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Abstract 

Using symmetry relations of a new theory published recently ("Thermokinetics") new 
thermodynamical functions are introduced called "Entropy Dissipation Functions". The three 
quantities are close related, Ds = Dj, + Df and two of them (Dj, and - Dn are Legendre­
transformed of each other. The linear phenomenological coefficients of On sager are showed to be 
second derivatives of the appropriate Entropy Dissipation (Dn. and the Entropy Production is 
interpreted as second differential of both Di and Df, Usefulness of the concept thermodynamic 
force is demonstrated in strongly nonlinear cases. Position of the Entropy Dissipation Functions 
in the unified system of thermodynamic concepts is shown. 

1. Introduction 

In any sphere of physics some fundamental functions play important 
roles. In the classical mechanics the Hamilton and Lagrange functions, the 
kinetic energy, in the thermostatics the entropy, in the thermodynamics the 
entropy production, iP and P functions [lJ may have similar roles. Using these 
functions most of the general features of material systems can be formulated in 
a very conCIse way. 

Some mathematical preliminaries [2]. 
Let a system be characterized by a set of quantities 

Xi (i=1,2, ... ,n) 

and let another set of quantities (Yi) be given as invert able functions of the Xi'S: 

and 
Yi=.t;(X 1,X2•·· .,Xn) 

Xi=gi(Yl,Y:!,·· ·,Yn)· 

If the symmetry relations 

(i,j= 1,2, .. . ,n) (1) 
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hold then 

(ox.) (ox.) 
Oy~ = oy~ "'-1') ) ~l,]- ,_'" "n, 

In such cases one may introduce the functions 

so that 

and 

(
OSX) y- -

i- OX
i 

dSX ='1I"dx· ~Jl ¥ I 

i 

are exact differentials, 

and 

and 

and dSY=LXi'dYi 
i 

(2) 

(3) 

(4) 

In this sense SX and SY are potential functions and are unique apart from 
and additive constant. 

SX and SY are Legendre transforms of each other: 

SY(y) = S(x(y),y) - SX(x) 
where 

consequently 
S=SX+SY 

Second differentials: 

Examples 

S(X,y)= LXi' Yi' 
i 

and dS =dSX +dSY, 

a. Linear relationship between Xi and Y/ 

If the matrix K is nonsingular then 

Xi=LLij'Yj 
j 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11 ) 

(12) 
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where L is the inverse matrix of K. 

In this case 

SX = 1/2' LL Kij' xix j 
i j 

and SY= 1/2·" L··· V,}" . L.,L., I] - I ] 

(see: [2]). 

S = 2 . sx = 2· SY 

dS= LL Kij' xidxj; 
i j 

d 2sx = LLKij ' dxidxj; 
i j 

i j 

b. Yi 's are homogeneous first order functions of Xi'S [4]: 

Yi(kx 1 ,kx2 ,·· .,kx,.)=kYi(X 1 ,X2", .,xn)· 

The relationship is not invert able now: 

Lxi·dYi=O. 
i 

That means the quantities Yi are not independent of each other. 
In this case, 

SX= LYiXi=S, 
i 

This example is realized in the thermostatics. 
Here 

Xi = Ei (extensities) 

Yi = Fi (entropic intensities) 

SX = S (entropy) 

d 2S= LL(~Fi). dEidEj:=:;O. 
i.j cE j 

In 

(13) 

( 14) 

( 15) 

(16 ) 

(17) 

(18) 

( 19) 

(The matrix of (OF IcE) is negative semidefinit.) Now Yi'S are not independent: 

L xidYi = LE i' dFi = 0 (20) 
i i 

which is the familiar Gibbs-Duhem relation. 
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c. The Lagrangian mechanical system with general coordinates 
qi (i=1, ... ,n). 

Here, 
Xi = 4i (velocities) 

SX = L (the Lagrangian) 

Yi=Pi=oL/84i (the momenta) 

and 

2. Thermokinetics, partial fluxes 

Considering a system consisting of two homogeneous subsystems 
(denoted by system (') and system ("), respectively), as known, thermodynamic 
forces (Xi) are regarded as differences of the appropriate potentials (FJ 

(21 ) 

'Thermokinetics' is a theory based on the assumption that there exist partial 
fluxes j' and j" so that the thermodynamic net fluxes J i are given as differences 
as well: 

System(') -b. System(") 
j" 

(22) 

It was proven [5-7J that the partial fluxes vary only with their own potentials: 

., ·'(F' F' F') Ji=}j l' 2'···' n (i = 1, 2, ... ,11) 

." ·"(F" F" F") Ji=Ji l' 2'···' n (i = 1, 2, ... , n). 

The permeability properties of the wall separating system(') and system(") are 
characterized by constant parameters of the j(F) canonical rate equations. 
These parameters do not depend on the direction of the partial process. 

The Law of Detailed Balancing claims that in equilibria 

(i = 1, 2, ... , n) 
and 

(i=1,2, .. . ,n) 

must be fulfilled simultaneously. 
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Consistently with the Law of D. B. one can conclude that 

j; (F l' . . ., F n) = j;' (F l' . . .,F n ) 

129 

(23) 

for every F. Therefore, the canonical constitutive functions must be the same 
for the two subsystems and we may omit' and" when we write the symbols of 
these functions. 

In non-equilibrium values of j' and j" may differ from each other: 

., . (F' F' F') );=Ji l' 2'"'' n 

." . (F" F" F") Ji=); l' 2"'" n' 

An important example is the mass transport through an energy barrier E: 

jm = const· T'" exp( - E/RT)· exp(/l/R T) 

or in isothermal systems (denoting the entropic chemical potential (- /l/T) by 
F): 

jm=j~(T)exp( -F /R) (24) 
(See Figure 1). 

Let us consider a small neighborhood of a given state (F 0) in which the 
constitutive functions j(F) can be regarded as linear. 

Then 

E 

.0 
----------- In lm 
....... , .... 

, 
..... , .... 

.... .... , 

o~--------------------------~ o FIR 

Fig. 1. A typical mass flux versus entropic chemical potential plot 

4 Pcriodica Polytechnica Ch. 33/2 

(25) 
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Superscripts' and" are by virtue of (23) omitted. (25) shows that the linear 
phenomenological laws 

(26) 

are now valid and the phenomenological coefficients can be interpreted as 

( OJi) Lik= - "F ' 
c k 0 

(27) 

In thermokinetics, Onsager's reciprocity relations are reformulated as 

( ~ji )=(~jk). 
OFk OFi 

(28) 

Here we must stress thatj's mean here partial and not net fluxes (J). Similarly, 
F's are potentials and not forces (X)!j's and F's equalize but do not vanish in 
equilibria, in contrast with J's and X's. (27) is one of the fundamental relations 
of the Thermokinetics. From our example (24) follows: 

L= -(oj/oF)=J/R (29) 

which shows the interesting feature that L is proportional to J. 

3. The Entropy Dissipation 

The symmetry relations (28) of Thermokinetics allow to introduce new 
fundamental quantities called Entropy Dissipation Functions Ds, DL D~, 

The function Ds is defined as 

DsU, F) = IJi' Fi (30) 
i 

Its differential is 

dDs= IJi'dFi+ IFi'dji (31 ) 
i i 

where both sums on the right side are exact differentials of two quantities D~ 
and DL respectively, 

G S ' (
:DF) 
OFi =Ji 

(32) 

(OD~)=F. ", t 
GJi 

(33) 



E.YTROPY DISSIPATION FUNCTION 131 

and 

C S -Lik ( 
-2DF ) 

oFioFk 

(34) 

(o2D~)_ L- 1 

OjiOjk - - ik (35) 

where Li"k 1 denote the elements of the inverse matrix of L. Note that relations 
j;(F 1, ... , F n) are, in general, nonlinear. 

In the simple case of (24) (see Fig. 2) 

j=/' exp( -FIR); F= -R .lnVo) 

and 

dF= -R 'dlnj 

the differentials of the Entropy Dissipation Functions are: 

dDf= -R'dj 

dD~= -R.lnVo}dj . 

lA 
j 

~--~R~----~O----------~F~--------F---· 

(36) 

(37) 

(38) 

(39) 

Fig. 2. Entropy Dissipation Functions and their differentials at a given value of F calculated from 
rate equation 

j=/exp( -FIR) 

4* 
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Their integrals, assuming that D~ = D~ = 0 if} = 0, are the following (see Fig. 3): 

D~ = - R'} (40.a.) 

~=}'(R+F) (40.b.) 

where 

, 

dDs=R ·lnl· d}-R' dU . In}) 

Ds =}. (po - R· in}) 

pO=R 'lnl 

Fig. 3. Entropy Dissipation Functions versus en tropic chemical potential 

which reminds us to the k'th "chemical potential-term" of the entropy: 

Xk' (-Pk/T)= -Xk' (pPIT +R 'lnxk) 

where X k denotes the k'th mole fraction. 
The second differentials are, by virtue of (9) and (l0) 

d2 D~ = 2: d}i' dF i =d 2 D~ 
i 

and 

(41) 

(42) 

(43) 

(44) 

(45) 
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We postulate-temporarily-that the second differentials in (44) are non­
positive 

(46) 
for example 

(47) 

(46) means that the canonical rate equations have the properties as follows: the 
ji partial fluxes are monotonic decreasing functions of the Fi'S (see Fig. 2). For 
example, the mass partial flux j increases if F = - JijT decreases, i.e. the 
concentration increases. 

Calculating with (24) and (36) 

d2 D~ =d2 D~= _ R (d!)2 ~O. 
) 

4. Entropy Dissipation and Entropy Production 

(48) 

Up to this point we have dealt mainly with equilibrium systems. As usual, 
in nonequilibrium open systems the rate of change of the entropy (S) can be 
written as sum of an external (Sex!) and of an internal (Sin!) part [8-9]: 

(open system) (49) 

where Sex! is the entropy flux due to processes between the system and its 
surroundings. Considering an isolated system Sex! vanishes and the entropy 
change reduces to the internal one: 

S=S. =Ps>O Int - (closed system). (SO) 

This part of the change is called "Entropy Production" (Ps), an important 
thermodynamic quantity being always positive in non-equilibrium systems 
and equal to zero only in equilibria. Regarding the most simple non­
equilibrium system consisting of two subsystems System(') and System("), 
separated with a permeable wall and denoting the i'th extensity by Ei 

S(')= It;· F;= - IJi' F; 
i i 

S(")= It;'· F;' = '\' },·r' 1...-, , (51) 
i i 

We have taken the fluxes}i positive in the direction System(')---.. System("). 
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The Entropy Production is the sum of the internal entropy gains 

Ps=S(')+S(")= IJ i ' (F;' -F;)= IJ i · Xi 
i i 

, 
J 

I 
System(") 

J F"J 
System(') 

-F'J 
S(') --]:::::::=> S (") 

(52) 

Taking into account that the net fluxes can be regarded as differences (see eqn. 
22), the Entropy Production can be written as a sum offour contributions of the 
overall entropy change each of them being an Entropy Dissipation. 

Sint = Ps= IU;-K)' (F;' -F;)= - I Llji' LlFi· (53) 
i i 

The physical meanings of these dissipation terms are the rate of change of the 
entropy: 

Ik F; =DsU',F')= -S11 
i 

'" ·'·F"-D U' F")-S' L.,h i - s' - 12 
i 

'" ·"·F'-D U" F')-S' L.,h i - s , - 21 
i 

'" ·"·F"-D U" F")- _So L.,h i - S' - 22 
i 

System' 
ji - Ik F; -? 

i 

IK'F; +-
i ji' 

(in System' due to j') 

(in System" due to j') 

(in System' due to j") 

(in System" due to j") 

System" 
'" ". F" L.,Ji i 

i 

'" .". F" - L.,h i 
i 

The two terms in (52) can be interpreted as 

IF; 'J i = IF; 'U;-K)= 
i i 

f' . . 

= - J dD~=D~U',F')-DW',F")= -LljD~ 
f 

"'F"'J -"'F"'U'-''')-L. i i - L, i i if -
i i 

j" . . 

= - J dD~=D~U',F")-D~U",F")= -LljD~ 
j' 

(54) 
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The four contributions can be arranged in another way. In the extreme case ifK 
can be neglected besidej; (e.g. "initial" rate of a chemical process), the "forward 
initial" entropy production is given as 

= J dD~=D~(',")-D~(',')=Ll~D~ 
The "backward initial" entropy production is in a similar way 

I,K' Xi= I,K' (F(' -F()= 
i i 

The overall entropy production is equal to the difference of the differences 
above: 

Ps = Ll~D~ - Ll~D~ = - Ll j(Ll FDn, 

In the near-equilibrium limiting case, 

F'=F 

F"=F+dF 

j' 

j" =j+dj 

(55) 

the relations between the Entropy Production and the Entropy Dissipation 
Functions are 

Ps= - I,dji'dFi= _d 2 D~= _d2 D~20 (56) 
i 

which means that inequality (46) is consistent with the positivity of the Entropy 
Production. 

The situations are visualized on Fig. 4. From the non-linear character of 
the canonical rate equations ji(F l' ... , Fn) one may draw and important 
conclusion. As in Fig. 4 it is demonstrated, in strongly non-linear cases the net 
rates (Ji=-Lljd are not unambiguous functions of the forces (Xi=LlFJ, 
Consequently, in such cases the concept "force" may be used only cautiously or 
is to be abandoned. Thus we recommend to calculate with F and j terms of 
Thermokinetics instead of X's and J's. 

Matrix G may be regarded as second differential of the entropy and 
matrices - Land - L - 1 as second differentials of the Entropy Dissipation 
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41--_~R-------O~------~·==~r==~--------F-· 

F' X F" 

Fig. 4. Entropy production of a nonlinear system being far from equilibrium. A j-F plot 

Functions D~ and DL respectively. Such as the existence of the entropy is 
consistent with Maxwell's symmetry relations, the existence of the Entropy 
Dissipation Functions are consistent with the symmetry relations of the 
Thermokinetics. Because of the lack of symmetry of matrix D no third kind of 
dissipation function can be found. (See the next page for matrix D.) 

Both matrices are negative definite, consequently, the two analogous 
second differentials have to be nonpositive ones: 

d 2 S = I dFi' dEi~O 
i 

d 2 D~=d2 D~ = Idji' dFi~O. 
i 

If differential operator "d" means differentiation with respect to time (d/dt) the 
inequalities above take the form 

vanishing in steady states. 

d2 S1=IFi' Ei~O 
i 

d 2 D~=Iji' Fi~O 
i 
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5. Entropy Dissipation in the Unified System 
of thermodynamical quantities 

The Unified System which involves the fundamental quantities of the 
three thermodynamic disciplines-thermostatics, thermokinetics and non­
equilibrium thermodynamics-can be set up on three set of quantities: 

the extensities (or densities) (Ed, 

the potentials (F .. ) and 

the "traffics" (partial fluxes) Vi)' 

Three set of constitutive relationships exist between them: 

(state eqns of thermostatics) 

("canonical" rate eqns) 

(non-canonical rate eqns) 

(See Figs 5 and 6, upper part). 
The differentials of these quantities (Figure 5, lower part) form three sets 

Entropy Entropy-dissipation 

Non-linear Non-linear 
state eqns rate eqns 

d d d Equil. 

Symmetry Symmetry 

Gik = Gki L ik = L ki 

:::0 :::0 

(Second differentials) 

Fig. 5. Unified system o~ thermodynamic quantities and their differentials 
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Entropy 

~o 
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Entropy-dissipation 

(-Ps) 

Portial 
fluxes 

t:. Non-equil. 

Net fluxes 

(E ntropy - production) 

Fig. 6. Unified system of thermodynamic quantities and their differences 

of perfect diHerenttals: 

where 

dFi= IGik'dEk 
k 

dji= ID ik ' dEk 
k 

Gik = Gki (Maxwell) 

- Lik = - Lki (Onsager-Olah) 

D= -L- G. 

In non-equilibria, instead of differentials, differences can be introduced 
between properties of two phases (see Fig. 6, lower part). 

These differences mean 
JE i : deviations from equilibria, 

,12 s= I JFi' ,1Ei:s:;O 
i 

i 

,12 Ds= L Jji' ,1Fi:s:;O. 
i 
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Close to equilibria (Onsager's linear theory) A-d and the relationships to 
the differences are the same as the appropriate relationships to the differentials. 

Far from equilibria both forces and net fluxes may be defined though no 
unique relationship exists between them. In this case the Entropy Production 
cannot be expressed as a function of the forces alone (or of the net fluxes alone), 
but only with potentials and partial fluxes in the sense of (53), using quantities 
of Thermokinetics instead of ones of the classical non-equilibrium 
thermodynamics. 
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