LINEAR SORPTION MODELLED BY A MARKOV PROCESS

Árpád Pethő

Institut für Technische Chemie
Universität Hannover
D-30167 Hannover, Germany
Received: July 23, 1994

Abstract

Consider a network of n compartments assuming that transition processes may occur between them: e.g. heat or mass transfer, or any kind of exchange of the first order. In fact, we have a Markov process with n states.

Keywords: linear sorption, Markov process.

1. Introduction

Consider a network of n compartments assuming that transition processes may occur between them: e.g. heat or mass transfer, or any kind of exchange of the first order. In fact, we have a Markov process with n states: $A_{1}, A_{2}, \ldots, A_{n}$; the state occupancies $x_{1}, x_{2}, \ldots, x_{n}$ (e.g. the distribution of 1 kg mass) obey the differential equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
x_{1} \tag{1.1}\\
\vdots \\
\cdot \\
x_{n}
\end{array}\right]=\left[\begin{array}{ccc}
k_{11} & \ldots & k_{1 n} \\
k_{21} & \ldots & k_{2 n} \\
\ldots & \ldots & \ldots \\
k_{n 1} & \ldots & k_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
\cdot \\
x_{n}
\end{array}\right] ; \quad k_{i j} \geq 0, \quad i \neq j
$$

with

$$
\begin{equation*}
k_{i i}=-\sum_{j \neq i} k_{j i} \tag{1.2}
\end{equation*}
$$

and the initial conditions [1]:

$$
\begin{equation*}
\text { for } t=0: \quad x_{1}=1, \quad x_{2}=\ldots=x_{n}=0 \tag{1.3}
\end{equation*}
$$

In order to handle the problem we introduce the Laplace transforms

$$
\begin{equation*}
\mathcal{L}\left\{x_{i}(t)\right\}=\int_{0}^{\infty} e^{-s t} x_{i}(t) \mathrm{d} t \equiv x_{i}(s) ; \quad i=1,2, \ldots, n \tag{1.4}
\end{equation*}
$$

Let us consider the partitioning (without any practical meaning for the time being)

$$
\begin{aligned}
A_{1}: & \text { 'mobile' phase and } \\
\left\{A_{2}, \ldots, A_{n}\right\}: & \text { 'fixed' phase }
\end{aligned}
$$

and let us calculate the ratio

$$
\begin{equation*}
\frac{x(s)}{x_{1}(s)} \equiv J(s) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
x(s)=\sum_{i=1}^{n} x_{i}(s) . \tag{1.6}
\end{equation*}
$$

Using the rules

$$
\begin{equation*}
\mathcal{L}\left\{\frac{\mathrm{d} x}{\mathrm{~d} t}\right\}=s x(s)-\left.x(t)\right|_{t=0} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}\{1\}=\frac{1}{s} \tag{1.8}
\end{equation*}
$$

and applying Cramer's rule we immediately have from the transformed solution of (1.1) - (1.2) - (1.3):

$$
\begin{equation*}
J(s)=\frac{|s I-K|}{s\left|s I^{1}-K^{1}\right|}, \tag{1.9}
\end{equation*}
$$

where $K=\left[k_{i j}\right]$ and K^{1} is obtained by deleting the first row and first column in K (and similarly I^{1}, too).

What we are interested in is whether or not J remains unchanged (invariant) by changing our model to a moving-phase one: the system being situated in a CSTR, or in a one-dimensional tube where convectionaldiffusional transport takes place.

2. The Lumped-parameter System (CSTR)

Let us define the flux (with respect to phase A_{1}, which is now moving in fact):

$$
\begin{equation*}
y(t)=\omega x_{1}(t)[\mathrm{kg} / \mathrm{s}], \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\omega \text { : flow rate }[1 / \mathrm{s}] \text {. } \tag{2.2}
\end{equation*}
$$

There holds the following

Theorem 1: J, see (1.5), is independent of ω, i.e. J is an invariant [2] and can be calculated from (1.9).

As an application of this statement we determine the RTD (residence time distribution) of the tracer particles in the CSTR. The balance equation becomes

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}+y=0, \quad \text { i.e. } \quad \frac{\mathrm{d} x}{\mathrm{~d} t}+\omega x_{1}=0 \tag{2.3}
\end{equation*}
$$

Using the rule (1.7) we have

$$
\begin{equation*}
s x(s)+\omega x_{1}(s)=1 \tag{2.4}
\end{equation*}
$$

In view of (1.5) and Theorem 1, we immediately obtain

$$
(J(s) s+\omega) x_{1}(s)=1
$$

i.e.

$$
\begin{equation*}
y(s)=\omega x_{1}(s)=\frac{\omega}{J(s) s+\omega}=\left.\frac{\omega}{s+\omega}\right|_{s=J(s) s} \tag{2.5}
\end{equation*}
$$

We realize that if $n=1: J=1$ and denoting the flux in that case by y^{1}, we obtain the simple rule

$$
\begin{equation*}
y(s)=\left.y^{1}(s)\right|_{s=J(s) s} \tag{2.6}
\end{equation*}
$$

3. The Higher Moments of RTD

Obviously $y(s)$ in (2.6) is just the transformed density function of the RTD. Let us denote the first three so-called cumulants or semi-invariants (mean, variance and 3rd central moment) by

$$
\begin{equation*}
\kappa_{1}, \kappa_{2} \text { and } \kappa_{3} \tag{3.1}
\end{equation*}
$$

and in the case of only one phase, by

$$
\begin{equation*}
K_{1}, K_{2} \quad \text { and } \quad K_{3}, \tag{3.2}
\end{equation*}
$$

respectively. Rewriting $J(s)$ as

$$
\begin{equation*}
J(s)=C f(s)+1 \quad \text { with } \quad f(0)=1 \tag{3.3}
\end{equation*}
$$

where C is the equilibrium constant between the 'fixed' and 'mobile' phase, we finally obtain the general formulae [3, 2]:

$$
\begin{align*}
& \kappa_{1}=(C+1) K_{1} \tag{3.4}\\
& \kappa_{2}=(C+1)^{2} K_{2}-2 C f^{\prime}(0) K_{1}, \tag{3.5}\\
& \kappa_{3}=(C+1)^{3} K_{3}-6 C(C+1) f^{\prime}(0) K_{2}+3 C f^{\prime \prime}(0) K_{1} . \tag{3.6}
\end{align*}
$$

4. The Distributed Parameter System (Tube)

Let us define the flux as (the analogue of (2.1)):

$$
\begin{equation*}
y(z, t)=L x_{1}(z, t), \tag{4.1}
\end{equation*}
$$

where z is the length coordinate $[\mathrm{m}]$ and L is a linear operator, e.g.

$$
\begin{equation*}
L=u-D \frac{\partial}{\partial z} \tag{4.2}
\end{equation*}
$$

with

$$
\begin{equation*}
u: \quad \text { flow velocity }[\mathrm{m} / \mathrm{s}] \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
D: \quad \text { diffusivity }\left[\mathrm{m}^{2} / \mathrm{s}\right] . \tag{4.4}
\end{equation*}
$$

Theorem 2:

$$
\begin{equation*}
\frac{x(z, s)}{x_{1}(z, s)}=J(s) \tag{4.5}
\end{equation*}
$$

with $J(s)$ as defined in (1.9). Once again, the left-hand side is independent of z and u as well as D (invariant).

As an application of this theorem [4] we determine the respective RTD. The balance equation becomes

$$
\begin{equation*}
\frac{\partial x}{\partial t}+\frac{\partial y}{\partial z}=0 \tag{4.6}
\end{equation*}
$$

and in the Laplace domain we have because of (4.5)

$$
\begin{equation*}
\left(J(s) s+\frac{\partial}{\partial z} L\right) x_{1}(z, s)=\left.x_{1}(z, t)\right|_{t=0}: \quad \text { prescribed } \tag{4.7}
\end{equation*}
$$

whose solution (depending on the boundary conditions) is to be substituted in the transformed equation (4.1):

$$
\begin{equation*}
y(z, s)=\dot{L} x_{1}(z, s) . \tag{4.8}
\end{equation*}
$$

However, we realize that if $n=1: J=1$, and denoting the fluy in that case by y^{1}, we have

$$
\begin{equation*}
y(z, s)=\left.y^{1}(z, s)\right|_{s=J(s) s} \tag{4.9}
\end{equation*}
$$

which is the counterpart of (2.6). Once again, $y(z, s)$ is the transformed density function of RTD. For the first three cumulants the general relations (3.4) - (3.5) - (3.6) are valid.

References

1. Kumar, S. - Pethő, Á. (1990): The Markov Process Approach to Modelling of Residence Time Distributions in Flow Systems, Chem. Eng. Technol., Vol. 13, pp. 422425.
2. Pethő, Á. (1991): A Simple Mathematical Treatment of Linear Sorption Modelled by a Markov Process, Hung. J. Ind. Chem., Vol. 19, pp. 47-54.
3. Pethö, Á. (1990): Contributions to the Theory of Linear Multiphase Chromatography, Chem. Biochem. Eng. Q., Vol. 4, pp. 67-72.
4. Ретнö, Á. (1989): Residence Time and Displacement Distributions in the Case of Continuous Flow Combined with an Imbedded Markov Process in the Fixed Bed, Hung. J. Ind. Chem., Vol. 17, pp. 509-521.

Appendix

1. The higher moments of RTD for a CSTR without sorption are given by the simple formula:

$$
\begin{equation*}
\mu_{m}=\frac{m!}{\omega^{m}} ; \quad m=1,2, \ldots \tag{A.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{m}=\int_{0}^{\infty} t^{m} y^{1}(t) \mathrm{d} t ; \quad m=1,, 2, \ldots \tag{A.2}
\end{equation*}
$$

Consequently the first 3 semi-invariants become

$$
\begin{gather*}
K_{1}=\mu_{1}=\frac{1}{\omega}, \quad K_{2}=\int_{0}^{\infty}\left(t-\mu_{1}\right)^{2} y^{1} \mathrm{~d} t=\frac{1}{\omega^{2}} \\
K_{3}=\int_{0}^{\infty}\left(t-\mu_{1}\right)^{3} y^{1} \mathrm{~d} t=\frac{2}{\omega^{3}} \tag{A.3}
\end{gather*}
$$

Inserting these values in (3.4) - (3.5) - (3.6) we obtain at once the respective semi-invariants for a CSTR with an imbedded Markov process.
2. The first 3 semi-invariants of RTD in a continuous-flow one-dimensional tube reactor with diffusion are given by the simple formulae [3]:

$$
\begin{equation*}
K_{1}=\frac{1}{u} z, \quad K_{2}=\frac{2 D}{u^{3}} z, \quad K_{3}=\frac{12 D^{2}}{u^{5}} z \tag{A.4}
\end{equation*}
$$

Once again, substituting these values in (3.4) - (3.5) - (3.6) we have the respective semi-invariants for the generalized linear chromatography [3].
3. Consider an arbitrary continuous-flow reactor (either of the above examples) with two phases (mobile and fixed) between which a Markov process according to the system matrix

$$
K=\left[\begin{array}{cc}
-k_{21} & k_{12} \tag{A.5}\\
k_{21} & -k_{12}
\end{array}\right]
$$

takes place. Then, in view of (1.9) and (3.3) we readily obtain

$$
\begin{equation*}
J(s)=\frac{s+k_{12}+k_{21}}{s+k_{12}}, \quad f(s)=\frac{k_{12}}{s+k_{12}} \tag{A.6}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\frac{k_{21}}{k_{12}}, \quad f_{0}^{\prime}=-\frac{1}{k_{12}}, \quad f_{0}^{\prime \prime}=\frac{2}{k_{12}^{2}} \tag{A.7}
\end{equation*}
$$

4. The interested reader might put down the respective formulae (3.4) - (3.5) - (3.6) in the case of the imbedded Markov process for both types of continuous-flow reactors.

Notation

f see $E q$. (3.3)
s Laplace transform variable, $\mathrm{s}^{-} 1$
t time, s
u flow velocity, m / s
x the total state occupancy (in the mobile plus fixed phase)
x_{1} state occupancy in the mobile phase, kg (CSTR) or kg / m (tube)
y flux, kg / s
z length coordinate, m
C equilibrium constant, see $E q$. (3.3)
D diffusivity, $\mathrm{m}^{2} / \mathrm{s}$
J see $E q$. (1.5)
K system matrix, see Eq. (1.1)
K_{i} semi invariants in a system consisting only of one phase ($i=1,2,3$)
κ_{i} semi invariants ($i=1,2,3$)
ω flow rate, s^{-1}

