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Abstract 

A general theoretical background for Measurement Data Analysis, including consistency 
check, state estimation (called also Balancing or Measurement Error Reconciliation) and 
Gross Error (GE) Identification is set up on the basis of a set of balance equations or 
other linear constraints. GE Situations are defined and the use of Maximum Likelihood 
principle is proposed to estimate both the actual GE situation and the state variables. 
The essential difference between the use of linear dynamic models and balance equations 
is shown. 

Keywords: measurement error, measurement error reconciliation, gross error identifica­
tion, balance equations. 

1. Introduction 

On Measurement Data Analysis (MDA) we mean Consistency Test, State 
Estimation, called also Measurement Error Reconciliation or Balancing, 
and Gross Error Identification together. These activities are discussed 
mostly as independent problems. It is shown here that all these have com­
mon theoretical bases and can be solved by a single estimation algorithm. 
The balance equations and the Maximum Likelihood Estimation are pro­
posed as the common bases of analysis. This approach to MDA can be 
applied both for stationary and transient states; the first is called static, 
the second dynamic. The static problem is solved; the problem of dynamic 
analysis is rather outlined yet. 

This paper is a synopsis of author's earlier works and presents a gen­
eral theoretical background of MDA problems. It is no broad survey on 
the relevant literature given here; it can be found in author's earlier papers 
(ALMASY, 1990), (ALMASY - UHRIN, 1993, 1994) or in others, e. g. that 
of KAO - TAMHANE - MAH (1992). Only literature directly related to the 
topic is cited. 
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2. Balance Equations 

Balance equations express the laws of conservation of physics, or other 
rules of conservation, in the way that a certain linear combination of the 
balance variable vectors the vector of the so-called balance-ruled elements 
is a constant, or changes only due to streams entering or leaving the system 
concerned. Balance equations have to be formulated somewhat differently 
for static and for dynamic systems. Dynamic balance equations necessarily 
include also the static case. 

2.1. Static Balance Equations 

Let the number of the balance variable vectors be n. Let the vector of the 
true values of balance variables be denoted by € E E, E C Rn, that of those 
burdened with measurement errors x E Rn, and the vector of measurement 
errors d E Rn. Note that in this context element means not necessarily 
chemical elements but also other physical substances for which any rule of 
conservation is valid. 

The balance equations are linear constraints of the form 

A·€-b=O. (1) 

with constant matrix parameter A E RP·n of rank p, p < n, and vector 
parameter b E RP, where p is the number of balance equations, so that 

The practical meanings of matrix A and b are assumed to be known and 
are not explained here. 

Let us denote the vector of balance inconsistencies or imparities by y 
E RP. With the measured values x Eq. (1) becomes 

y=A·x-b. 

From the above, with 
d=x-E, 

the vector of balance inconsistencies becomes 

A· d = A· (x - ~) = A . x - b = y. 

(2) 

(3) 

Because measurement errors are of stochastic nature, vector d and conse­
quently also y and x are random variables. A basic assumption, applied in 
this paper is that d is independent of ~. 

Also unmeasured variables can be involved into balances. But, since 
balances can be reduced easily to the form of Eq. (1) even in such cases, if 
it is possible at all, these are not discussed here explicitly. 
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2.2 Dynamic Balance Equations 

Dynamic balance equations express the laws of conservation, similarly to 
the static balance equations: 

A. ~t-1 _ (r/ - 1]t-1) = 0, (4) 

where 1]i E RP is the true amount of present elements, called inventory 
variables, at time t E T ~ R. The variable ~i E Rn, t E T is the true value 
vector of the so-called flow variables. 

To the dynamic treatment also some knowledge about the inlet and 
outlet streams is necessary. It seems to be the simplest way to specify 
the dynamic behaviour of the flow variables as a self- correlated Gaussian 
stochastic vector process with incremental variance V r, i. e. such for which 

et _ et-1 _ i-I 
<" <" -r , (5) 

It is more complicated to compute the balance inconsistency vector in the 
dynamic case. 

There is a hereditary error already in the estimate of 1]i-l itself so that 
the inconsistency cannot be computed like that in the case of static error, 
applying to Eq. (3), but it is defined by Eq. (4) itself. It was shown in an 
earlier paper, how the Kalman filter can be applied to estimate the balance 
inconsistency and its variance (ALMAsY, 1990). Others about dynamic 
balancing were presented in author's another paper (ALMAsy, 1986). 

Iv10clel 

3.1. Total Error 

For a correct MDA an exactly defined measurement error model is neces­
sary. It is postulated that the Total Measurement Error (TE) is a sum 
of an Ordinary Error (OE) and of a Gross Error (GE) and that OE-s are 
considered to be permanently present, while GE-s as occasional additive 
random components of measurement errors: 

,/ hi + i a = '-' g. (6) 

Here cl i E is the random vector variable of the TE, b i E that of 
OE-s, and gi E Rn that of the GE-s. While b i is unavoidable, gi is only 
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occasional. Eq. (6) shall be interpreted so that in the absence of GE gt is 
an exactly zero vector. (For shortness, superscript t will be omitted in the 
forthcoming.) The occurrence of GE-s is a parameter of the distribution of 
the total error; the values of GE are random. 

Let us assume that the distributions of band g are known. Denote 
the density function of b by fb(.) and that of g by fg (.). As it is known, 
the density function of a sum of two random variables is their convolution: 

id(e) = fb * fg(e) = J fb(- - v)· fg(v)dv. (7) 

R· 

3.2. Ordinary Error 

OE-s are considered usually as n-dimensional, independent, self-uncorrelat­
ed 0 mean, Vb variance Gaussian random vector processes. This model was 
used in the simulation experiments. 

3.3. Gross Error 

A number of works have been published with the explicit or implicit as­
sumption that GE-s themselves are the unknown additive measurement bi­
ases, i. e., shift parameters of the OE distribution. All algorithms, referred 
earlier, that apply rejecting measurements sequentially and computing the 
residual error variances from the remaining (RIPPS, 1965, and others), can 
be regarded as applying this idea. The problem concerning those algo­
rithms is that they introduce the mean of OE as an additional free param­
eter for GE but its estimation is not done according to the disciplines of 
mathematical statistics. 

3.4. Gross Error Situations 

There are generally more than a single possible source of GE. In order to 
treat this fact correctly, the concept of GE situations is introduced. A GE 
situation is defined as an event when besides an OE there occurs a GE as 
an additive random variable of given distribution; different GE situations 
with different distributions. Let the unstructured set of all possible GE 
situations be represented by S with elements s. Thus, the estimation of 
SOUices of GE according to this formulation leads to a choice from the ele­
ments s E S. Even if s is interpreted as a set of non-negative integer indices 
its numeric values do not carry any other information but distinguishing 
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the different situations. Distributions of all gs-s, belonging to different 8-S, 

represent different GE situations; let their density functions be denoted by 
fg.(e), S E S. 

Applying the above concept and notation, the TE is considered as the 
sum of OE and occasionally one of the GE-s, if GE is present: 

d = b + gs, S E S. (8) 

The density function of this sum is their convolution: 

(9) 

where subscript s means that the GE corresponds to the situation 8. 

The no-GE situation shall be included into S by, say, 8 = 0 with the 
degenerated multidimensional Dirac delta distribution at vector 0 (Dirac­
delta at zero): 

fgo ( .) = <5 ( e, 0) . 

In the case of the no-GE situation the TE is equal to the OE and 

(10) 

This latter expresses that all samples taken from go are equal to 0 so that 
adding go to b does not change the distribution of b. 

The most general formulation of the estimation problem is to consider 
OE-s and GE-s as dependent on each other. It seems to be. however, a 
practical restriction in the problem formulation that each GE is regarded 
as independent of any OE. 

The cardinality of S is considered as finite. If there are no special 
reasons, it seems to be a reasonable choice to include two GE situations for 
each variable, representing a positive and a negative GE, besides the no­
error situation. This choice corresponds to the practical assumption that 
there is either no GE or there is only a single one, either positive or negative 
in the measurements. With this specification of S, the cardinality is 2-n+ 
1. Neglecting simultaneous independent GE-s seems to be appropriate 
because of their very low probability. Other GE situations can be specified 
as well if there is any reason for them, mostly, if there is any common 
source for several GE-s. 

Note that the concept of GE situations is akin to that applied by 
ROSENBERG - MAH - IORDACHE (1987), called the candidate set of 
streams. We emphasize here the fact that the random occurrence of two 
or more independent GE-s is extremely rare, assumed that the technology 
is kept in good repair. Lots of computation time can be saved in this way_ 
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Author's opinion is that the specification of GE situations is the duty 
of the technical management, on the basis of engineers' knowledge about 
the process. Some considerations concerning the distribution of GE were 
listed in an earlier paper (ALlvL.\sY, 1993). 

4. The Maximum Likelihood State Estimation 

4.1. The Likelihood Function Values for a Measured State 

According to the basiC definition given previously, the GE Identification 
problem is regarded as the simultaneous estimation of the presence and 
the value of GE as a random variable. The Maximum Likelihood (ML) 
approach was applied to GE Identification also by TJOA - BIEGLER (1991) 
but for a less general problem. 

The set of parameters will be the true value vector ~ E =: C Rn, as the 
shift parameter of the distribution. This will be explicitly written among 
the parameters of distributions. All other parameters of the density func­
tion of TE will be concentrated within the notation s of the GE situation. 
According to the above, the set of parameters to be estimated becomes the 
direct product =: X S. 

Let us denote the density function of the random variable x in the s 
GE situation by fs(x; ~). Thus, the ML estimate s E S of s and ~ E =: of ~ 
is that where 

1 (~, s; x) = ~ax (1 (~, s; x)) = ; ~ax (fs (x; ~))) 
~E.::.,sES ,E.::.,sES 

So, the solution of the estimation problem needs the maximization of 
Eq. (11) simultaneously on s and ~ over =: X S. Since to each s corresponds 
a distribution, including its parameters, s means the optimal choice from 
all possible GE situations S, with optimally chosen ~s E =: for each s. 

4.2.Maximum Search 

Because S is an unstructured set, no other general way to maximize the 
likelihood function is known than some maximum search on x at each s, 
followed by a total enumeration according to s E S. Thus, the cardinality 
~f S has to be kept low in practice. If both GE and OE are Gaussian, 
~s, maximizing the likelihood function at each fixed s, can be computed 
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relatively easily by a quadratic form computation with a prefabricated co­
efficient matrix for each s. For the techniques of computation and examples 
see ALMASY (1994). 

5. Measurement Data Analysis 

5.1. Static Measurement Data Analysis 

With the concepts introduced above, all three aims of MDA can be per­
formed simultaneously. 

5.1.1 . Measurement consistency check and G E 
Identification 

According to the foregoing, consistency of measurements means that the 
no-GE situation is of the highest probability. If the likelihood function 
value is higher in any other situation, that situation is regarded as the ML 
estimate of the GE. Note that if there are more GE situations with nearly 
equal likelihood function values, all those shall be regarded as possible 
sources of the observed GE. 

5.1.2. State estimation 

State estimation can be done, applying the mean value vector and variance 
matrix corresponding to the estimated GE situation s, even if other than 
the n.=:-GE situation is found as most likely. The ML state estimate is es' 
i. e. ~s with s = s. Naturally, the estimate is most reliable in the no-GE 
case. 

5.2.About Dynamic Measurement Data Analysis 

The principle of MDA on the balance equation basis and ML principle 
is not constrained to the static case, but it has not been worked out in 
details and tested by examples for the dynamic case yet. It is possible to 
express the likelihood function value for each dynamic GE situation and to 
choose the ML situation and state as the estimate. Similar ideas, but not 
on the ML estimation principle, have been proposed using the dynamical 
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linear process model by several authors where instead of the likelihood 
function values the residual variances have been taken into consideration. 
This technique is mostly recommended in control theory. These algorithms, 
called Fault Detection and Isolation, were summarized by FRANK (1989). 
The problem is complicated, compared to the steady state, not only because 
it needs Kalman filtering instead of solving a constrained minimisation of 
a quadratic form, but also because extraordinary events are not only the 
GE-s in measurements but also because extraordinary events are not only 
the GE-s in measurements but also sudden changes in the inputs, actuator 
faults, etc. These can be taken into account in the theory, but the number of 
possible situations increases rapidly if all such events should be considered. 

6. Comparing the Analysis Based on the Dynamic Model 
and that on the Balance Equation Basis 

MDA on balance equation basis differs both in its theoretical bases and 
its technique from the so-called 'sensor validation' or 'fault detection and 
isolation, based on structural redundancy', the topics of control theory. 

6.1. Decomposition 

Showing the difference, we constrain ourselves to linear models. Let the 
linear discrete time state space model of a system be 

t ;;:. .t-l G t-l 
X = '±',X + ·u , t t-l m 

X, X ER, t-l, t ET. 
(12) 

If the process undergoes some rules of conservation, some elements of a 
one-to-one linear transform of the variable Xi must not change in time if 
the input vector Ut is identical to 0 for all t E T. The condition of this 
is that state transition matrix <P has as many unit eigenvalues as many 
elements undergo independent laws of conservation in the process. This 
means that there exists such a similarity transformation of <P that 

(13) 

with 
T/·Tr=Tr·T/=I. 

Ad is a d X d block-diagonal matrix with all its elements or blocks in its 
diagonal corresponding to the non-unit eigenvalues. T/ and T rare non­
singular n X n matrices composed of the left and right eigenvectors of <Po 
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Therefrom, with 
z=Tz·x 

we obtain 

(zi) = (Ad' ~tl) 
zb I· zb 

and the original dynamic model decomposes into a 'dynamic' and 'balance 
submodel 

(14) 

and 
(15) 

Eq. (14) describes the dynamics of the system and has no unit coefficient 
modes. So, it is suitable to design the control of the process where unit 
eigenvalues would cause troubles. 

In turn, Eq. (15) expresses the balances and shows that if the discrete 
time process contains b = n - d elements for which independent rules of 
conservation are valid, the state transition matrix q? of its model has just 
b number of unit eigenvalues. This statement is also inversely true. If the 
state transition matrix q? of a process model has certain number of unit 
eigenvalues, the process contains exactly the same number of independent 
elements for which laws or rules of conservation are valid. Thus, Eq. (15) 
is good to test and analyse measurements, as described previously. 

Nothing changes if the process has a non-zero input in Eq. (12). Only 
the coefficient matrix G has to be transformed accordingly. The product 

Tz·G=A 

gives just the coefficient matrix of the balance equations. 

6.2. Practical Consequences 

There are essential differences between the two approaches. Static bal­
ancing applies, at least in its strict sense, only exact and unquestionable 
knowledge about the process (apart from that of the measurement error 
distribution) but does not take into consideration the time correlation of 
data or any other information on process behaviour. Thus, the verification 
of measurements is not complete by balancing; only errors influencing the 
balance can be detected in this way. 

Dynamic balancing needs also the knowledge of the incremental vari­
ance matrix of the input and output variables, but all other matrix coeffi­
cients of the process are exact. 
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On the other hand, methods of Fault Detection and Isolation suppose 
the exact knowledge of the process dynamics and work sufficiently quickly 
only if it is linear. But neglecting of non-linearities in process engineering 
is dangerous and can strongly mislead estimation. Sometimes the model 
accuracy is less than that of the measurements so that state estimation 
on this basis would cause higher error than unfiltered measured data are 
subject to. 

7. Conclusion 

It is shown that all MDA problems, including test for consistency, state 
estimation and GE Identification, are essentially on the same theoretical 
basis and are proposed to be performed simultaneously, applying the bal­
ance equations and the ML principle for estimation. 

Simulation experiments have been done with good results for the 
static problem but they are not presented here for shortage of space. The 
analogous treatment for the dynamic case is a proposal only; it has to be 
worked out in detail in the future. 

This work has been supported by the Hungarian Science Foundation grant OTKA 

1991/178. 
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