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Abstract 

The purpose of this analysis is to show the importance of correct performance of picture 
representation and circumspect interpretation of variation in the application of the min­
imum entropy production principle. As an incorrect formulation of a variational task, 
written for the Fourier heat conduction problem has shown, the principle of minimum 
entropy production apparently goes to contradiction with the energy balance equation [1]. 
This led to further erroneous conclusions. The misunderstanding can be resolved - ex­
ceeding far off beyond the actual problem with Gyarmati's picture representation and 
variational principle, the Governing Principle of Diss·ipative Processes. 
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On the Lampinen Dilemma of the Minimum Entropy 
Production Principle 

\Ve quote from [1] the ornilwllS forTTwlation of 'A simple heat conduction 
problem': 'VVe consider Cl Olle dimensional heat conduction problem where 
heat is conducted through a plate which is in a stationary state. The thick­
lless of the plate is L and the surfaces are kept at constant temperatures, 
1. e. the boundary conditions are 

T(.1: = 0) = To, T(x = L) = Ti. (7) 

The entropy production at each point x is 

dSirr 1 1 .) 
~ = -T2 qYT = T2 A(8Tj8xt . (8) 

Here we have used Fourier's model for the heat conduction 

q = -AYT (9) 
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with a constant heat conductivity A. Using Eq. (8) we get for the entropy 
production rate 

L 

dSi7'r = AA j(~0)(8Tj8x)0 2dx . 
dt T2 . (10) 

o 
where _4. is the cross sectional area of the plate. 

According to the principle of minimum entropy production we formu­
late the following problem. Find such a temperature distribution T(x) that 
fulfils the boundary conditions (7) and minimizes the entropy production 
rate, i. e. 

(L(o 1 )(8Tj8 .)2d" - . I JO T20 X X - mm. (11)' 

This quotation will be discussed later. 

On the Gyarmati Principle 

Gyal'mati's opus magnum, the GPDP, well known as being regarded the 
most widely valid and applied integral principle for linear, quasi-linear and 
certain types of non-linear theories [2, 3] in the thermodynamics of irre­
versible processes. This principle [4, 5] has already proved its usefulness 
for the complete regime of transport phenomena [6-32]. The principle tells 
us, in total generality, that the functional 

t t 

<5L[f,Jj = <5 j j £dVdt = <5 j j(O" - w - <t»dVdt = 0 (1) 

o v 0 "V 

under constraints that the balance equations 

(i=1,2, ... ) (2) 

are satisfied [2]. For the entropy we can write 

(3) 

Now referring to (1), (2) and (3) O"s is the entropy production; Wand <l? are 
the local dissipation potentials; p is the density of the continuum, CL and s 
denote substantial time derivatives of the specific value of the i-th transport 
quantity and entropy, respectively; Ji and Xi represent the independent 
thermodynamic current and thermodynamic forces, respectively. The local 
dissipation potentials, which were introduced by Rayleigh and Onsager for 
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special cases, always exist in continua. The (J, \)! and 1.> are positive definite 
bilinear and homogeneous quadratic fUllctions of the thermodynamic forces 
and currents, respectively. In stationary case the problem is reduced to the 
follo'wing variational task (for details see [2, 5]): 

5 r \)!dV = O. 
J 

(4) 

This special '.case of the GPDP is perfectly equivalent to the earlier for­
mulation of a variational problem developed by Prigogine in 1945, as the 
principle of ll:iinimum production of entropy, since 

(5) 

in the linear theory. Hence, instead of (4) 

(6) 

stands, in which we can disregard the multiplying factor 2. According to 
DE GROOT and MAZUR [3]: 'Stationary non equilibrium states have the 
important property that, under certain conditions, they are characterised 
by a minimum of the entTopy pTodaction, compatible '\vith the external 
constraints imposed 011 the system. This property is valid only if the phe-
nomenolog'ica.i coeff£cicnis are to be constant.' This principle 
proposed by Prigogine llcecl::; h()wever some more conditions namely the 
validity of the linear constitutiw eqllatiolls. The entropy production using 
the different [2] call be interpreted according to 
[26] as fono-lNs. The temperature scale ill the so-called r-picture is defined 
for heat cond uctiOll by the trallsformation 

I [(T). (7) 

Let us assume that fUllction [ 18 continuously differentiable and that its 
inverse exists, so we have 

dt(T) 
ciT>O or 

d[(T) 
ciT<O. 

(8) 

(9) 

r shows the strictly monotonic property in the interval 0 < T < 00. 

In the contemporary thermodynil..mic theory of heat conduction the most 
frequently used scale transformations are 
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r**(T) = 
r*(T) 
r(T) 

T, 
In T, 
T- 1 , 
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Fourier picture, 
energy picture, 
entropy picture. 

(10) 

It is possible to transform the original linear Fourier law into different 
pictures postulating the invariance of heat CUTTent \vith respect to the scale 
transformations [2, 26]. Vie can write 

Whereas between the coefficiens the relations 

L** = A = T-1 L* = T- 2 L (12) 

are valid. The entTOpy pTOduction belonging to the heat conduction can be 
given in different pictures as 

J V *'" J¥~ 
__ -'1.. __ ~_Jv 

(j - T2 - T - ..(1., 

where 
X** = - \IT, X* = - \lInT, X = \IT-I, 

and for the dissipation potentials we have 

T 
\)! = '::(\IT-1)2 

2 ' 

while among them, the connections 

are valid [2]. The entropy production can be generally written as 

f f 
(j = :L JiXi = :L Ji \lr i 2:: O. 

i=l i=l 

(13) 

(14) 

(15) 

(16) 

(17) 

The dissipation potentials in the linear theory - when Lik or Rik phe-
nomenological coefficients are constant are defined as 

(18) 
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The most general form of the Fourier equation in the generalized 
r-picture is 

far f 
PCVat + 'VL 'Vr = o. 

187 

(19) 

(20) 

When the transport equations represent quasi-linear partial differential 
equations, because the conductivities Lik and the resistances ~k depend 
on the parameters ri, the governing principle remains valid. This is a con­
sequence of the supplementary theorem of Gyarmati [5] which states that 
'In the case of quasilinear constitutive equations, the variation of the sum 
of dissipative potentials with respect to the parameter ri vanishes [5].' 

The Lagrangian formulation of GPDP is [2] 

f 

8 J CdV = 0, 
V 

C = L(pai - O"i)ri - ['lJ('Vr, vT) + iJ!(J, J)]. 
i=l 

(21) 

(22) 

In case of simultaneous - but independent - variation of (21) with re­
spect to f independent scalars ri and f independent vectors J i , we get the 
transport equations 

ac f a ac _ 0 
ar· - L ax a(afil - , 

! a=l a ax", 

and the constitutive equation 

ac 
aJi = 0, 

as Euler-Lagrange equations. 

(i = 1,2 ... , f), 

The Lagrangian Density and Euler-Lagrange Differential 
Equation in Case of Fourier Heat Conduction Process 

according to Gyarmati 

The Lagrangian density in entropy picture is 

(23) 

(24) 

(25) 
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and here the index of the Lagrangian density refers to the varied parameter. 
The equation 

(26) 

just comes from (21) as Euler-Lagrange equation. One can see from the 
variational problem (21), too, that the entropy picture as mm avis leads 
from entropy production directly to the Lagrangian density. This cannot 
be said in cases of the Fourier and the energy pictures, for in these the 
entropy production eT has to be multiplied by T2 and T respectively, to 
get the correct Lagrangian densities. To determine the correct Lagrangian 
density we have to take the generalized picture as a model according to the 
product J vT. This is the 'causa sine qua non' of proper picture formation 
[2, 26]. We must not forget that the time derivatives are not varied in a 
proper application of the Gyarmati principle. 

The Lagrangian density in the Fourier picture is 

(27) 

Here the index T refers to the varied parameter. Hence the Euler-Lagrange 
differential equation of (27) is 

aCT ~ a aCT 
aT - L...t axo: a(2L) = o. 

0:=1 ex", 

(28) 

in the Fourier picture. 
As Lagrangian density in the energy picture we get 

and for the Euler-Lagrange differential equation yields 

(30) 
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The Proper Results for the Lagrange Densities 
in Different Pictures 

Entropy Picture 

Energy picture 

Fourier picture 

The connections between the Lagrange densities 

1. e. 

in the entropy picture, 

LInT (]" = -- in the energy picture, 
T 

in the Fourier picture, 
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(31) 

(32) 

(33) 

(34) 

(35) 

Here we can show the temperature dependency of the Lagrange densities 
if they enter a foreign or inappropriate picture. Thus 

LT = L1.. (T)T2 = LInT(T)T, 
T 

LInT = L1..(T)T = LT(T)T-I, 
T 

(36) 

L1.. = LInT(T)T- 1 = LT(T)T-2
, 

T 

and so with these expressions one can avoid the nonlinearities for the La­
grange densities, too. The connections and the procedures are the same as 
for the phenomenological coefficients vice versa (see later Eq. (49)). 
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The Proper Results for Euler-Lagrange Equations 

Entropy picture, where L1.. = L(\lT-l)2, 
T 

so 

(37) 

8L1 1 
_~T_= L2\l-
8(\l~) T' 

8L1.. 1 1 
\l T = L\l2\l- = L26.- = 0 

8(\l~) TT' 

hence 
1 

-L26.
T 

= 0, 

and because in stationary state div Jq = 0, therefore as 

(38) 

(38a) 

Jq = L(\lT-1
), divJq = \l (L(\lT-l)) = L6.~ = 0, (39) 

we have got the good result. Our result can be transformed to the well 
known Fourier picture with the next steps 

divJq = \l(L(\lT-l)) = \l(AT2(\lT-l)) = \le -AT2 ~;) = -A6.T = 0, 

( 40) 
where L and A are constants in the entropy and Fourier pictures, respec­
tively. Now the 'key' is the fact that div Jq = 0, in all pictures. 

. * . . 2 Energy pzcture, where LinT = L (\lInT) , 

so 

8LlnT _ ~ 8LlnT = 0 
8lnT dx 8(81:T) , 

8LlnT = 0 
8luT ' 

8LlnT = ?L*(\l1 T) 
8(\llnT) - n, 

\l fLInT = L*(\l2(\llnT) = L*26.lnT = 0, 
8 \lInT) . 

( 41) 

( 42) 



PRINCIPLE OF MINIlYIUM ENTROPY PRODUCTION 191 

hence 
-L* b.lnT = ° (42a) 

and because in stationary state div Jq = 0, therefore as 

Jq = -L*(vlnT), divJq = v(-L*(.6.1nT)) = -L*.6.1nT = 0, (43) 

we have got the good result, which can be transformed to the Fourier 
picture as follows 

divJq = v( -L*(VlnT)) = V( -AT(vlnT)) = v( -AT \1:) = -A.6.T = 0, 

(44) 
where L* and A are constants in energy and Fourier pictures, respectively, 
as div Jq = 0, in all pictures due to the stationary state in case of energy 
balance. 

Four-ier picture, where LT = )"(VT)2, 

now 

so 

8LT d 8LT _ ° 
8T - dx 8(~;) -

8LT 
8T = 0, 

8LT 
2)..(vT), 

B(vT) 

V 8(VT) = ).. 'V2('VT) = )"2.6.T = 0, 

-)"2.6.T = ° 
and as for the stationary state div 1'1 = 0, hence 

Jq = -A(vT), divJq = v( -A(vT)) - -Ab.T = 0 

we have got the right result. 

Resolution of the Lampinen Dilemma 

( 45) 

( 46) 

(46a) 

( 47) 

First we have to analyse the picture constants generally. According to (12) 
we have the connections for the picture constants 

).. = T-1L* = T- 2L, 

L* = T)" = T-1L, 

L = T2).. = TL*, 

Fourier picture, 

energy picture, 

entropy picture. 

(48) 
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We see that A, L* and L can be replaced by the appropriate products, too. 
The phenomenological coefficients are constant near equilibrium. This can 
be proved if one takes the entropy production from the various pictures. 
But in the stationary case of heat conduction we must take care of the 
phenomenological coefficients. They are constant only in their own picture 
and become temperature dependent if they enter a foreign picture, i. e. 

A =T-1 LHT) = T-2 L>-(T), 
L*=TAL* (T) T-1 LL*(T), 
L =T2AL(T) TLi(T) , 

Fourier picture, 
energy pIcture 
entropy picture. 

In a foreign representation picture the conductivity factors will be 

A -. AL*(T) or A -. AL(T), 
L* -. L!(T) or L* -. Ll(T), 

L -. L>-(T) or L -. LL*(T), 

(49) 

(50) 

if we take them from their own picture 'where they were constant. Now we 
see the different nonlinearities. \Ye can cancel the nonlillearities with the 
following substitutions 

AL*(T)=T-1L* and AL(T) =T-2L nonlinear AinL*orL picture, 
LA(T) = TA and L'L(T) = T-1L nonlinear L*in A o1'L picture,(51) 
L>-(T) = TA and L'L(T) = T L* nonlinear Lin A or L* picture. 

And now let us consider the resolution of the particular problem of the 
ominous Lampinen dilemma: 

Case 1 

According to the formulation of [1] the force in the expression of the entropy 
production is represented in the entropy picture. Despite this representa­
tion, the flux is inserted in the Fourier picture. Now this was a step which 
caused nonlinearity because a constant phenomenological coefficient from 
its own picture entered a foreign picture where it became temperature de­
pendent. But with the insertion of expression (51) this illusory nonlinearity 
can be cancelled, i. e. A -. AL(T) = T-2 L gives us the right form of the 
Lagrange density in the entropy picture, which is the linear one 

A(V'T)2 -. A (T) (V'T)2 = L (V'T)2 
T2 L T2 T4 ' (52) 

as we know it. 
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Case 2 

A(vT)2 On the other hand, (j = -;y;:- can be understood as the entropy produc-
tion in the Fourier picture, too. From this one can obtain the Lagrange 
density by multiplying it by T2. This multiplication has not been done, 
therefore (j has gone in [1] into the variation as Lagrange density. But for 
the Fourier picture this was the wrong step. Thus we could not get the 
right form of the Euler-Lagrange linear differential equation of the Fourier 
heat conduction process. 

Case 3 

Let us see the consequence of the foreign flux in [1]: 

As in [1] the flux was represented in Fourier picture, but the force in 
entropy picture, therefore the conjugation according to Fourier heat con­
duction was violated. In expression (13) we showed the right conjugations 
of the forces and the fluxes for Fourier heat conduction. Without apply­
ing the above substitution of expressions (51) there remains a flux 'out 
of conJ·ugation' type in the problem of [1] for the entropy production and 
Lagrange density. Now the Lagrange density is the same as in the left 
hand side of expression (52). Because of this remaining foreign flux we ap­
ply another substitution from the equations of the expression (49) namely 

,\ = T- 2 LA(T). Therefore ,\ (Vil can be written as 

L (T) (VT)2. 
A T4 > 

(53) 

which is a nonlinear expression. But in this situation we have to emphasize 
that the flux coming from the Fourier picture (the index indicates this fact) 
into the entropy picture causes a new problem, namely that 'the process' is 
not the Fourier heat conduction process any more because of the violation 
of the conjugation rule of expression (13) for the forces and thefluxes. 
In the expressions in [1] a force in the entropy picture 'drives' a current 
in Fourier picture. This is an embarrassing situation. So because of a 
foreign current the author of [1] 'left' unconsciously the problem of the 
classical Fourier heat conduction process causing a nonlinear situation with 
nonlinear Lagrange density. With this Lagrange density was formed the 
Euler-Lagrange differential equation showing nonlinear character. Now 
we can create a system of out-of-conjugation type Lagrange densities in 
the different pictures. We can see in Table 1 these cases according to 
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Table 1 

A enters the entropy picture: A (V'T)2 (V'T)2 
---;yr- =L).. (T) --y;:r-, 

A enters the energy picture: A (V'T)2 
--rr-

_L*(T)(V'T)2 -).. ---;yr-, 

L* enters the entropy picture: L* (V'T)2 - L (T) (V'T)2 
T3 - L* T4, 

L* enters the Fourier picture: L* ~ =AL* (T)(\1T)2, 

L enters the energy picture: L (V'T)2 
~ 

- L* (T) (V'T)2 
- L ---;yr-, 

L enters the Fourier picture: L (V'T)2 
---;yr- =At(T)(\1T)2. 

the actual foreign currents and representational pictures with a convenient 
substitution of (49): 

In the first column of Table 1 we find the linear phenomenological 
coeffcients and in the second one we can find the nonlinear temperature 
dependent phenomenological coefficients, showing the nonlinear Lagrange 
densities relative to linear shaped Lagrange densities. 

We build the nonlinear Euler-Lagrange differential equations from 
the nonlinear Lagrange densities in the first column of Table 1. As to 
the variational disposal we can set out from the second column of Table 1 
where, according to the nonlinear phenomenological coefficient, there are 
two possibilities. On the one hand, the variation can go according to the 
phenomenological coefficient (i. e. according to the force as case a) and 
on the other hand, according to the index (i. e. according to the :flux as 
case b). Therefore we list according to the lines (from 1 to 6) of Table 1 the 
nonlinear Euler-Lagrange differential equations in Table 2 with constant 
phenomenological coefficients: 

Table 2 

Ib and 6a :(\1T)2 - T!:::..T = 0, 

2b and 4a :(\1T)2 - 2T!:::..T = 0, 

3b and 5a :2(\1T)2 - T!:::..T = 0, 

4b and 2a :-T!:::..T = 0, 

5b and 3a: !:::..T/T = 0, 

6b and la :!:::..T = 0. 
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From (49), with substitution, these equations can be expressed with 
the temperature dependent phenomenological coefficients. The identities 
in Table 2 refer to the similarity of Euler-Lagrange differential equations. 
This shadow or phantom type nonlinear differential equation system of the 
Fourier heat conduction problem can be instructive and gives an inter­
esting picture of nonlinear heat conduction with temperature dependent 
phenomenological coefficients. This article clearing the problem is not only 
argumentum ad nominem for [1], as time to time come to light similar ideas 
for the Fourier heat conduction problem in connection with the Prigogine 
principle. The nonlinear differential equation as end result from [1] is the 
same as the 1b type nonlinear differential equation in Table 2. Symmetries 
exist because of the two interpretations of the variational disposal in the 
different pictures. 

Summary 

The Fourier heat conduction process is one where the flux depends only 
on the conjugated thermodynamic force which appears in the entropy pro­
duction, i. e. which can be determined by the phenomenological coefficient 
Ljj of the main diagonal of a tensor, so this is a simple or direct irre­
versible process. Stationary states, states in which the properties of the 
system are time independent, play an important role in applications of 
non-equilibrium thermodynamics. Stationary non-equilibrium states have 
an important feature and this is a special one: under certain conditions 
they are characterized by a minimum rate of entropy production which 
is compatible with the external constraints imposed on the system. This 
feature manifests itself under the conditions of constant phenomenological 
coefficients. But this is generally not valid in real systems, so the above 
statement means that the overall gradients of the thermodynamic proper­
ties throughout the entire system must be small enough for the assumption 
of constant phenomenological coefficients to be justified. This can be ap­
proximately justified by the constancy of the conductivity coefficients in 
Fourier heat conduction, too. 'Under certain conditions' means that the 
Onsager conditions are fulfilled, i. e. 

the linear laws, 
the reciprocity relations and 
the constancy of phenomenological coefficients 

are valid. During the evolution of a system from its initial state to the sta­
tionary state the rate of entropy production constantly diminishes and in a 
stationary state the change in rate of entropy production is stopped. But if 
the Onsager conditions are not fulfilled this cannot be proved in a general 
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form. The constancy of phenomenological coefficients is one of the Onsager 
conditions. ~Te can speak only in this case about linearity in a clear sense. 
If the phenomenological coefficients have changes, there are two cases of 
nonlinearity. First we speak about quasilinearity if the phenomenological 
coefficients depend on the local equilibrium state variables. If they depend 
on the thermodynamic forces, then we can regard them rigorously as non­
linear and speak about nonlinearity. These problems .. vere also cleared by 
Gyarmati in his cited work. 

As to the representational pictures and the phenomenological coef­
ficients the linearity and nonlinearity must be considered from the own 
picture of point of view of the phenomenological coefficients. So we have 
to speak about real linearity or nonlinearity only if a phenomenological 
coefficient is in its own picture. Therefore the conscious use of the pic­
ture representation is a significant obligation. In the short communication 
[1] the author violated the principle of minimum entropy production by 
the arbitrary use of picture representation among others. This led to a 
nonlinear differential equation instead of a linear one. In this manner was 
born the causeless criticism of the principle of minimum entropy produc­
tion. Finally it must be emphasized that the picture representation concept 
needs not only vertical but also lateral thinking. This is one feature which 
is also important if one makes approaches to non-equilibrium thermody­
namic concepts. \Ve always have to meet this requirement. As we sum up 
our investigations we can say that neither a right Lagrange density nor a 
right variational comprehension is identical with an inappropriate flux in 
a representational picture. So the original problem becomes of the out-of­
conjugation type. i. e. nonlinearity will exist. During the calculation pro­
cess one must follow the same representation picture and so the discussion 
of the problem must be made according to one of the three dissipation 
potentials or Lagrange densities as follows: 

(FT2=J X**, 
(FT JX*, 
(F J X, 

Fourier picture, 
energy picture, 
entropy picture. 

( 54) 

The classical Fourier heat conduction problem is a stationary type process 
near the thermodynamic equilibrium for which the Prigogine principle, the 
principle of minimum entropy production is valid. In short communica­
tion [1], because of a wrongly interpreted Lagrange density or incorrect 
variational disposal, the classical Fourier heat conduction problem was not 
discussed. Quidquid agis prudenter agas et respice finem .. 
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