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Abstract 

A new stochastic method and algorithm are presented to solve optimal control prob­
lems under uncertainty which are illustrated with two examples of minimum-time control 
problems. 
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1. Introduction 

Optimal control problem formulation requires the uncertainty in process 
dynamics to be taken into account. A number of stochastic algorithms have 
been developed to deal with the uncertainty, but they either concern the 
linear systems only or require big computational efforts when being more 
general. In this paper a new stochastic method and algorithm are pre­
sented. The assumption is that the uncertain parameters axe slowly vary­
ing, so they are constant in the time interval of interest. It makes compu­
tation of the optimal control of non-linear systems much easier compared 
to the other methods. 

2. A New Stochastic Method 
for Optimal Control under Uncertainty 

2.1. Problem Formulation 

The following optimal control problem is considered here: Given the process 
dynamics: 

dx 
dt = f(x,u,p), x(to) = xo, (1) 
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with required expected values x{ at the final time t f of some of the state 
variables x and probability distributions d(p) of the uncertain parameters 
p, find values of the control variables u such that the expected value (E[.]) 
of the performance measure: 

L[,,(t)] = G['m(tf)] + f [1 iO(X''''P)dt] (2) 

is maximal taking into account constraint imposed on the control: 
U/ ~ u(t) ~ Uu. 

2.2. Algorithm 

Here an algorithm is proposed to solve optimal control problems under un­
certainty which is based on the necessary conditions for optimality given by 
STOYANOV and GRANCHAROVA (1993). It can be regarded as an extended 
version of the gradient methods (LASDON et al, 1967) which in addition 
takes into account the uncertainty in process dynamics and can solve not 
only fixed-time problems but time optimal control problems as well. The 
proposed algorithm can be described by the following steps: 

1. Guess the final time tf if minimum-time problem is to be solved. 
The first guess for t I can be generated in the following way: t I = T /10, 
where T is the time for the process to reach the desired steady state if 
control variables are set to their steady state values. 

2. .Guess the control u(t), t E [0; tf]. It is proposed that initially 
control variables are set either to their minimal or maximal values allowed. 

3. With these values of u(t), integrate the state equations (1) forward 
in time for different values rJ, j = 1,2, ... ,N of the uncertain parameters 
p and obtain process trajectory x(t, ,rJ), t E [0; t/l, j = 1,2, ... , N. 

4. With these values ot u(t) and x(t,rJ), integrate the following 
equations for the adjoint variables). backward in time for different values 
of the uncertain parameters: 

d)'(t,rJ) _ oH . oG 
dt - ox' )..(tf,P)) = ox

m
' j = 1,2, ... , N, (3) 

where H is the Hamiltonian function. 
5. Correct u(t), t E [0; t/l by using the necessary condition for opti­

mality as follows: 
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Optimise the value of e so as to maximise the criterion (2) and repeat the 
algorithm from step 3. 

6. Iterate until convergence on the optimality criterion (2) is attained. 
In case of solving minimum-time problem, it is proposed for the perfor­
mance measure (2) to have the following form: 

(5) 

which expresses the desire to have at the final time the state variables Xi 

equal to their required values x{. 
7. Give a new guess for the final time tf when a minimum-time 

problem is to be solved and repeat the algorithm from step 2. Iterate until 
the optimal value of the criterion (5) becomes small enough. The time end 
t f corresponding to this value will be the optimal final time. 

2.3. Examples 

EXAMPLE 1: An example given by Hsu et al (1972) of minimum-time con­
trol of the following second-order system: 

dx 
400· - = -x+u 

dt ' 

dy 
300· - = -y+x 

dt 
(6) 

was solved by using the proposed algorithm. The optimal control problem 
was to move the process from the steady state x = y = u = 40 to a new 
steady state x = y = u = 50 in minimum time. The control was computed 
for different values of the final time t f as it can be seen from Table 1. The 
optimal control is shown in Fig. 1. 

Table 1 

Final time t f I 1000 1200 1400 
Optimaiity criterion 0.1814 0.0410 0.0011 

L[u( t)1 
Accuracy on L[u(t)1 0.01 0.001 0.0001 

Computing time in sec 186 237 375 
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Fig. 2. Optimal control policy 

EXAMPLE 2: A problem of optimal start-up under uncertainty of a con­
tinuous stirred tank reactor (CSTR) in which a first-order irreversible re­
action A -+ B takes place was solved. This example is taken from (HICKS 

and RAY, 1971) where the control problem is solved in t.he absence of un­
certainty. The mass and heat balance of the CSTR expressed through di­
mensionless concentration Yl and temperature Y2 are: 
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Table 2 

N 24.0 24.4 25.2 26.0 26.4 

D(N) 0.05 0.2 0.5 0.2 0.05 

Concentration legend 
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Fig. 3. Concentration trajectory for N = 24.4 
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Fig. 4. Temperature trajectory for N = 24.4 
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dYl = (1 - Yl) _ (N) dY2 = (Yf - Y2) + (N) _ (_) 
dt eT, dt e T a:.U. Y2 Ye. (7) 

It is supposed that the parameter N is uncertain with discrete probability 
distribution given in Table 2. The following problem was solved: Move 
the CSTR from the initial state Yl(O) = 1, Y2(0) = Yf to the steady state 
corresponding to the value U = 370 of the control, in minimum time, having 
uncertainty in parameter N and constraint imposed on the control: 0 ~ 
u(t) ~ 1500. The time-optimal response of the CSTR found by applying 
the proposed algorithm is shown in Figs. :1 and 4 for a possible value N = 
24.4 of the uncertain parameter. There it is compared with the response 
obtained for control set to its steady state value and with the response 
using a proportional-integral-derivative (PID) control. The control actions 
are shown in Fig. 2. It can be seen that the optimal response obtained 
by using the developed algorithm reaches the steady state more quickly 
compared to the two other responses. 

References 

1. STOYANOV, S. - GRANCHAROVA, A. - GANI, R. (1993): System Modelling Control, 
Zakopane, Poland, May, 1993, pp. 181-185. 

2. LASDON, L. - MITTER, S. - WAREN, A. (1967): IEEE Trans. Aut. Cont., AC-12, pp. 
132-138. 

3. Hsu, E. BACHER, S. - KAUFMAN, A. (1972): AIChE Jou'l"nai, Vol. 18, pp. 1133-1139. 
4. HICKS, G. - RAY, W. (1971): Canadian J. Chem. Eng., Vol. 49, pp. 522-528. 


