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Abstract 

Various nonlinear behaviors, including chaos, may result from a tubular reactor with an 
exothermic reaction when a PI controller is added. In this paper, we show that for this 
highly nonlinear system the stable gains are very sensitive to the number of states used 
for controller design. The region of successful control is determined as a function of k p , 

kJ, and the number of spatial discretizations. 
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Introduction 

Traditionally, distributed parameter systems (DPS) have been approxi­
mated by finite dimensional systems in order to design adequate controllers. 
One of the most popular methods for making this approximation is finite 
differencing. While the basic finite difference premise of truncating a Taylor 
series expansion of the spatial derivatives is almost trivial, there is a lack 
of literature on how many discretizations are necessary to retain enough 
spatial information such that a stabilizing controller can be developed. Re­
searchers who have designed controllers for DPS seem to have chosen only 
enough spatial states to accurately model the noniinear uncontrolled sys­
tem (ZWEITERING, 1992; CETINKUNT, 1991; ALATIQI, 1991). Choosing a 
small number of discretizations will result in a low order design model thus 
facilitating controller design and also give the added benefit of a low order 
controller. 

An additional problem with previous controllers designed for DPS is 
that their performance has been tested on the discretized system and not 
on the actual system. This essentially eliminates any questions about the 
adequacy of the spatial modeling. After achieving successful control of the 
design model it is then assumed that this controller will also control the 
real plant. However, acceptable results from this approximate finite dimen­
sional closed loop system may not be indicative of closed loop stability for 
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the full infinite dimensional system (BONTSEMA, 1988). When the finite 
difference approximation error exceeds the robustness margin of the con­
troller, eigenvalue spillover may occur resulting in closed loop instability 
(BALAS, 1978). In order to reduce this error, it is necessary to increase the 
number of spatial states, thus the order of the design model. 

In this paper we show the relationship between the stable controller 
gains and the number of spatial discretizations used to design the controller. 
The performance of the controller, as measured by the rate of convergence 
to the set point, is also determined as a function of spatial states. 

PI Control of a Tubular Reactor 

The system is a model of the material and energy balances (Eq. (1)) for 
a non-catalytic tubular reactor with axial backmixing developed by PEL­
LEGRINI et al. (1992). Heat from the exothermic first order reaction is 
removed by a constant temperature coolant ec . 
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The corresponding boundary and initial conditions for this system are: 
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In the above set of equations, ( is the conversion, e is the nondimension­
alized temperature, and e represents the spatial dimension. It is assumed 
that the reader is familiar with the standard notation used in Eq. (1). 

The first step taken in analyzing this system is to reduce the set of 
partial differential equations to a set of ordinary differential equations by 
using central differences. The system is discretized using N grid points for 
the e variable: 
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The open loop system is simulated using N = 20 as the truth model and 
is shown in Fig. 1. Simulation results with N = 5 are also shown in Fig. 1 
and are indiscernible from the N = 20 case. All parameter values are the 
same as in PELLEGRINI (1992). It is observed that the steady state outlet 
conversion is close to zero and thus very little reaction is taking place. 

In an effort to increase the outlet conversion, a proportional plus 
integral (PI) controller is added so the output temperature can be driven to 
a set point resulting in increased conversion. The control scheme measures 
the outlet temperature (9 at e = 1) and manipulates the feed temperature, 
90, The controller is described by Eq. (3). 

t· 
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o 

(3) 

Fig. 2 shows the values for the proportional and integral gains which 
should yield successful control based on different number of spatial dis­
cretizations. In other words, we select an 1'1 which we assume is sufficient 
to model the spatial dimension and predict that gains to the right of the 
line shown will yield a stable controller for the actual infinite dimensional 
system. Note that as the number of states used in developing the de­
sign model is increased, the amount of shift in the border of the region 
of successful control decreases. Thus Fig. 2 shows the convergence to an 
adequate number of spatial discretizations for controller design. As can be 
seen in Fig. 2, if the controller is designed based on too few spatial states, 
then the allowable proportional gain will be overpredicted and the allow­
able integral gain will be underpredicted. Thus the real plant will require 
less proportional gain and more integral gain than predicted by using a low 
order model. 

An example of successful control of the actual plant (simulated using 
N = 20 as the truth model) is shown in Fig. 3 for hp = 0.02 and kI = 0.5. 
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Fig. J. Time series of outlet temperature and outlet conversion for the open loop system 
of Eq. (1) using N = 20 as the truth model and N = 5 for comparison 
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2. Predicted stable gains kp and kr, based on the number of discretizations used 
in the design model 

These values for the gains are within the stable region for all N shown in 
Fig. 2. As shown in Fig. 3, successful control to almost complete conversion 
is quickly achieved. 

For an example of what can happen when too few spatial discretiza­
tions are used to determine the controller gains, consider a design model 
created using five spatial states. From Fig. 2, the values of k p = 0.05 
and kI = 0.4121 are well within the stable gain region for this case. How­
ever, when the controller developed using these gains is applied to the 
N = 20 truth model, chaotic behaviour as shown in Fig. 4 results. Because 
the system is nonlinear, the closed-loop system actually exhibits a wide 
range of periodic and aperiodic behaviour for different values of kp and kI 
(PELLEGRINI, 1992). 

In order to gauge the performance of the PI controller, we examined 
the amount of time for the closed loop system to achieve steady state. In 
Figs. 5, 6, and 7 the amount of proportional gain is held fixed at 0.01, 
0.03, and 0.05, respectively. The time to steady state is then plotted as 
a function of integral gain and the number of spatial discretizations used 
in the design model. In Fig. 5 and 6 it should be noted that there is 
no significant difference between time to steady state and the order of the 
design model. It is only in Fig. 7 where we are able to see a complex 
and dramatic change in time to steady state as a function of N. A full 
explanation for this phenomenon is not available at this time. 
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Fig. 3. Time series of outlet temperature and outlet conversion for the closed loop sys­
tem with N = 20, k p = 0.02 and kr = 0.5 
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Fig. 4. Chaos in closed loop system with kp = 0.05, kI = 0.4121 and N = 20 
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Fig. 5. Time to steady state as a function of kI and the number of discretizations used 
in the design model, k p = 0.01 
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Fig. 6. Time to steady state as a function of kI and the number of discretizations used 
in the design model, k p = 0.03 

Fig. 7. Time to steady state as a function of kJ and the number of discretizations used 
in the design model, kp = 0.05 
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Conclusion 

It has been demonstrated that successful control of a DPS is sensitive 
to the number of spatial states used in the controller design model. For 
central difference approximations, the number of spatial states needed for 
a controller design model is much greater than the number needed for an 
accurate open loop simulation. When controllers are designed using too low 
of an order design model, the resulting system may not behave as desired. 
In the case of nonlinear systems this undesirable behaviour may lead to 
periodic or chaotic behaviour. 
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