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Abstract 

For time optimal control of high-dimensional systems, we use time stages of varying length, 
and iterative dynamic programming (IDP) to search simultaneously for the switching times 
and the stage lengths. The procedure is evaluated with a twenty plate gas absorber having 
two control variables. To obtain convergence in reliable manner, the use of continuation 
as shown in this paper is very effective. The accurate switching times yield better results 
than have been reported in the literature. The computational procedure is straightforward 
and the computations can be readily carried out on a personal computer. 
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Introduction 

In optimal control, the minimum time control problem, which is very im
portant for practical applications, has received considerable attention. Al
though for linear systems, significant progress has been made recently, there 
still remains the problem of how to handle computationally systems of very 
high dimension. In this paper, we examine the use of iterative dynawic 
programming (IDP), as outlined by BOJKOV and Luus (1994a), to a high
dimensional problem. 

Twenty Plate Gas Absorber 

Let us consider a twenty plate gas absorber with two control variables that 
was used for time suboptimal control by WONG and Lues (1980). The 
model is based on the six plate gas absorber described in detail by LAPIDUS 
and Luus (1967), and used for time-optimal control studies by BASHEIN 
(1971), Luus (1974) and ROSEN et al. (1987). The system is described by 

dx 
- - A-v-LBu dt - ..rt.. I , 

(1) 



26 B. BOJKOV and R. LUUS 

where 
A = tridiag [0.5388 -1.1730 0.6342], 

and the (20 X 2) control coefficient matrix is given by 

BT = [0.5388 0 '" 
o 0 ... 

o 0] 
o 0.6342 

The control variables are constrained by 

0.0 ~ 'Ul ~ 1.0, 

-0.4167 ~ 'U2 ~ 0.972, 

and the initial state is given by 

[ 

-21.5 -39.9 
T (0) = -89.5 -97.6 

x -119.6 -123.2 
-133.0 -134.6 

-55.4 
-104.5 
-126.3 
-135.9 

-68.7 
-110.4 
-128.9 
-137.1 

(2) 

(3) 

(4) 

(5) 

(6) 

We want to take the system from the initial state to the desired final state 

i = 1, 2, ... ,20 (7) 

in minimum time tf, where E = 1.0 X 10-3
• 

Instead of using the sum of squares of the final state as the perfor
mance index, here we use the augmented performance index introduced by 
BOJKOV and Luus (1994b) for a six plate gas absorber. The performance 
index includes the final time, and also penalizes any final state variable 
which is larger than E at the final time t f : 

20 20 

J = 0" I:X;(tf)2 + J.L I: (lxi(tf)l- E)2 + Otf, (8) 
;=1 ;=1 

where 

O"={~ if all Ix;! ~ E, 

if any Ix;! > E, 
(9) 

J.L={~ 
if all Ix;! ~ E, 

if any Ixil > E, 
( 10) 

and 

s:: l( ~ if all I x; I < €. 
u = 1200 - . 

o if any Ixil > E. 

(11) 
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Having tf included in the performance index, in the above form, allows the 
final time to be reduced when the final state constraints are satisfied. 

All computations were performed on a 486DX2/66 personal computer 
using IBM's OS/2 version 2.1 operating system and WATCOM's FOR
TRAN 7732 version 9.5 compiler. For the integration of the differential 
equations, the FORTRAN subroutine DVERK of HULL et al (1976) was 
used with an integration tolerance of 10-8

. The random allowable values 
for control were generated using the compiler's random number generator 
URAND( ). 

Instead of attempting to solve this problem by using a very large num
ber of stages P for the optimization by IDP, we suggest to use continuation 
on the control and stage lengths obtained with only P = 10 time stages. 
For IDP, we choose as parameters 3 state grid points (N = 3), 15 allowable 
values for control (R = 15), and a region contraction factor y = 0.80. To 
ensure reliable convergence, a multipass scheme consisting of 30 IDP passes 
of 30 iterations each is used, where the policy at the end of a pass is used 
as the initial policy for the subsequent pass. 

For the first step in the continuation approach, we use as initial control 
the lower bound values Q of the control variables and as region size 'rj = 
1.5 ({3j - Qj). For the stage parameters, we choose as initial stage length 
v(k)(O) = 0.5 for k = 1, 2, ... , 10; and as initial region size s(k)(O), 0.02, 
0.03, ... , 0.06 for k = 1, 2, ... , 10. As can be seen in the first row of 
Table 1, the algorithm yielded without difficulty a final time of 26.694 min 
in approximately 20 IDP passes of 30 iterations each. The five time stage 
control policy corresponding to this final time yields a final state 

r 
8.2 

x T (29.694) = -~.~.3 
l-16.7 

-12.3 
16.4 
16.1 
33.6 

11.5 
-18.4 
23.1 

-14.4 

6.2 
-15.1 
21.0 
39.8 

with a performance index value of 1.196.10-2 . 

-1.9 1 
~~89 J X 10-

3 

-20.2 

(12) 

For the second step of the continuation, we use the five stage control 
policy obtained in step 1. For the remaining time stages we again assign 
as initial control uj(k)(O) = aj, for k = 6, 7, ... , 10; and as initial stage 

length v(k)(O) = 0.5 for k = 6, 7, ... , 10. For the control region size, we 
use 'rj(k) = 1.5 ({3j - Qj), for k = 1, 2, ... , 10, and for the stage length we 
use as initial region size s(k)(O), 0.02, 0.03, .,. , 0.06 for k = 1, 2, ... , 10. 
Here the algorithm yielded without difficulty a performance index value 
of 1.652 . 10-3 at a final time of 30.759 min. These results, shown in the 
second row of Table 1, were also obtained in fewer than 20 IDP passes. The 
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Table 1 
Value of the final time using a continuation approach with P = 10, for the twenty stage 

gas absorber, as a function of the continuation step and the initial stage region size 
parameter s(k)(O), using for IDP N = 3, R = 15 and y = 0.80. The numbers in 

parentheses indicate the number of passes required to reach the given final time to a 
maximum of 30 passes 

Final time 
if 

(min) 
Continuation 

step Initial stage length 
s( k )(0) 

0.2 0.3 0.4 0.5 0.6 

1 21.708* 22.350* 26.694 26.694 26.694 
(30) (24) (21) 

2 30.759 30.759 30.759 30.759 30.759 
(30) (21) (18) (15) (15) 

3** 37.009 37.053 37.049 37.061 37.062 
(52) (43) ( 41) (37) (36) 

* Five stage policy 
** A maximum of 60 IDP passes for the third continuation step 

control policy consists of six stages and yields the improved final state 

5.7 
-7.1 
9.0 
2.0 

5.0 
-6.4 
6.4 
15.3 

2.2 
-3.1 
-1.0 
-10.7 

-1.7] 1.9 10-3 
-9.4 X . 

1.8 

(13) 

For the third continuation, we again submit the stage lengths and the 
control policies of the previous run. As for the last four time stages, we 
use as initial control uj(k)(O) = CY.j with initial stage length v(k)(O) = 0.5. 
By using the same region sizes for the control and stage lengths as above, 
we obtain the eight stage control policy shown in Fig. 1 with a final time 
tf = 37 min. The results for the five runs performed are given in the last 
row of Table 1, and have the final state 

r 0.7 0.9 0.6 -0.0 -0.7 

0.7] x T (37.053)= -1.0 -0.8 -0.1 0.7 1.0 
X 10-3 (14) 0.6 -0.4 -1.0 -0.6 

l 0.9 -1.0 0.4 -0.1 0.6 

with the variables X6, X10, X13 and Xi6 at the boundary E. 
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Fig. 1. Eight stage time optimal control policy for the twenty plate gas absorber with 
a final time t f = 37 min 

As is seen in Table 1, when using this approach to obtain the min
imum time for this system, we obtain for different starting conditions re
sults for the final times in the vicinity of 37 min. The best result obtained 
here is 37.009, which is an improvement of 34 per cent over the final time 
tf = 56 min obtained by WONG and Luus (1980) by using model reduc
tion and feedback control. The average run for 30 passes of 30 iterations 
each required approximately 4.5 hours of CPU time. The results obtained 
here show that IDP with the continuation scheme outlined in this paper 
provides an effective means of reaching the close vicinity of the origin for 
high dimensional minimum time problems. 

Conclusions 

Iterative dynamic programming using variable stage lengths and contin
uation on the control provides an attractive means for determining the 
time optimal control policy of high dimensional systems by simultaneously 
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searching for the stage lengths and the values for control. For the twenty 
stage gas absorber presented here, the algorithm yielded the global optimal 
control policy, resulting in a 34 % improvement in the final time obtained 
by other means. The method provides a convenient way of determining the 
exact switching times, which are extremely important for bang-bang con
trol problems. This procedure can be easily used on a personal computer. 
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