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Abstract

This paper consists of two parts. In the first part the fundamental properties, balances, state spaces,
relationships are recapitulated in a revised symmetrical and demonstrative form. The origins of
the non-ideality are explained. It is known that a material system in thermodynamic equilibrium
may be regarded as a “living” body nest of internal motions, processes, transformations (similar
to the circulation of blood in the body of a living creature). In the second part the new theory
‘Thermokinetics’ is applied to the dynamics of equilibrium systems. The basic processes are the
“absolute rates” of exponential (and not linear) force law form. It is demonstrated that all types of
physicochemical process rate relations can be derived from a central general rate equation. The three
fundamental state spaces, the two main cross symmetries (one of them introduced by the author) and
the general time reverse symmetry relations are discussed. It is shown that the general property of
nature, the irreversibility is found to be a basic property of equilibrium systems.

Keywords: thermodynamics, thermokinetics, processes, time-reversibility, reciprocities, symmetries.

Introduction

Thermodynamic system is a macroscopic multitude of microscopic elements (atoms,
molecules, electrons, photons, phonons, etc.). Most of the systems we meet are in
equilibrium or near to it, possessing pressure, temperature and chemical potentials.

A number of aspects are known for interpreting and describing thermody-
namic systems and laws. There are a number of viewpoints, applications, aims.
Contrary to the classical mechanics (e.g., motion of a single rigid body), the coor-
dinates are fixed to a given point of place: ‘local’ vs. ‘substantial’ representation.
Our discussion will be ‘material-centered’ (objectivistic) and not ‘man-centered’
(the viewpoint of observers, engineers, appliers). In this sense, we will mainly deal
with ‘processes’ instead of ‘operations’. The behaviour of the material in a vessel
place depends mostly on its local environment and not on the distance from the
wall of the container. We will therefore prefer the local vs. global treatise (volume
element vs. macroscopic system, densities or concentrations vs. macroscopic ex-
tensive properties). This treatment proved to be simple and ‘nature-centered’. We
strive to get rid of historical aspects, the ‘Laws of Thermodynamics’ (Zeroth, First,
Second, Third Law) will not play dominant role in the framework of the theory. We
will prefer entropic vs. energetic representation, because experiences proved that,
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it results in more simple formalisms (use of 1/T vs. T at describing temperature-
dependences). In the last section we will strive for minimalizing the number of
postulates.

1. Thermostatics

1.1. Thermodynamic System. The State Space. Invariant Extensive Quantities

It was Willard Gibbs who laid down the foundation of a systematic theory of macro-
scopic equilibrium systems [1]. The ‘global’ thermodynamic system is a finite re-
gion in space specified by a set of variables E1, E2, . . . En . The Ei ’s form the set of
the independent extensive, additive, conserved quantities (‘invariants’). The most
important ones are:

the internal energy (U ),
the volume (V ) and
the molarities of the independent chemical components (Nk) [2].

‘Extensivity’ means that the i’th property Ei of a system is proportional to the size
of the system.

‘Additivity’ means that if the quantity Ei of a subsystem (I) is E(I )
i and that

of the other subsystem (II) is E(I I )
i then for the whole system

E (I+I I )
i = E (I )

i + E (I I )
i . (1)

‘Conservativity’ means that if a quantity Ei passes from (I) into (II), then

−�E (I )
i, = +�E (I I )

i (2)

independently from other properties (temperature, pressure, density, etc.) of the
two subsytems, that may differ or not. (Conservative quantities are: U , V and
excluding chemical transformation, Nk as well, non-conservative quantities are:
temperature, entropy, enthalpy and others).

Gibbs’ space: The application of geometrical methods to thermodynamics is
based on the thermodynamic phase space called ‘Gibbs space’ of the Ei ’s, the basic
‘coordinates’ of this space [2]–[4]

(U, V, Nk).

Some other invariant extensive quantities are: the surface (in many cases the surface
phases take part in the overall properties of a phase in a negligible degree), the
momentum (if the mass center of the body is defined as to be in rest, the overall
momentum is zero) and the electric charge (it plays significant role only if the
‘electroneutrality’ is violated).
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Carried quantities: Some of the Ei ’s (e.g., the energy) are bound to material
particles (molar or partial molar quantities, or ‘charges’ in a broad sense) [5].

Dimensionless version. Natural units. In many applications Ei ’s are placed on
the exponent. In this case they must be divided by a ‘natural unit’. The natural unit of
the energy may be the quantity RT , where R is the gas constant (R = 8.314 J/Kmol)
and T is the absolute temperature. RT is defined as

RT ≡ lim
P→0

(P · V ), (3)

where P is the pressure and V is the mole volume of a gas. The natural unit of
the mole numbers Nk may be the overall number of the chemical particles. The
appropriate dimensionless quantity is the mole fraction (xk)

xk ≡ Nk/
∑

k

Nk . (4)

The unit of the volume may be an appropriate n-dimension ‘characteristic volume’
V ∗, e.g., the average cell volume of the configuration phase space

V ∗ =
(

h P

p

)n

, (5)

where h P is the Planck constant and p is the average (‘thermal’) momentum.
Singularity problem. The number of variables of the state space defined above

may be greater than the number of dimensions of the space. In other words, the
variables are not independent, one of them is superfluous. A consequence is that
the matrix of the second derivatives of the entropy is singular, its reciprocal cannot
be established. To avoid this problem it is advisable to use a ‘local’ system.

Local system: ‘Local system’ is a small area of given volume without any
physical walls (open system). The space of states is then spanned by the densities
(in other word, the concentrations), defined as

Ci ≡ lim
V→0

(Ei/V ). (6)

By definition, the density of the volume is unity and dV ≡ 0. Consequently, the
number of coordinates is less by one than that of the global system. This way, Ci ’s
may form an independent set.

1.2. Entropy (S)

Entropy plays in Gibbs’ thermostatics a central role. Entropy is an extensive,
additive but non-conservative quantity. This property follows from the fact that
entropy is essentially a sum of products: products of invariant extensive quantities
(Ei ) and other, ‘intensive’ factors (the potentials, Fi ). It can be proved that if all Ei ’s
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are conservative, S cannot be conservative. Because of the ‘non-conservativity’ of
S, there is no ‘entropy flux’ (the quantity called ‘entropy flux’ is a special product
sum discussed later). There are other non-conservative thermodynamic quantities
as well, such as enthalpy (H ), Gibbs- and Helmholtz-free energy (G and A), etc.
Fluxes in a non-equilibrium system are accompanied with ‘production’ of entropy
(increasing in value without any outer supply). The characteristic unit of S is the
gas constant (R). Entropy is closely related to the distribution of the elements of the
system. To any (eventually irregular) distribution an exact entropy can be defined:

S

R
=
∑

i

. . .
∑

k

xi...k ln xi...k, (7)

where the xi,...,k’s are the fractions (not only probabilities) of the elements of the
system in question, similar (indistinguishable) in one and different (distinguishable)
in the other respect. No requirements prescribe the type of distinctions. The entropy
is, consequently, optional to some extent [6]. The entropy of an energy distribution
will be energy-dependent (‘thermal’entropy). A distribution, (e.g., the isotopic
composition) is to be taken into account only if it undergoes a change. If not, the
appropriate entropy term is superfluous. This property of entropy results in the
apparent contradictory statement that entropy always exists.

1.3. First Derivatives of the Entropy. Potentials (Fi )

In an equilibrium system the entropy is a homogeneous function of first order of
the extensive state parameters:

dS =
∑

i

(
∂S

∂ Ei

)
· dEi =

∑
i

Fi · dEi (J/Kmol). (8)

The partial derivatives (Fi ) are called the ‘potentials’:

Fi =
(

∂S

∂ Ei

)
. (9)

Any density is accompanied by an appropriate potential.
The most important potentials are:

Ei Ci Fi

U CU 1/T
Nk Ck −µk/T
V 1 P/T

where T is the absolute temperature (K),
µk is the chemical potential of the k’th component (J/mol),
P is the pressure (Pa).
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Remind that use of the entropy- (vs. energy-) representation is justified by experi-
ences.

To make plots using 1/T and −µ/T (against T and µ) is more advisable.
The potentials play important roles in thermodynamics:

a. Tendency towards equilibration (transitivity, ‘Zeroth Law’ in a general sense):
If A is in equilibrium with B and B is in equilibrium with C then FA = FB
and FB = FC and, consequently, FC = FA, i.e. A is in equilibrium with C .

b. Driving forces of physicochemical processes.

In such cases the independency is important. Constraints (e.g., ions carry electric
charge, stoichiometric numbers connect changes of the constituents), as the set of
potentials is to be transformed into an independent set (for example, the chemical
potential is to be replaced by the ‘electro-chemical potential’, µe = µ+ z · F · ϕ).
All transformations must be carried out keeping the entropy invariant.

1.4. Energy and Entropy Balances. Gibbs Space

1.4.1. Global Balance

For a global system the energy balance writes

H︷ ︸︸ ︷
U − T︸ ︷︷ ︸

A

· S + P · V︸ ︷︷ ︸
−W

−
G︷ ︸︸ ︷∑

k

µk · Nk = 0. (10)

Some combinations are defined and used :

The Gibbs’ free energy : G ≡
∑

k

µk · Nk = H − T · S, (11)

The enthalpy : H ≡ U + P · V = G + T · S, (12)
The Helmholtz’ free energy : A ≡ U − T · S = G − P · V, (13)
The Kramers potential : W ≡ T · S − P · V = U − G. (14)

U , V , Nk are extensive, additive and conservative quantities.
S, H , A, G, W are all extensive and additive but not conservative quantities.

The characteristic variables are

U(S, V, Nk), S(U, V, Nk), H(S, P, Nk),

A(T, V, Nk ), G(T, P, Nk ), W (S, V, Nk).
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Another ‘governing’ property of the Gibbs space is the entropy. The entropy bal-
ance:

−A/T︷ ︸︸ ︷
S − V · (P︸ ︷︷ ︸

W/T

/ T )− U · (1/T )︸ ︷︷ ︸
−H/T

−
∑

k

Nk · (−µk/T )

︸ ︷︷ ︸
−G/T

= 0. (15)

1.4.2. The Balances of the Differentials. The Gibbs Equations

The energy balance:

GIBBS dU = T · dS − P · dV +
∑

k

µk · d Nk , (16)

GIBBS–DUHEM 0 = S · dT − V · dP +
∑

k

Nk · dµk . (17)

The entropy balance

GIBBS dS = (1/T ) · dU +
∑

k

(−µk/T ) · dNk + (P/T ) · dV, (18)

GIBBS–DUHEM 0 = U · d(1/T )+
∑

k

Nk · d(−µk/T )+ V · d(P/T ). (19)

The interrelations can be illustrated using the Born squares (dNk = 0). The arrows
point at the derivatives (opposite direction: negative).

(a) Born square (energy) (b) Born square (entropy)

Fig. 1.

As stated above, the number of variables is here greater than necessary by
one. It proved to be more convenient to choose a local representation.
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1.4.3. Local System, Densities

Calculating with densities of the extensive quantities, the superfluous variable, the
volume disappears. (Densities do not depend on the volume). Taking dV = 0
and dividing by V the densities form an independent set. Denoting the ‘Kramers
density’ by 



 ≡ W/(T V ) = S/V − P/T, (20)


 = (1/T ) · CU +
∑

k

(−µk/T ) · Ck =
n∑
j

Fj · C j , (21)

d(S/V ) = (1/T ) · dCU +
∑

k

(−µk/T ) · dCk =
n∑
j

Fj · dC j , (22)

d(−P/T ) = CU · d(1/T )+
∑

k

Ckd(−µk/T ) =
n∑
j

C j · dFj . (23)

S/V is the ‘entropy density’, the principal quantity of the density space,
−P/T is principal quantity of the potential space, the Legendre transform of the

entropy density. In general form,

Fi =
(

∂ (S/V )

∂Ci

)
, Ci =

(
∂ (−P/T )

∂ Fi

)
. (24)

An example: let the i’th term be the energy parameter. Then

Ci = tg β = U/V, (25)
Fi = tg α = 1/T . (26)

1.4.4. The ‘Second Differential’ and the Second Law

The set of the three fundamental product sums can be expanded with a fourth one,
the ‘second differential’ of S/V defined as

d2(S/V ) =
n∑
j

dC j · dFj ≤ 0. (27)

This product sum has very important function in thermodynamics. The negativity
of d2(S/V ) is an important inequality of the Second Law.
The negativity may measure the stability: if dCi means the deformation of the
state and dFi means the potential difference (the generated force) then the nega-
tivity means that the force is always a counter-force. The natural tendency is the
diminishing of the absolute value of d2
, i. e. the change in positive direction.
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(a) Density space (b) Potential space

Fig. 2.

1.5. The Equations of State (EOS)

1.5.1. The State Matrix

At equilibrium the (independent) potentials are functions of the densities

dFi =
∑

k

ik · dCk (28)

and inversely, the densities are functions of the potentials

dCi =
∑

k

−1
ik · dFk, (29)

ik =
(

∂ Fi

∂Ck

)
and −1

ik =
(

∂Ci

∂ Fk

)
. (30)

The elements ik form a quadratic matrix (‘state matrix’). The diagonal elements
(i = k) represent the self-effects (e.g., dependence of the internal energy on the
temperature). ik ’s (i 
= k) are responsible for the cross-effects between the i’th
and the k’th interaction.

Three important properties of the state matrix are worth to mention.

Symmetry
Independency (rank)
Monotonity (definite)
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1.5.2. Symmetry [7]

ik ’s are the elements of the second derivative matrix of the entropy density
and

−1
ik ’s are the elements of the second derivative matrix of −P/T .

It follows from the elementary theorem of calculus that matrix � is always
symmetrical

ik =
(

∂ Fi

∂Ck

)
=
(

∂2S/V

∂Ci∂Ck

)
=
(

∂2S/V

∂Ck∂Ci

)
=
(

∂ Fk

∂Ci

)
= ki , (31)

−1
ik =

(
∂Ci

∂ Fk

)
=
(

∂2 (−P/T )

∂ Fi∂ Fk

)
=
(

∂2 (−P/T )

∂ Fk∂ Fi

)
=
(

∂Ck

∂ Fi

)
= −1

ki . (32)

Maxwell’s Reciprocity Relations (MRR)

The symmetry may be subject of experimental testing. All observations con-
firmed that MRR is generally true. One may state that the existence of the entropy
is an experimental fact.

1.5.3. Independency, the Rank

The ‘rank’ of a matrix is the number of its independent rows or columns. If the
rank of an n × n matrix is n, then the set of variables is independent. If the rank
is smaller than n, then the matrix is singular, there is dependence among rows or
columns. In such case the determinant is zero and the reciprocal matrix cannot be
evaluated.

1.5.4. Monotonity, Negativity and the Second Law

The potentials are dominant monotonic functions of the densities. In general, a
matrix A is positive (or, negative) definite if for a system of linear equations

y = A · x
the scalar product of the vectors x and y is always positive (or always negative) if

y · x > 0 (or < 0).

On the other side, definiteness of the matrix A means that y is monotonic function
of x. In our case, the entropy second derivative matrix is negative, in accordance
with the negativity of the scalar d2 S second differential.

d2(S/V ) =
∑

i

dCi · dFi =
∑

i

∑
k

dCi · ik · dCk ≤ 0 (II. Law). (33)
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The negativity involves a series of general inequalities. In a negative quadratic
matrix all diagonal elements and all ratios Dn/Dn−1 are negative, where Dn is the
determinant of the n × n diagonal submatrix.

Fig. 3. Equation of state. Differentials

1.5.5. The Meaning of the Symbol ‘d’

Symbol ‘d’ may have various meanings, e.g., small changes, gradients, time rate
of change, etc. Remaining at equilibrium, ‘d’ means a small displacement along
an equilibrium hypersurface of the state space, governed by the EOS’s. The Gibbs-
and the Gibbs–Duhem relations provide general interrelations between changes of
densities and potentials.

1.6. Integrated Forms of the EOR’s. Ideal, Non-Ideal and Degenerated Systems

1.6.1. Ideal Systems

In some special cases the differential forms of the Gibbs and Gibbs–Duhem equa-
tions can be easily integrated leading to simple and evident form. The equations
are called then ‘ideal’. Ideal systems are characterised by properties as follows.

a. Equipartition of energy. The energy (U ) is proportional to the temperature
(temperature-independent heat capacity):

U

RT
= s

2
, (34)

where s is the number of degrees of freedom: for an n-atomic molecule
s = 3 · n, for an ideal atomic crystal s = 6.
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b. No heat of mixing: In a mixture the partial energies (Uk) are composition-
independent:

Uk = ∂U

∂xk
and

∂Uk

∂xk
= 0. (35)

c. The ratio P/T is proportional to the overall number density (ideal gas)

P · V
RT

= 1 and
P

T
= R · C. (36)

d. The chemical potential is proportional to the logarithm of the mole ratio:

µk

RT
= µ0

k

RT
+ ln xk and

∂

∂xk

(
µ0

k

RT

)
= 0. (37)

1.6.2. Non-Ideal Systems

Most state equations differ from the ideal forms because one or more ideality criteria
are not valid.

The equipartition of the energy is a high-temperature limiting law. At low
temperatures and/or for very restricted length of motion the equipartition is not valid.
The basic parameter is the ratio of the average (‘thermal’) momentum (2mkT )1/2

and the Planck constant. For usual temperature and masses this ratio, the ‘thermal’
length is in the order of magnitude

L∗ ≈ 10−11 m.

The free paths of the different kinds of motions are

Translation
(one-atomic gas): L ≈ 0.3 m, L/L∗ ≈ 3.1010 Exact equipartition

Rotation of a
molecule: L ≈ 10−9 m, L/L∗ ≈ 100 Near equipartition

Vibration of an
atom: L ≈ 10−11 m, L/L∗ ≈ 1− 2 Poor degree of excitation.

Because the distances of the allowed energy levels of the atomic vibrations
are generally much larger than the average thermal energy, the degree of excitation
is slight, its participation in the heat capacity is negligibly small.

Real gases. At increased densities a defect in the pressure is observed. The
reason is the association: the number of particles is less than expected.
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1.6.3. The Extended Hierarchy

A number of non-ideal phenomena are consequences of the fact that a given chemical
component consists of fractions of different energy and/or configuration. The usual
hierarchy of the thermodynamic system is simplified.

A more detailed hierarchy consists of five stages [8]:

Mixture, composed of
chemical components, composed of

fractions, (different potential energies) composed of
thermal (different kinetic energies) fractions, owing more

degenerate (quantum) states, ‘cells’ of a phase space.

The fractions differ in potential energy due to the different environments
(different chemical composition of the near-neighbour layers). Consequently, the
fraction composition yk f varies with the overall molecular composition xk . In such
case, though Uk f ’s are constants (ideality, bold), their average, Uk is composition-
dependent (non-ideality, heat of mixing, ‘excess’ energy)

U =
∑

k

xk · Uk, (38)

Uk =
∑

f

yk f · Uk f . (39)

Other deviations from the ideal values (excess chemical potentials, activity coeffi-
cients, excess entropy, etc.) can be interpreted in a similar way.

There are two important conclusions:

a. A (chemically) one-component system may be mixture of fractions.

b. The fractions are in equilibrium with each other.

1.7. Carriers, Carried Properties, Partial Molar Quantities

As explained above, the macroscopic thermodynamic system is an ensemble of
elementary particles. Particles can be regarded elementary which cannot or need
not be distinguished from each other. In an ideal system the chemical compo-
nent molecules, in non-ideal mixture the fractions and so on, can be regarded as
elementary particles,.

Let C∗z be the density of the z’th kind of elementary component (z’th particles).
The z’th particle may represent (‘carry’) energy, momentum, electric charge,

etc., and we will denote the amount of the i’th extensive entity carried by one mole
of the z’th carrier particle (some kind of partial molar quantity) by Pzi . (E.g., the
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partial molar energy in a broad sense). The density of the i’th extensive invariant
(e.g., the energy-density) is then

Ci =
∑

z

Piz · C∗z . (40)

An obvious supposition is that Piz is constant, independent of the number (or ratio)
of the z’th particles. The Gibbs–Duhem relation can be written

d(−P/T ) = −R · dC = −R ·
∑

z

dC∗z =

= −R ·
∑

z

C∗z · d ln C∗z =
∑

z

C∗z · dF∗z =
∑

i

Ci · dFi . (41)

The potential of the z’th carrier can be defined as

dF∗z = −R · d ln C∗z . (42)

Inserting Piz

∑
i

Ci · dFi =
∑

i

(∑
z

Piz · C∗z
)
· dFi

=
∑

z

C∗z ·
(∑

i

Piz , dFi

)
=
∑

z

C∗z · dF∗z , (43)

dF∗z =
∑

i

Piz · dFi , (44)

(
∂Ci

∂C∗z

)
= Piz =

(
∂ F∗z
∂ Fi

)
. (45)

E.g., the partial molar energy is on one hand the energy density (Ci ) carried by the
unit density of the carriers (C∗z ) and, on the other hand, the resultant force (dF∗z )
acting on the z’th carrier is the sum of the macroscopic forces (dFi ) multiplied by
the appropriate Piz quantities. (The temperature acts on the number of z’th carrier
particles if it carries energy).

2. The Dynamic Equilibrium

Thermokinetics

Despite all appearances the equilibrium is not a dead state. A material body is a liv-
ing organisation, nest of intensive internal processes. The materials are organisms
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∑
dCidFi ≤ 0

dCi dFi

@
@@

�
��

C1 F1

Maxwell(
∂Ci

∂ Fk

)
=
(

∂Ck

∂ Fi

)
MRR

∑
Ci Fi

�
��

@
@@

=
(

S

V
− P

T

)

Ci Fi

U 1/T

Ck −µk/T

etc. etc.

(II. Law)

Fig. 4. Thermostatics. Summary of relations

of a great number of particles swarming in continuous motion, with velocities of
more hundreds meters per second. They are migrating, rotating, vibrating, collid-
ing, transforming with frequencies of billions per second. This dynamics drives the
evolution towards the equilibrium state (the appropriate point attractor) and restores
this state after any external perturbation. The dynamics provides temperature, pres-
sure, chemical potential and entropy to the body. The characteristics of these rate
processes, their rate equations and symmetries determine the observed macroscopic
properties.

2.1. Processes Inside the Equilibrium Body

2.1.1. The Absolute (Unidirectional) Process Rates

In the kinetic theory ‘Thermokinetics’ the ‘absolute’ process rates play dominant
roles [9, 10, 11]. The thermodynamic system differs from the mechanical one as
the former consists of a great number of similar elements (particles). The word
‘thermo’ means that the system has temperature in a good approximation. The
three fundamental groups of physicochemical processes are:

a. Transfers through an interface of two (equilibrated) phases:

vaporisation/condensation through a liquid–vapour surface,
solution/precipitation on a solid/liquid interface,
electric charge transfer on a metal/electrolyte interface,
heat transfer from a phase into another phase, etc.

The transfer process rate ( j→i or j←i , moles/m2s) is the product of the surface
density (moles/m2) and a frequency (1/s).
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b. Fluxes inside a homogeneous phase:

diffusive or convective mass fluxes,
heat flow carried by molecules, electrons, phonons, photons, . . .

flux of momentum,
electric conduction carried by electrons or ions.

The process rate, e.g., flux of energy (J/m2s) is the product of the energy
density (J/m3) and a velocity (m/s).

c. Scalar processes:

chemical transformations,
relaxation processes (restoring the equilibrium distribution).

The process rate is the product of a density and a frequency (moles/m3s).

          Phase I.                       Phase II. 

                          a.                                         

                                                        c. 

       b, 

Fig. 5. Types of internal processes

The equal length of the opposite arrows symbolises the dynamic equilibrium
state.

2.1.2. Reverse Process Rates. Law of Detailed Balance

All these processes have some kind of duality. Any elementary event may take place
in an opposite direction. Such reverse process pairs are in time-reverse relation with
each other. This kind of general feature of thermodynamic processes was put in
words by FOWLER (1924) [12]: ‘any one process of exchange acting in a particular
direction must be invariable accompanied by an analogous reverse process’.

Paul DIRAC wrote [13]:
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‘It seems plausible, however, to suppose that all atomic processes are
reversible, or, more exactly, that if after any encounter all the velocities
are reversed, then the whole process would just repeat itself backwards,
the system finally leaving the scene of action being the same as the
original systems in the first process and having the reverse velocities.
With this assumption, to which there are no known exceptions, each
kind of encounter must be just as likely to occur as its converse in
which every velocity has changed sign, the whole process taking place
backwards, since there is now perfect symmetry between past and future
time.’

This duality is preserved at the macroscopic level as well. At equilibrium all
reverse macroscopic absolute process rates ( j→ and j←) equilibrate

j→i (eq) = j←i (eq) (DB). (46)

Examples: chemical reaction ‘from left to right’ and ‘from right to left’,
evaporation and vapour condensation, in gases the fluxes of particles in directions
+x and −x and the anodic and cathodic exchange current on electrode surfaces.

2.1.3. Carriers and Carried Properties. The Charges

Any process is carried by flow or transfer of elementary carriers (e.g., atoms,
molecules, electrons, photons, phonons, other quasiparticles) [14]. The word ‘ele-
mentary’ means that the particles can be regarded structureless mass points or, their
internal structure does not change during the process in question. The absolute flux
(transfer, transformation) of the i’th (additive conservative) quantity is

ji =
∑

i

Qiz j∗z , (47)

where j∗z is the z’th carrier process rate (flux),
ji is the i’th carried process rate,

Qiz is the i’th quantity carried by a unit carrier flux.

Charges connect carriers and carried process rates

Qiz =
(

∂ ji
∂ j∗z

)
. (48)

The four most important charges are:

a. The electric charge of a particle (ion) (electric potential):

Qel = zk · F, (49)

where zk is the value of charge of the k’th ion, and F is the Faraday charge.



THERMOKINETICS OF THE EQUILIBRIUM STATE 19

b. The molar momentum (velocity):

Q P = Mk · u, (50)

where M is the molar mass, and u is the (average) velocity.
c. The stoichiometric coefficients νki (affinity) [15]: the number of the k’th

particle as participants in the i’th process.
d. The thermal charge is the most important one [16]:

QT = E∗ + n · RT . (51)

E∗ is the top of the potential energy barrier of the process, and n is the power of
the temperature in the ‘pre-exponential factor’. The thermal charge shows exact
reverse symmetry:

E∗→ = E∗← and n→ = n←. (52)

Fig. 6. Physical meanings of the thermal charge

2.1.4. The Kinetic Mass Action Law (MA). The Rate Constant

The absolute process rate is formulated as function of the densities of the participants

ji(C1 . . . , Cn).

In the usual form
j = k ·

∏
k

Cνk
k . (53)

The factor of proportionality (k) is the rate constant of the process.

Ck is the concentration (number density) of the k’th participant,
νk is the stoichiometric coefficient of the k’th participant.
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This law called the ‘Mass Action Law’ (MA) is declared by GULDBERG
and WAAGE, in 1872. [17]. The law was employed since the first half of the
19th century, first of all, for chemical processes. Boltzmann, Maxwell, Einstein,
Tolman, Onsager and many others up to now, all calculated with rate equations of
MA type. It is to be noted that k is a function of temperature. The law seems clear
and evident. Though, in numerous instances problems arose. One of them is the
kinetic model of the light matter equilibrium by Albert EINSTEIN, [18] where MA
leads to some contradictions. Another: chemical processes taking place in non-
ideal mixtures. Here, the thermodynamic consistency requires ‘activities’ instead
of concentrations. It has turned out that the problems came from the inconsequent
choice of the participants. (Both problems could be solved recently by the author
[19, 20]).

2.1.5. The Law of Microscopic Reversibility (MR)

The name ‘Microscopic Reversibility’ was given by R.T. TOLMAN [21]. TOLMAN’s
interest was elicited by EINSTEIN’s paper dealing with the mass-radiation equilib-
rium [18]. In 1924 a paper was published by Tolman referring to that of Einstein.
Tolman guessed that the equality of two rate constants supposed by Einstein may
be a law of general validity. He wrote: ‘This assumption should be recognized as
a distinct postulate and might be called the principle of microscopic reversibility’.
For many years the notions microscopic reversibility, detailed balance, steady state
and equilibrium had been confusing. The law MR asserts that the rate constants of
the reverse process rates are equal

k→ = k←. (54)

It is to be emphasized, however, that at ‘macroscopic’ processes this law is not valid
any more. For example, to the rate constants of a chemical reaction

A↔ B + C,

j→ = k→ · CA and j← = k← · CB · CC (55)
and

k→ 
= k←. (56)

The answer to this question is: the law of MR is valid if the participants are
‘ultimate’, structureless particles, or, their internal structure does not undergo any
change during the given process.
They can be handled as simple mass points. (The participants may be of macro-
scopic size, e.g., ideal, elastic billiard balls). In our case, because the chemical
reaction leaves the atoms (atomic nuclei) intact, the left and the right side contains
really the same number of atoms (n). The overall number of the degrees of freedom
(3 ·n) is the same at both sides. Any atomic particle (free or bound to other atoms in
a molecule) of the same temperature has an average momentum p (for an ideal gas p
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= (2πm.kT)1/2) and a characteristic length (‘thermal de Broglie wavelength’, hP/p)
or a characteristic volume V∗, the volume of an average cell of the phase space. The
microscopic kinetics governs the evolution of the distribution of the particles in the
accessible volume of the phase space, developing equilibrium occupation numbers
(N∗s ) of the cells. The MA kinetics has in the sense of MR reverse symmetry:

js→z = ks→z · Ns = kz→s · Nz = jz→s (57)
and

ks→z = kz→s . (58)

But, if the size of the phase space of the reactants (left side) differs from that of
the products (right side) then the global average rate constants lose the reverse
symmetry.

2.2. The Potentials. Kinetic Background

2.2.1. The Pressure as the Absolute Flux of the Momentum

The pressure is the flux density of the momentum carried by flux of molecules (gas)
or phonons (condensed phases), as the ‘carriers’. Other particles, e.g. photons
exert in general negligible effects. Let it be the absolute flux of the particles in a
given (x) direction, supposing that one half of the particles is moving in the positive
x-direction

j→x = 1/2 · C · |ux | : j←x = 1/2 · C · |ux | (mol/m2s), (59)

where ux is the average absolute velocity in a direction +x .
The particle flux carries the molar average momentum

px = M · ux (kg ·m/mol · s). (60)

Let the mass center of the local system be in rest, then all momentum fluxes and
their opposite pairs must be compensated.

P = j→p,x = 1/2 · ρ · u2
x = j←p,x (kg/m · s2). (61)

P is, in this sense, the average kinetic energy density.

2.2.2. The Temperature. Zeroth Law

The macroscopic definition of the absolute temperature is

T =
(

∂U

∂S

)
V,Nk

. (62)
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The system has temperature only if the energy is a unique function of the entropy.
Because the entropy represents the distribution of the elements (particles) of

the system, the temperature measures the energy distribution:

1

T
= −R · d ln xi

dεi
, (63)

where xi is the relative population of the energy εi .
All systems composed of a multitude of elements of different energies, the

general kinetic feature results the tendency to establish a common temperature
inside a given phase and equalising the temperature of any different phases in
thermal contact.

The dynamics of the evolution of a stationary distribution is controlled by gen-
eral laws and restrictions. Let our example be the energy transfer during collisions
of particles (without any internal structure)

Ai + B j ↔ Ak + Bl.

a. The Law of Mass Action: the energy-exchange process rate is proportional
to the product of the numbers of the participants (the probabilities are multi-
plicative).

b. All elementary processes are reversible: each kind of encounter and its reverse
occurs simultaneously.

dCi/dt = −
∑

j

∑
k

∑
l

(ki j,kl · Ci · C j − kkl,i j · Ck · Cl). (64)

c. The energies are additive (energy balance, EB).

εi − εk = εl − ε j . (65)

d. The rate constants of the reverse rate equations are all identical (Law of MR).

ki j,kl = kkl,i j . (66)
e. At equilibrium all reverse rates equilibrate (DB).

Ci · C j = Ck · Cl, (67)
ln Ci − ln Ck = ln Cl − ln C j (68)

and
1

T
= −R · ln Ci − ln Ck

εi − εk
= −R · ln Cl − ln C j

εl − ε j
. (69)

The energy exchange processes result in that the points on the Ei/ ln xi plot
are at last positioned along a straight line of a definite slope (common temperature)
and intercept (chemical potential). If not, the system has neither temperature nor
chemical potential.
Zeroth Law : Particles A and B may belong to the same phase (internal temperature
relaxation) or particles of two energy levels of two different phases may be in
thermal contact (transitivity of the temperature, the Zeroth Law)
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Fig. 7. Distribution, temperature, chemical potential

Fig. 8. Equalization of temperature

2.2.3. The Chemical Potential

As it was illustrated on the simple model, the relaxation process develops a chemical
potential and an intercept with the energy axis. The chemical potential is always
negative and temperature-dependent. The chemical potential of the A’th component
varies with the relative number of the A’th particle

µA

RT
= µ0

A

RT
+ ln xA. (70)

In kinetic equations it is more practical to use the exponential form:

exp
( µA

RT

)
= exp

(
µ0

A

RT

)
· CA

C
. (71)
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The first term on the right side has a physical meaning worth to investigate. For the
sake of simplicity regard a monoatomic ideal gas:

exp

(
− µ0

A

RT

)
=
(

p · L
h P

)3

= V

V ∗
, (72)

where p is the average momentum of the particles in the direction of L ,
L is the length of the free displacement and V is the molar volume:

V = L3, (73)

h P is the Planck constant,
h P/p is the average (‘thermal’) de Broglie wavelength,

V ∗ =
(

h P

p

)3

(74)

is the volume of a phase cell (in the order of magnitude 10−33 m3).
The exponent of the chemical potential is in our case the relative average

number of particles A in a cell of the phase space accessible for A.

exp
( µA

RT

)
= V ∗

V

CA

C
= C∗A

C
. (75)

2.2.4. The Charges Connect Carrier and Carried Potentials

A carrier potential F∗z can be defined as follows:

∑
i

ji · dFi =
∑

i

(∑
z

Qiz · j∗z

)
· dFi

=
∑

z

j∗z ·
(∑

i

Qiz · dFi

)

=
∑

z

j∗z · d · F∗z , (76)

dF∗z =
∑

i

Qiz · dFi . (77)

The double role of the charges can be formulated as(
∂ ji
∂ j∗z

)
= Qiz =

(
∂ F∗z
∂ Fi

)
. (78)
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2.3. The Dynamic Potential (Z)

‘Dynamic Potential’ is the product sum defined as

Z ≡
∑

i

ji · Fi . (79)

(Kinetic equivalent of the Kramers density, but with ji instead of Ci ).
The exact differential of Z is:

dZ =
∑

i

Fi · d ji +
∑

i

ji · dFi = dZS + dZ P . (80)

(ZS is the equivalent of S/V and ZP is that of P/T .) The first derivatives are:

Fi =
(

∂ ZS

∂ ji

)
; ji =

(
∂ Z p

∂ Fi

)
. (81)

2.3.1. The Dynamic Fundamental Balances

For energy and mass transport, the dynamic fundamental balances are:

Z ≡ (1/T ) · jU +
∑

k

(−µk/T ) · jk, (82)

dZS = (1/T ) · d jU +
∑

k

(−µk/T ) · d jk, (83)

dZ P = jU · d(1/T )+
∑

k

jkd(−µk/T ). (84)

If d ji means the finite difference Ji , then ZS is the original form of the ‘entropy
flux’. In a more general form:

Z =
∑

i

ji · Fi , (85)

dZS =
∑

i

Fi · d ji , (86)

dZ P =
∑

i

ji · dFi =
∑

z

j∗z · dF∗z . (87)

As can be seen, ZP is a Legendre-transformed of ZS . As ZS is the principal
dynamic quantity of the kinetic ( j ) space, ZP is the same for the potential (F)
space.

The mean products can be demonstrated on the F − j plane (see Fig.10).
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       ZS                                                    - 0 –––––––––––––––––––––  

       ↑                                                                   

                                                                  ↓ 

                α              tg α  =  Fi                           ZP                    β            tg β  =  ji 

        

                                

 

                                                → ji                                                       → Fi  

Fig. 9. Zs in the dynamic space Z P in the potential space

Fig. 10. The j − F space

2.4. The Equations of Rates (EOR)

The absolute rates can be expressed in terms of several variables. Two main types
of rate relations are distinguished.

2.4.1. The Conventional j (P, T, C) Absolute Rate Equations

The experimental observations provide direct information about the pressure, tem-
perature and composition (concentrations). This fact follows from the properties of
the measuring instruments. Less convenient is to measure (and regulate) the ratio
P/T and the chemical potentials. The most important physicochemical process
rates are thus mostly described as functions of T , P and Ck . These rate equations,
consequently, are of very different forms, a possible unified form is unrecognisable.
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A series of such rate equations is:

1. Heat conduction: j = j0 · T n

2. Heat radiation: j = j0 · T 4

3. Evaporation: j = j0 · T 1/2 · exp(−�Hvap/RT )

4. Condensation of vapor: j = j0 · T 1/2 · P/RT
5. Diffusion (gas): j = j0 · T n · C
6. Diffusion (liquid): j = j0 · T n · exp(−�Hdiff/RT )

7. Chemical reaction (A + B →): j = j0 · T n · exp(−�Hact/RT ) · CA · CB

Note: 3. and 4. are reverse of each other, showing quite different temperature-de-
pendences!

2.4.2. The Potential-Action (PA) Rate Equations

P A type rate equations are called relationships where the absolute process rates are
expressed in terms of the potentials (Fi )

ji(F1, . . . , Fn), (88)

where the variables Fi form the set of independent potentials:

reciprocal temperature 1/T ,
chemical potential −µk/T ,
electrochemical potential −(µk + zk, F · ϕ)/T ,
affinity (forward) −(

∑
k ν→k · µk)/T .

M A is represented in the configurational space, while P A in the potential-space.
The use of P A has more advantages.

2.4.3. The P A Rate Equations Are Time Reverse Symmetrical

Two important general laws are valid for any equilibrium state:

a. The (generalised) Zeroth Law: at any equilibrium state all independent po-
tentials equalise (transitivity)

F eq
i (I ) = Feq

i (I I ) (Z L), (89)

where I and II mean two parts of a thermodynamic system.
b. The Law of Detailed Balance: at any equilibrium state any process rate and

its time reverse one equalise (‘in all details’):

j→i, = j←i (DB). (90)
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c. The Law of macroscopic Reversal Symmetry.
As a direct consequence of Z L and DB the time reverse rate equations of
P A types are identical

j→i (F) ≡ j←i (F) (RS) (91)

not only in the mathematical forms but for all constant parameters.

E∗→ = E∗ = E∗←, (92)
n→ = n = n←. (93)

If it was not the case, neither DB, nor Z L would be satisfied for all possible equi-
libria. This statement reminds us to the M R, where the single constant parameter,
the rate constant was only in very simple (microscopical) processes symmetrical
(k→ = k←). In other words: any process rate and its time reverse are in their
physical properties quite identical. They are not two different processes but only
a single one viewed from two directions. (In the sense of Newton’s law, the two
forces, the one exerted by A on B and the reverse one exerted by B on A, are really
only a single force, an interaction between A and B). As a striking example the
evaporation–condensation process pair can be mentioned.

j→(T ) = j0 · T 1/2 exp(−�Hvap/RT ) j←(T, P) = j0 · T 1/2 · P/RT

Evaporation Condensation

Common P A form:

= j0[T 1/2 · exp(−E∗/RT )] · exp(µ/RT )

j→(1/T,−µ/T ) ≡ j←(1/T,−µ/T ) =

Q
Q
Q
Qs

�
�
�
�+

2.4.4. Cross Effects. Cross Symmetry

The differentials of j are
d ji =

∑
k

�ik · dFk, (94)

where coefficients �ik map the process rate space into the potential space. Cross
effect is called the interdependence of the i’th flux and the k’th potential:

�ik 
= 0 (i 
= k).

The origin of the cross effect is interpreted using the notion ‘charges’:



THERMOKINETICS OF THE EQUILIBRIUM STATE 29

In such cases two or more processes may interfere with each other. Cross
effects have been discussed by many authors. The earliest of them is W. Thomson
about the thermoelectric phenomena. In general, the following can be stated: Any
potential (or force field) assumes an appropriate charge. The i’th force field acts
upon j∗z if and only if Qzi 
= 0. For example, the electric potential acts on the
motion of a particle if and only if the particle carries electric charge (and, in such
case it carries electric current as well). The temperature acts on a process if it carries
thermal charge, and in turn, this process (flux) carries heat transfer as well. The
cross effect can be defined as follows: Cross effect exists if one particle flux carries
two or more different charges.

Reciprocities. In such cases reciprocities were observed. It is plausible to
suspect that the reciprocity may be a general property of processes. The cross
symmetry (‘Dynamical Reciprocity Relation’, DRR) is the symmetry of the matrix
of �ik ’s.

Cross symmetry is a consequence of several general facts. One of them is the
existence of the product sums ZP and ZS.

If Z P exists and is a continuous function of the potentials, then �ik ’s are
elements of the second derivative matrix of ZP . The second derivatives are always
symmetrical.

�ik =
(

∂ ji
∂ Fk

)
=
(

∂2 Z p

∂ Fi∂ Fk

)
=
(

∂2 Z p

∂ Fk∂ Fi

)
=
(

∂ jk
∂ Fi

)
= �ki , (95)

�−1
ik =

(
∂ Fi

∂ jk

)
=
(

∂2 Zs

∂ ji∂ jk

)
=
(

∂2 Zs

∂ jk∂ ji

)
=
(

∂ Fk

∂ ji

)
= �−1

ki , (96)

�ik = �ki (97)

The Dynamic Reciprocity Relations (DRR)

(The dynamic equivalent of M RR). Validity of DRR does not depend on the
functional form j (F), consequently, it is not confined to linearity. Similarly to
the entropy density second differential elements (ik ), �ik ’s may be subjects of
experimental validation as well. Analysis of various known rate equations results
that DRR is valid. Consequently, one may state that the existence of the Dynamic
Potential is experimentally confirmed.

2.4.5. The General Rate Law

It is possible to find a unified, general form for the rate equations. Analysis of
all fundamental physicochemical processes leads to rate equations of universal
form [22, 23]. This governing law is an exponential force law. This fact was to
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be expected: the process rates are in general proportional to the products of the
numbers (probabilities) of the participants while the forces are additive

−R · d ln j∗z =
∑

k

Qkz · dFk, (98)

ji =
∑

z

Qiz · j∗z (99)

remind that

− R · d ln j∗z = dF∗z ,

dZ P =− R ·
∑

z

d j∗z = −R ·
∑

z

jz · d ln jz

=
∑

k

(∑
z

j∗z · Qkz

)
· dFk =

∑
k

jk · dFk . (100)

The relation of ji and Fk is, supposing that the Q’s are constant

d ji = −1/R ·
∑

k

(∑
z

Qiz · j∗z · Qzk

)
· dFk =

∑
k

�ik · dFk . (101)

Taking into account that Q may depend on some potentials (the thermal charge is
temperature-dependent) the symmetry is valid :

�ik = −1/R ·
∑

z

j∗z ·
(

Qiz · Qkz + ∂2 F∗z
∂ Fi · ∂ Fk

)
= �ki . (102)

DRR is the symmetry of the matrix of the �ik ’s. An alternative proof for DRR has
been given here. The sum in the brackets (�ik) is invariant against interchanging i
and k.
Example: mass and heat transfer.

The thermal potential: F1 = 1/T
The material potential: F2 = −µ/T
The thermal charge: Q1 = E∗ + n · RT
The material charge: Q2 = ν(= 1 or νA, νB)

The integral form is:∫
(E∗ + n · RT ) · d(1/T ) = E∗/T − n · R · ln T

µ = µ0 + RT · ln C.
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The integrated form of the absolute rate equations of heat/mass transfers is

j = j0 · T n exp(−E∗/RT ) · exp(µ0/RT ) · C,

where the integration constant j0 is independent of temperature and composition.

µ0

RT
= E

RT
− S0

R
+ ln

C

�C
.

Let be
E∗ − E = �E∗

and let S0,
∑

C be constant,

j = j0 · exp(−�E∗/RT ) · C.

(S0 depends on the energy-distribution and on the extension of the phase space
volume).

Inserting different charges the appropriate process rate relations are resulted
(Table 1):

Table 1.

E∗ n ν Absolute process rate Process
H n 1 j = j 0 · T n Heat conduction
H 4 1 j = j 0 · T 4 Radiation
Hvap 1/2 1 j = j 0 · T 1/2 · exp(−�Hvap/RT ) Evaporation
Hvap 1/2 1 j = j 0 · T 1/2 · P/RT Vapor condensation
H n 1 j = j 0 · T n · C Diffusion (gas)
HDiff 1/2 1 j = j 0 · T 1/2 · exp(−�HD/RT ) · C Diffusion (liquid)
H ∗ n νA, νB j = j0 · T n · exp(−�H ∗/RT ) · CA · CB Chemical reaction

2.5. The Second Differential of the Dynamic Potential

The second differential is the following scalar quantity:

d2 Z ≡
∑

i

d ji · dFi ≤ 0. (103)

d2 Z is always non-positive. This property is equivalent to the statement that the
matrix of �ik is negative definite, or that fluxes ji are dominant monotonic functions
of the potentials Fk .

d2 Z =
∑

i

∑
k

dFi ·�ik · dFk . (104)

This law is part of the Second Law, a dynamic stability of real systems.
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∑
dCi dFi ≤ 0

dCi dFi d ji
@
@@

�
��

@
@@

�
��

Oláh(
∂ ji
∂ Fk

)
=
(

∂ jk
∂ Fi

)
DRR

jiCi Fi

Maxwell(
∂Ci

∂ Fk

)
=
(

∂Ck

∂ Fi

)
MRR

∑
Ci Fi

�
��

@
@@

�
��

@
@@

∑
Fi ji

∑
dFi d ji ≤ 0

Ci Fi ji

U 1/T jU

Ck −µk/T jk

etc. etc. etc.

(II. Law)

Fig. 11. Static and dynamic relations of equilibrium state

Conclusions

Analysis of basic properties and behaviour of equilibrium thermodynamic systems
has led to a number of important perceptions.

1. Three groups of quantities take part in establishing and governing equilibrium
states:

a. Conservative extensive additive quantities (and their densities, Ci ).
b. Absolute processes inside and between equilibrium phases, ji .
c. The group of the (independent) potentials Fi .

2. Three phase spaces:

a. Density (Gibbs) space.
The principal quantity is the entropy density S/V .

b. Potential (Gibbs–Duhem) space.
The principal quantity is: −P/T .

c. The dynamic space of the absolute process rates.
The principal quantity is the Dynamic Potential.

3. Three groups of state equations can be introduced:

a. E OS: canonical forms of the equations C(F).
b. E O R: canonical forms of the equations j (F).
c. Equations of M A type: equations j (C).

4. Two cross reciprocities are observed and proved:

a. Maxwell’s Reciprocity Relations (M RR) of the E OS.
b. Oláh’s Dynamic Reciprocity Relations (DRR) of the E O R.

5. Three reverse laws of the process relations:



THERMOKINETICS OF THE EQUILIBRIUM STATE 33

a. The Law of Detailed Balance (DB): equilibration of j ’s at equilibrium.
b. The General Reverse Symmetry (RS) of the j (F) relations.
c. The reverse symmetry of the rate constants of the j (F) rate equations.

6. Irreversibility built into the equilibrium relationships (inequalities, Second
Law):

a. Negativity of the second differential of the entropy density.
b. Negativity of the second differential of the Dynamic Potential.
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