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Abstract

Consider a network of n compartments assuming that transition processes may occur
between them: e.g. heat or mass transfer, or any kind of exchange of the first order. In
fact, we have a Markov process with n states.
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1. Introduction

Consider a network of n compartments assuming that transition processes
may occur between them: e.g. heat or mass transfer, or any kind of ex-
change of the first order. In fact, we have a Markov process with n states:
A1, Asg, ..., An; the state occupancies z1, Zg, ..., Zn (e.g. the distribution
of 1kg mass) obey the differential equations:

1 k11 ... kin T1
d | : kon ... k : C
EE ' = 21 n ) kzg 2> 0, tE ] (1 1)
Zn 1 knl P knn Tn
with
ki=— ki (1.2)
JFi
and the initial conditions [1]:
for t=0: =z;=1, za=...=z,=0. (1.3)

In order to handle the problem we introduce the Laplace transforms

£ {zi(t)} = /e’“mi(t)dt =ai(s); i=1,2...,n. (L4
g
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Let us consider the partitioning (without any practical meaning for the
time being)
A1 : ‘mobile’ phase and

{4, ..., Ap} : ‘fixed’ phase

and let us calculate the ratio

2(8) = 7(s), (1.5)

z1(s) =

where n
z(s) =Y ai(s). (1.6)
=1
Using the rules

L {%—?} = sz(s) — :z:(t)l : , (1.7)
o
and

{1} = % (1.8)

and applying Cramer’s rule we immediately have from the transformed
solution of (1.1) — (1.2) — (1.3):

_ lsI- K|
J(s) = S K]’ (1.9)
where K = [k;;] and K' is obtained by deleting the first row and first
column in K (and similarly I', t00).

What we are interested in is whether or not J remains unchanged
(invariant) by changing our model to a moving-phase one: the system
being situated in a CSTR, or in a one-dimensional tube where convectional-
diffusional transport takes place.

2. The Lumped-parameter System (CSTR)

Let us define the flux (with respect to phase A;, which is now moving in
fact):

y(t) = wza(t) [ke/s], (2.1)
with

w: flow rate[l/s]. (2.2)
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There holds the following
THEOREM 1: J, see (1.5), is independent of w, i.e. J is an invariant [2] and
can be calculated from (1.9).

As an application of this statement we determine the RTD (residence
time distribution) of the tracer particles in the CSTR. The balance equation

becomes d d
T . T
a—;+y—-0, ie. E—i—wml-O. (2.3)
Using the rule (1.7) we have
sz(s) +wzi(s) = 1. (2.4)

In view of (1.5) and Theorem 1, we immediately obtain
(J(s)s+w)zi(s) =1,
ie.
w w

(o) = wai () = 7o =

s+w s+w (2.5)

a=J(s)s
We realize that if n = 1: J = 1 and denoting the flux in that case by y?,
we obtain the simple rule

y(s) = y'(s) (2.6)

s=J(s)s

3. The Higher Moments of RTD

Obviously y(s) in (2.6) is just the transformed density function of the RTD.
Let us denote the first three so-called cumulants or semi-invariants (mean,
variance and 3rd central moment) by

K1, K2 and K3 (3.1)
and in the case of only one phase, by
Ky, K and s, (3.2)
respectively. Rewriting J(s) as
J(s)=Cf(s)+1 with  f(0)=1, - (3.3)

where C is the equilibrium constant between the ‘fixed’ and ‘mobile’ phase,
we finally obtain the general formulae [3, 2]:

K1 = (C’ + 1)K1 s (34)
ko = (C+1)*Ky — 2Cf (0) K1, (3.5)
k3 = (C+1)°K3 —6C(C + 1)f (0)K2 + 3CF"(0)K; . (3.6)
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4. The Distributed Parameter System (Tube)

Let us define the flux as (the analogue of (2.1)):
y(z,t) = Lz (2,t), (4.1)

where z is the length coordinate [m] and L is a linear operator, e.g.

7]
with
U flow velocity [m/s] (4.3)
and
D: diffusivity [m?/s]. (4.4)
THEOREM 2: (25)
z(z,8)
iz J(s), (4.5)

with J(s) as defined in (1.9). Once again, the left-hand side is independent
of z and u as well as D (invariant).

As an application of this theorem [4] we determine the respective
RTD. The balance equation becomes
Oz + Oy _ 0

6t Oz (4.6)

and in the Laplace domain we have because of (4.5)

prescribed (4.7)

<J(s)s + —é%ﬁ) z1(z, s) = z1(z, t)

=0

whose solution (depending on the boundary conditions) is to be substituted
in the transformed equation (4.1):

y(z,8) = Lzi(z, s) . (4.8)

However, we realize that if n = 1: J = 1, and denoting the flux in that
case by yl, we have

y(z,5) =y (=) (4.9)

s=J(s)s

which is the counterpart of (2.6). Once again, y(z,s) is the transformed
density function of RTD. For the first three cumulants the general relations

(3.4) — (3.5) — (3.6) are valid.
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Appendix

1. The higher moments of RTD for a CSTR without sorption are given
by the simple formula:

m!

Bm = m=1,2... (A1)
where
>3
P = /tmyl(t)dt; m=1,,2,... (A.2)
0

Consequently the first 3 semi-invariants become

(o9

1 i
KI:‘/'L].:;: Kzz/(t—“l)zyldtz"J)
0
T 3 1 2
m:/(t—m)ydt:;g. (A.3)
0

Inserting these values in (3.4) — (3.5) — (3.6) we obtain at once the
respective semi-invariants for a CSTR with an imbedded Markov pro-
cess.

2. The first 3 semi-invariants of RTD in a continuous-flow one-dimen-
sional tube reactor with diffusion are given by the simple
formulae [3]:

2 B 2
K = —1-z, Ky zé—)z, K3 = 12D z. (A.4)

ud
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Once again, substituting these values in (3.4) — (3.5) — (3.6) we have
the respective semi-invariants for the generalized linear chromatogra-
phy [3].
Consider an arbitrary continuous-flow reactor (either of the above ex-
amples) with two phases (mobile and fixed) between which a Markov
process according to the system matrix
—ka1 ka2 ]
[ ka1 —k12 (A-5)
takes place. Then, in view of (1.9) and (3.3) we readily obtain
_ s+ k12 + ko _ k1
J(S) - s + k12 b f(s) - s + k (A'G)
and L 1 5
C=22, o= ——, 0= . A7
k12 fo k12 fo k%, (&.7)
The interested reader might put down the respective formulae (3.4)
— (3.5) — (3.6) in the case of the imbedded Markov process for both
types of continuous-flow reactors.
Notation
see Eg. (3.3)
Laplace transform variable, s71
time, s
flow velocity, m/s
the total state occupancy (in the mobile plus fixed phase)

state occupancy in the mobile phase, kg (CSTR) or kg/m (tube)
flux, kg/s

length coordinate, m

equilibrium constant, see Eq. (3.3)

diffusivity, m?/s

see Fg. (1.5)

system matrix, see Fg. (1.1)

semi invariants in a system consisting only of one phase (1 = 1, 2, 3)
semi invariants (¢ = 1, 2, 3)

flow rate, s}



