇Fi · ∇ ji =
∑

l

Ji · Xi ≥ 0. (137)

c. The ‘entropy flux’ (may be positive or negative):

JS = −λ∇Z j = −λ ·
∑

i

Fi · ∇ ji =
∑

i

Fi · Ji . (138)

Illustration. Let us see three simple system models.

a. A closed system consisting of two parts with potentials FI and F I I , respectively.
Let be a flux of a conservative quantity directed from I to I I . Let the volumes
be unity.
The balance of the flux and the time change of the entropy change can be
formulated.
The production of entropy is here equal to the non-negative ‘Entropy Pro-
duction’.

−Ċ I
i = Ji = Ċ I I

i

F I
i Ċ I

i + F I I
i Ċ I I

i = (F I
i − F I I

i )Ji = Xi Ji ≥ 0

Ṡ =
∑

i

Xi Ji = PS ≥ 0
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Ċi =
∑

k

�ik Ḟk

−
∑

k

�ik Ḟ I
k = Ji =

∑
k

�ik Ḟ I I
k

2Ji =
∑

k

�ik Ẋk

dX

dt
PS = Ji Ẋi ≤ 0

Because matrix of �ik is negative, in a closed system the entropy increases,
‘dX PS’ is negative, PS decreases (Prigogine’s ‘General Evolution Criterion’).

b. Open system The fluxes passing the outer walls of I and I I be JI
ext and J I I

ext . Here,
the production of entropy and the Entropy Production are not the same. Nei-
ther dS/dt , nor dX PS/dt are definite (positive and negative, respectively).The
balances are

−Ċ I = J + J I
Ext and Ċ I I = J + J I I

Ext

F I · Ċ I + F I I Ċ I I = X · J + (F I · J I
Ext − F I I · J I I

Ext)

Ṡ = PS −�JS.

Fig. 7.
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c. Local open system (‘continuous phase’)

λ · ∇(F · ∇ j) = λ · ∇F · ∇ j + λ · F∇2 j = div JS = −PS + Ṡ (139)

Here, the distinction ‘internal–external’ looses his sense. The situation will
be illustrated by a simple example. Let a spatial distribution of the potential
F (e.g., temperature) be exp (−x2). Let the conductivity and the capacity
(e.g. the heat conductivity and the heat capacity) be unity.

Table 4.

II. III. IV
x < −1√

2
−1√

2
< x < 0 0 < x < 1√

2
1√
2

< x

F e−x2
> 0 > 0 > 0 > 0

J −2xe−x2
> 0 > 0 < 0 < 0

dC/dt (4x2 − 2) · e−x2
> 0 < 0 < 0 > 0

PS = J · X 4x2 · e−2x2
> 0 > 0 > 0 < 0

dS/dt = −F · dC/dt −(4x2 − 2) · e−2x2
< 0 > 0 > 0 < 0

∇(F · J ) (8x2 − 2) · e−2x2
> 0 < 0 < 0 > 0

3.4. Evolution under Constraints

Extremum Principles

Two main types of constraints can be distinguished:

a. Constraints leading to equilibrium.
b. Constraints leading to non-equilibrium steady states.

a. Equilibrium Constraints
Under equilibrium constraints all potentials tend to equilibrate. The charac-

teristic process of the evolution is the reduction of the gradients ∇Fi and of ∇ ji
(Z L and DB),

(∇̇F2
i ) < 0 and (∇̇ j 2

i ) < 0, (140a)
∇Fi (Eq) = 0 and ∇ ji(Eq) = 0. (140b)

Evolution of Entropy in an Isolated System

Ji · d� = 0 (all i) (141)

where d� is the normal vector of a surface element.
The entropy increases and has its maximal value at equilibrium.
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Fig. 8. Distribution of F , J , dC/dt Fig. 9. Distribution of JS , PS and dS/dt

Other Equilibrium Constraints

In more general cases one or more potentials are held at constant value along the
internal part of the system, leaving open the boundary for these fluxes. For the
remaining fluxes the boundary is kept closed. (Constraint I.)

∇Fi = 0 Ji · Xi = 0 (i = 1, . . . , k) (142a)

Ji · d� = 0
∫

Ċi · dV = 0 (i = k + 1, . . . , n) (142b)

From these inequalities several extremum principles follow.
Extremum of various Legendre transformed ‘potentials’ of entropy, such as:

Enthalpy (H): isobaric system, closed for energy and mass
(→ minimum),

Free energy (A): isothermal, isosteric system (→ minimum),
Gibbs free energy (G): isothermal isobaric system (→ minimum).

b. Steady Constraints

Consider a macroscopic system of volume V and boundary surface characterised by
the normal vector �. Let be an initial distribution of properties Ci , ji and Fi and their
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Table 5.

The general kinetic law ji and Fk has the form

−d ln ji =∑ Qik dFk

d ji =∑k �ik dFk

because the charges Qiz are positive.

Matrix � is negative definite

(monotonity, stability)

δ2 Z =∑i di · dFi ≤ 0

�
�

�
�

�
�

�
�

�
�

�
�∑

� ji ·�Fi ≤ 0
∑∇ ji · ∇Fi ≤ 0

∑
j̇i Ḟi ≤ 0

ṖS =∑ Ji Xi ≥ 0

Positivity of the ‘entropy Production’ is of unlimited validity.

�
�

�
�

�
�

�
�

�
�

�
�

Ḣint ≥ 0 Ṡ −∑∇(Fi · Ji ) ≥ 0 Ġint ≤ 0

Isobaric, adiabatic Isolated Isobaric, isothermal

(Ṡint ≥ 0)

The law of increase of entropy is only of limited validity

derivatives and binary products. Let some properties (e.g., the Fi ’s) on the boundary
be fixed and/or constrained (e.g., some external fluxes). The internal distribution
of the properties of the system does then change in time. This evolution process
is governed by the static and kinetic equations on one side and by the constraints
of external origin on the other side. If no chemical transformations occur then
the system tends to a stationary final state determined by the steady constraints
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[29]–[33].

Integrals

The stationary constraint requires the overall conservation of the i’th quantity:∮
Ji · d� = 0 or

∮
�i · Ji · d� = 0 (Constr. II.) (143)

where: �i is a nonzero scalar quantity, and
� is the normal vector of the surface.

In the sense of the Gauss-theorem,∮
(�i · Ji) · d� = −

∫
∇(�i · Ji ) · dV = 0. (144)

The integral
∮

is taken over the closed surface and the volume integral over the vol-
ume of the system. The latter expresses the overall amount of the scalar divergence
of the vector (�i · Ji). A next task is to find this scalar property, its components,
determine the direction of their change in time and the (extreme) values at the steady
state.

This property is not unique, depends on the factor �i . Some possible (�i Ji)
vectors are:

Fi · Ji , Ḟi · Ji , Ci · Ji , Ċi · Ji .

The scalar spatial differentials are

∇(Fi · Ji ) = ∇Fi · Ji + Fi · ∇ Ji = Xi · Ji − Fi · Ċi , (145a)

∇(Ḟi · Ji ) = ∇ Ḟi · Ji + Ḟi · ∇ Ji = Ẋi · Ji + Ḟi · Ċi , (145b)

∇(Ci · Ji ) = ∇Ci · Ji + Ci · ∇ Ji = − 1

D
J 2

i −
1

2
Ċ2

i , (145c)

∇(Ċi · Ji ) = ∇Ċi · Ji + Ċi · ∇ Ji = ∇Ċi · Ji − (Ċi)
2 (145d)

Principle of the Minimum Entropy Production at Steady State

The sums of the products on the right side play different roles in process thermody-
namics. Among them are, for example the entropy production, its X-type change
in time, the entropy change, the entropy second differential and others.

The volume integrals of the product vectors on the left side (equal to the
surface integrals) vanish at the stationary constraints and the appropriate volume
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integrals of the two products on the right side get equal.∫ ∑
i

(Xi · Ji) · dV =
∫ ∑

i

(Fi · Ċi) · dV ≥ 0 (→ minimum) (146a)

∫ ∑
i

(Ẋi · Ji) · dV =
∫ ∑

i

(Ḟi · Ċi) · dV ≤ 0 (→ maximum) (146b)

∫ ∑
i

(
1

D
J 2

i

)
· dV = −

∫ ∑
i

1

2
(Ċ2

i ) · dV ≥ 0 (→ minimum) (146c)

∫ ∑
i

(∇Ċi t · Ji)dV =
∫ ∑

i

(Ċi)
2dV ≥ 0 (→ minimum) (146d)

In all definite quantities time rate occurs, the definiteness means not only ‘force’
arrow but ‘time arrow’ as well. For example, positivity of the Entropy Production
does not mean anything about the sign of the time rate of change. Exactly, (146a)
is the proof of the Principle of the Entropy Production Minimum. If the relation of
J and X is linear,

J = L · X, dP = dJ P + dX P, dJ P = dX P. (147)

Two remarks are to be mentioned.
In reality, the force is linear in � ln j and not in � j (= −J ). Consequently,

force X is function of j and not alone of J (the relation is ‘quasilinear’). A more
serious problem comes for when, far from equilibrium (at phase transitions, chem-
ical reactions) the force X is a finite difference of two exponentials. In such cases
X is not a unique function of J at all. The non-exact differentials of PS cannot
be integrated, the property ‘D’ (called ‘dynamic potential’ by Prigogine) does not
exist and the integral-principles cannot be applied.

Fig. 10. Participants of thermodynamic relationships
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Summary of results of Part 3. 

 

1. The Second Law 

"Natural" and "unnatural" processes and the Second Law 

2. The Force Arrow 

Monotonity of EOS and EOR state relations  

The principle of Stability. 

Definite state matrices. 

Exact and non-exact differentials. 

Second differentials. 

(The Entropy Production). 

3.The Time Arrow 

Kinetic origins:  

The Principle of Dissipation and the Mass-Action Law. 

The Force Arrow and the Time Arrow. 

The production of the entropy and the Entropy Production. 

Examples:  

Closed system. Open global system. Open local system. 

4. Evolution under constraints 

Extremum Principles. 

Equilibrium constraints.  

Entropy, enthalpy, free energy. 

Steady constraints. 

Integrals 

"Theorem of the Minimum Entropy Production". 
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