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Abstract 

The transport of fluids and gases in narrow pore systems is described by the transport 
equation and the material balance equation. Applying the three methods to our parabolic 
problem shows the advantage that the number of unknowns is dramatically decreased and 
the implementation of the algorithm on a PC is possible. 
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The transport of fluids and gases in narrow pore systems is described by 
the transport equation and the material balance equation and leads to the 
following partial differential equation 

OCA OaA . ( eff ) ot + Tt = dlV D grad CA , (1) 

where CA denotes the concentration of the gas A, aA the part of the gas 
A, which is adsorbed, and Deff denotes the diffusion coefficient. If the 
process is isothermic, we have 

a.4 = f(CA) . (2) 

So we come to the equation 

( 
I ) OC4 (e 'f \ 1 + f (CA) a~ = div D J grad CA) , (3) 

which is a parabolic partial differential equation. At the start of the process 
we know the concentration from the experiment, which gives us the initial 
cond.ition 

for t = 0 

for t = 0 

in the interior, 

on the boundary. 
(4) 
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As the first boundary condition we demand that no change of the concen­
tration takes place in the centre of symmetry, say in the origin 

grad CA(O, t) = 0 in the centre of symmetry and for all t. (5) 

The second boundary condition originates from a balance equation 

elf C aCA D . grad CA = - .--at on the boundary for all t , (6) 

where C is a constant with respect to time and space. 
Three essential di.ffi.culties appear in the system above 

1. The differential equation may be nonlinear because the function f in 
(2) is perhaps nonlinear. 

2. The initial condition (4) is not continuous. 
3. The boundary conditions are both of Neumann type. 

In the first stage we consider the linear part of this initial-boundary­
value-problem (f == 0) and use the finite element method (FEM). This 
method is well known and good numerical algorithms are available. 

The main idea of the FEM consists in multiplying the equation by a 
testfunction cp and integrating over the domain n. Afterwards we apply 
the first Green's formula and get the following weak form: 

Find u E V such that for all cp E V we have 

J a;~4 cp dx + J (De!! grad CA) grad cp dx O. (7) 
11 11 

Some difficulties are caused by the non-continuous initial condition. But 
there are easy ways to replace this condition by a continuous function. 

Experiments show that near the boundary where the concentration 
changes rapidly, we need a very fine grid in order to get satisfactory results. 
The exact solution seems to have a singularity at the boundary. Theoretical 
results as in the following theorem confirm this observation for the model 
problem 

Theorem 0.1 Let {lh} be a family of regular partitions of n where 
n is a polygonal domain, and let Vh be the finite element space. 

(i) If n is convex and UFE is the finite element solution of problem (7), 
then 

JL = min(k - 1,p) . (8) 
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(ii) If D is non-convex, then for fixed c > 0: 

(9) 

(iii) If D is non-convex and f E L2(D) then 

(10) 

The norm with index 'E' signifies the energy norm, which is here the H1_ 
norm. H 2,t is the weighted Sobolev space with the norm given by 

luI2,n,t:= L J r;/ (D(3 u) 2 dx , 
1(31=2n 

e the distance to O. (11) 

The so-called Shift Theorem explains the lack of continuity in the exact 
solution of our model problem 

-Au = f m D, 

u = 0 on oD. 
(12) 

Theorem 0.2 (Shift Theorem) Let u E HJ(D) be the solution 
of (7). 

(i) If D has Ck-boundary oD, k ~ 2 and f E Hk+2(D), then: 

and lIullk,n ~ C· IIfllk-2,n . (13) 

(ii) If D is convex, f E L2(D) then: 

u E H2(D) and (14) 

(iii) If D is a non- convex polygonal domain with interior angles 
o < 0:1 ~ 0:2 ~ ..• ~ O:m-l < 1i, 1i < O:m ~ 21i (this vertex at the 
origin), f E L2(D), then: 

k -~ - , 
am 

Ilulh + lIull2,t ~ Ct . Ilflln 

for any t > 2 (1 - :~) . (15) 

Therefore it is natural to refine the triangulation close to the boundary in 
order to increase the accuracy. Here a geometric mesh seems to be useful. 
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Fig. 1. Geometric mesh 
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Fig. 2. Graded mesh 

With a given parameter er with 0 < er < 1 and a rectangle 0 < x < 1, ° S y S 1, we consider the net generated from the lines 

Xo = 0, n-i 
Xi = er YO = 0, 

n-j 
Yj = er , i, j = 1, ... , n. 

Fig. 1 gives a short impression for er = 0.5, n = 5. 

(16) 

Another possibility lies in a graded mesh. There the grid points are 
chosen with the help of a function g( x) = xf3, f3 > O. The following figure 
shows how to choose the meshpoints in each direction. 

In general the behaviour of the exact solution is not known beforehand 
and it is not clear where to refine the finite element mesh locally. The 
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mathematical answer is a method for automatic mesh refinement, a so­
called adaptive method. 

In 1981 1. BABUSKA and A. MILLER proposed in a pioneering work 
the first adaptive method regarding the one dimensional problem 

d ( dU) - dx a(x) dx = lex), U(O) = u(1) = O. (17) 

The error estimate at each step is based on solving local problems involving 
a local residual, and the refinements are carried out according to the size 
of the solutions of the local problems. 

With the error estimator 

1 h· 
TJi := - . ' . Ihll , 

.JI2 ...;ai+1/2 
(18) 

where Ti is the residuum and ai+l/2 the value of the coefficient function at 
the midpoint of the subinterval, they defined the global error estimator 

(19) 

and gave the following Adaptive Algorithm Given tolerance 8 > O. 

1. Choose an initial uniform mesh I:lh' 
2. Compute the corrresponding FE-solution. 
3. Compute the global error estimator via residuum, 
4. If c ~ 8, then stop and accept the FE-solution. 

If not, refine the mesh to fulfil the inequality. K. ERIKSSON and 
C. JOHNSON followed in 1988 with an approach different from the BABUSKA 

method. Their error control is based on an optimal a priori estimate. They 
introduced the difference operator 

DI( ( )) _ v(x±,H) -vex) 
H

VX 
- H ' ,=(1,0) or ,=(0,1), (20) 

and computed for each x EKE Th 

with II = minKETh h K • If then for all K E Th 
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with (22) 

then stop and accept the solution. If not, refine the mesh to fulfil the 
inequality. 

ASADZADEH and ERIKSSON (1991) gave a different adaptive algorithm 
for the model problem 

.6.u =0 
au 
-=g an 

c \-m n := R n, 
on r. 

(23) 

(24) 

They transformed the differential equation in an integral equation of the 
second type 

1 J a 1 <p(x) - T<p(x) := <p(x) - -2 <p(Y)-a log I I dry = -2g(x) , 
71" nx x - Y 

r 
x Er, 

(25) 
and proposed to fix some element x E R2 and to compute the residuum 

(26) 

If 
2 1 

h < 81671" . f Ix - YI2 
K --m . 

- CN yEK ITh(Y)1 
for all (27) 

then stop and accept the solution. If not, refine all the elements K where 
the inequality is violated. 

Applying the three methods to our parabolic problem shows the ad­
vantage that the number of unknowns is dramatically decreased and the 
implementation of the algorithm on a PC is possible. 
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