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Abstract 

The excess free enthalpy of metal surfaces is calculated using Ising's model for both 
one- and two-dimensional surfaces. The result is in good agreement with experimentally 
obtained data. 

Introduction 

Many important properties of solid and liquid materials are related to 
their surface free enthalpy. Since Stefan's original study [1], which gave the 
molar surface energy as exactly half of the heat of vaporization, several 
attempts have been made to determine this quantity [2, 3]. 

We have derived the grand canonical partition function using a 
two-dimensional model that is suitable to describe a one-dimensional surface. 
An expression for the excess free enthalpy is obtained from the partition 
function. The calculation can be extended to a two-dimensional surface as 
well. Only the equilibrium structure is considered in this work. 

The model 

The model is shown on Figure 1. The square cells represent metal atoms 
which lie above each other. The uppermost layer is the surface layer, it has 
vacancies, i.e., missing atoms. The second layer is the semi-bulk layer, it has 
no vacancies, but some of its atoms are exposed to the gas phase. The other 
layers constitute the bulk, with none of their atoms being in contact with the 
gas phase. The surface configuration, determined solely by the surface layer, 
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is given as a one-dimensional array of numbers, (nJ The value of nj is zero 
if an atom is missing in the i-th position, and it is 1 if there is an atom. (The 
configuration of the surface on Figure 1 is 111010011.) Practically any surface 
configuration is possible on physical grounds. Surface atoms may enter the 
gas phase creating additional vacancies, and gas phase atoms may condense 
on the surface filling up vacancies. In addition, rapid surface jumps in the 
first layer are a frequent occurrence. 

\\IIDJ,m 
Surface layer 

Semi-bulk layer 

Bulk layer 

Fig. 1. Two-dimensional crystal structure with one-dimensional surface (cubic crystal) 

It has been proved that the main contribution to the surface free enthalpy 
comes from the first two layers due to the large value of the molar heat of 
atomization of metals [4]. The latter quantity is almost equal to the internal 
energy of atomization since ,1E ~ ,1 (p V): 

The excess energy of the i-th atom is given by 

Ej(m) = ,1E(8 m)/8 

(1) 

(2) 

where m is the coordination number defined as the number of neighbours of 
an atom. Obviously m is 8 for every atom in the bulk, 0 for gas phase atoms, 
3, 4, or 5 for surface atoms, and 5, 6, 7, or 8 for an atom in the semi-bulk 
layer. The excess energy of the system is the sum of the individual excess 
energies: 

N 

E= L Ei (3) 
;; 1 

We assume that it is sufficient to take into account only the influence of the 
nearest neighbours, i.e., E j will be the function only of nj _ l' flj, and nj + 1 . 

There are two possibilities depending on whether an atom is present or missing, 
i.e., whether nj = 1 or 0: 

Ej(nj -1,1, nj+ 1) = (,1E/8) [(5 - nj- 1 - nj+ 1) +(2 - llj-1 - nj+ l)J (4) 

Ej(n j_ 1,0, nj + 1) = (,1E/8)(3 - nj- 1 - nj+ 1) (5) 

due to (2). Eq.'s (4) and (5) can be combined, leading to the following general 
expressions: 

E j =Ej(n j_1, nj, nj+ d=(,1E/8) [3 +4nj -(nj + 1)(nj_1 + flj+ dJ (6) 
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The canonical partition function for a surface containing N particles is [5J 

ZN(T) = I exp E(rn 1 , n2 , ... , nN)J (7a) 

where 

(7b) 

and the summation includes all possible configurations. Substituting (6) into 
(7) and introducing A == J Ej8R T, we obtain the following expression: 

ZN(T)=eXP(-3NA)Iexp { -A
i
t

1 
[4nj (nj+l)(nj_1+nj+1)]} (8) 

where the I is defined in Eq. (7b) again. It can be simplified for very large 
N's, using 

N N n N 
I (n j+n j_1)= I" 2nj and I njnj_1 = I njn j+ 1 (9) 
i= 1 i= 1 i= 1 i= 1 

leading to 
N 

ZN(T)=exp (-3N A) I exp [ -2A I (nj -njnj+ 1)J (10) 
i= 1 

If we introduce Sj = 2n j -1, (10) becomes a well known expression for the 
one-dimensional Ising model [6]: 

ZN(T) = exp (-7N A) Sl~± 1 sJ=± 1 ... SN~± 1 exp ( a it SjSi+ d2 ) (11) 

The explicit solution of an equality of this kind is received by making use of 
the equality [6]: 

Sl~±lS2~±1 exp {.8 itl [es j sj + 1 +FSj S j + 1 /2J} = 

= <exp (.8e) {cosh (.8F) + [cosh2 (.8F)-2exp (-2.8e) (sinh (2.8e)J 1/2
} > (12) 

In our case .8, e, and F correspond to A/2, 1, and 0, respectively, so the 
partition function acquires the following form: 

ZN(T) = exp (-7NA/2) [exp (A/2)+exp (-A/2)JN (13) 

Using [5J 
G(T)= -RT lim [In ZN(T)/NJ (14) 

N~oo 

the free enthalpy excess of the surface is obtained from (13): 

GS(T)=-RTJ 7Aj2+1n[exp(A/2)+exp(-A/2)} (15) 
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Due to the high internal energy of atomization, i.e., 100-250 kJ/mol, the 
value of A is much greater than 1, so the exp ( - A/2) term can be neglected 
from (15): 

(16) 

Discussion 

Considering that our model is one-dimensional, and the most probable 
configuration is the flat surface (in average), we obtain also from (2) 
,1E(8 - 5)/8 = 3,1E/8. Even though the above treatment was applied to a 
two-dimensional Ising model with a one-dimensional surface, the calculation 
can be extended for a three-dimensional crystal having a two-dimensional 
surface. The analogous equations to (2) and (6) are (see ref. [9J) 

Fi,j(m) = ,1E(26 -m)/26 (17) 
and 

where 
1 1 

L= L L (18b) 
a=-lb=-l 

i.e.: in Figure 2 the configuration of the column at (i, j) is ni, j + 1 = ni + 1, j + 1 = 1, 
and every other n coordinate is zero. With these values (18) gives Ei,j = 7,1E/26. 
There is only one surface atom in that column at (i, j) (in the semi-bulk layer) 
having 19 neighbours, its energy is also 7,1 E/26 by (17) taking the m = 19 
value, Similar but much longer derivation which has led to (16) gives that the 
flat surface is again the most probable configuration, a surface atom is missing 
9 neighbours, while a bulk atom has all 26 of them. The multiplication factor 
(26-17)/26, and the expression for the excess free enthalpy becomes 

GS(T) = 9L1E/26 (19) 

Surface layer 

Semi-bulk layer 

Bulk layer 

Fig. 2. Three-dimensional crystal structure with two-dimensional surface (cubic crystal) 
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Fig. 3. Three-dimensional crystal structure with two dimensional surface (bee crystal) 

III 

The value of the surface tension is calculated from (19) by dividing with the 
molar surface area. Experimentally obtained data [7] exhibit good correlation 
with the result, especially for hexagonal crystals too: The multiplication factor 
[10] is about 0.328 for Zn, and 0.369 for Cd. A certain degree of orientation 
dependence is also detectable [7, 8]. The equation (19) can be written as 

GS
( T) = exJ E (20) 

where ex is 9/26 = 0.346 for cubic crystals. For bee crystal (Figure 3) the ex 
constant can be calculated as follows: The flat surface is the most probable 
again. Let the atom in the center of the cube is b type atom and the others 
are the a type atoms. In the bulk, atoms of a type have 6 a type and 8 b type 
neighbours and atoms of b type have 8 a type and 6 b type neighbours. The 
number of atoms surrounding an atom is 8 + 6 = 14 in the bulk. At the surface, 
atoms of a type have 5 a type and 4 b type neighbours, and atoms of b type 
have 8 a type and 5 b type neighbours. For a and b type atoms (similarly to 
equation (2) and (17), using the form of equation (20)) ex(a) = [(6 - 5) + (8 -4)]/14 = 

Table 1 

Experimental values of a in varions metals 

Crystal type 
a 

Metal (experimental, 
(ref. (12)) 

ref.[lO)) 

Ag fee 0.213 
Au fec 0204 
Cu fcc 0.206 
Fe bee 0.234 
K bee 0.18 
Ni fcc 0.189 
U bee 0.237 
W bee 0.179 
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=0.3571 and lX(b) = [(8-8)+(6-5)J/14=0.0714 and because the number of 
a type atoms and b type atoms are the same at the surface, the average value 
for IX is 1X=(0.3571 +0.0714)/2=0.214. Similar calculation can be done forJcc 
crystals. The theoretical value for IX correspond the experimental values at 
298.2 K, see Table 1 for some elements (the experimental values for IX are 
from ref. [lOJ). The values for dE can be found in ref. [l1J and for GS in J/m2 
unit in ref. [7]. 

It is also interesting that using the derivation which has lead to equation 
(16) and (19) an expression can be found [9J for the temperature dependence 
of IX: 

olX/8T= -R 'In k/dE (21) 

where k is the number of surface layers plus one, the semi-bulk layer. 
It is 2 in Figure 1, 2 and 3, Equation (21) describes the experimental 

values very well [9]. IX changes (decreasing) with the temperature very slowly, 
it is about -10 - 5 K 1 for about 50 metals. The reason of decreasing of IX is 
that at higher temperature the surface is rougher. 
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