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Abstract 

It is pointed out that the linear system which makes conservative oscillations along elliptic 
trajectories can be considered reasonable in chemistry as long as the concentrations of the two 
intermediates are not too close to zero. As examples, two biochemical systems are discussed. 

1. Introduction 

Lotka in 1920 discovered a very simple two-dimensional chemical system 
showing conservative oscillations. This system has a reasonable interpretation 
in ecology and nowadays the Lotka-Volterra system is very often cited as a 
simple model for structure formation (see e.g. Nicolis and Prigogine, 1977 or 
Ebeling, 1976). Noszticzius, Farkas and Schelly (1984) used the Lotka-Volterra 
model as a basis to construct models of the Belousov-Zhabotinsky reaction. 
As an example for the construction of simple oscillating chemical systems we 
mention here the paper by Tyson & Light (1974) and that of Gray & Scott 
(1985). Nowadays attention is focused on oscillations in biological systems as 
well (e.g. Rowe, 1987). 

Sometimes it is stated that the Lotka-Volterra model is the simplest 
chemical system showing oscillations (e.g. Noszticzius 1980, 1982). 

The equation of the integral curves of the Lotka-Volterra model is given 
by the first integral: 

Vex, y)=x-ln x +(y-In y)/C (1) 

after a proper scaling (e.g. Farkas & Noszticzius, 1985). From a mathematical 
point of view, these integral curves are not simple and the time dependence 
cannot be given in closed analytical form. Note that Escher (1979) constructed 
reasonable models which show limit cycle oscillations along elliptic integral 
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curves. On the other hand, his model is not simple from a chemical point of 
view because it contains trimolecular reactions, too. 

From a mathematical point of view, there is no doubt that the simplest 
system showing oscillations is: 

x=-y y=x (2) 

The integral curves of this system are circles, centered at the origin. In a 
chemical system x and y denote concentrations and therefore they should be 
positive. To fulfill this condition, we have to move the center into the positive 
quadrant. The general linear form of this type reads: 

which has the ellipses 

x=K 1 -K 2y 

y=K 3x-K4 

(X-XO)2 + (Y-Yof =1 
a2 b2 

as integral curves \vhere a is an integration constant, and 

X O=K4/K3 

Yo=KdK2 

With the initial condition 

x(O)=xo+a 

the time dependence is: 

w=jl(;K; 

b=a.JK3/K z 

v(O)= v _ _ 0 

x=xo+a' cos wt 

Y = Yo + b . sin wt 

Obviousiy, the following conditions should be valid: 

a<xo, b<yo 

in order for the trajectories to remain in the positive quadrant. 

2. A simple kinetic interpretation 

(3a) 

(3b) 

(4) 

(5) 

(6) 

(7) 

(8) 

The first term on the right-hand side of equation (3a), K 1 represent a 
constant production of X. This may be easily realized by a constant input of 
X or by an in situ production of X from some starting materials, the 
concentrationc of which are kept constant. The term K3X in (3b) represents 
the production of Y from some starting materials of constant concentration 
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catalyzed by X. This step may be realized without any trouble as well. The 
difficulty due to which the model (3) was not thought to be a realistic one by 
chemists is that the term - K 2Y in (3a) means a zero-order decay of X, catalyzed 
by Y, and the term - K4 in (3b) means a constant zero-order decay of Y. The 
former is a so-called negative cross-effect term which, according to T6th and 
Hars (1986), should not be involved in a kinetic differential equation of a 
chemical reaction. 

In fact, zero-order reactions are rare, but not unknown in chemistry, there 
are several examples in the literature. Especially in biochemistry zero-order 
reactions are quite common, the velocity of enzyme catalyzed reactions with 
increasing substrate concentrations tends to a maximum constant value (see 
Michaelis & Menten, 1913, Monod et aI., 1965, and Plowman, 1972). Predators 
feed on prey according to the Michaelis-Menten-Monod kinetics, too (e.g. 
Legovic, 1987, and M. Farkas, 1984). 

However, there is a simple and general method to construct a reaction 
with apparent zero-order kinetics. Let us introduce a new component Wand 
consider a two-step process. The first step is a slow constant production of 
R~ the second one is a fast reaction between Yand W. The second reaction 
results in an indifferent product and the kinetic orders of this step with respect 
to both reactants are one. The steady-state approximation tV = 0 leads to the 
zero order decay of Y. Korzukhin (1967) on the basis of this idea constructed 
a rather complicated model. Here we present a simpler kinetic interpretation 
for the "simplest" chemical oscillator (3): 

~X 

~z 

~W 

W+Y~ 

The corresponding kinetic equations are: 

x=k 1 -k2bXZ 

y = k3 X - k4byW 

i = k2ay - k2bXZ 

W = k4a - k4byW 

(Kl) 

(K2a) 

(K2b) 

(K3) 

(K4a) 

(K4b) 

(9) 

(10) 

(11 ) 

(12) 
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Now the steady-state approximations 

i=O k2ay=k2bXZ 

transform (9-12) into (3) with the notations 

(13) 

(14) 

(15) 

The steady-state approximations (13-14) are valid for the limit case 

(16) 

What we want to stress is that the system (3) can be considered as a 
realistic scheme except for the vicinity of the axes x and Y (see later, conditions 
(29-30)). 

In the following sections we discuss two biochemical examples for the 
systems (9-12) and (3). 

3. Cascade catalysis 

Let us first consider the scheme (K) introducing starting materials and 
products of reasonable biochemical meaning: 

Sl + ... +Sn--?X (CA 1) 
_ X 
Y----+Y (CA 2) 

Y 
Sn+C--+Z (CA 3) 

X+Z--?X (CA 4) 

Sn+2 + ... Srn--? W (CA 5) 

W+ Y--?}T' (CA 6) 

CA 1: production of an activating enzyme X; Sl ... Sn denote amino acids, 
nucleic acids, and enzymatic factors necessary for protein synthesis 

CA 2: X activates the enzyme Y from the inactive form }T 
CA 3: the metabolite Z is produced by the action of Yfrom the substrate Sn + 1 

CA 4: Z desactivates X, the product is the inactive X 
CA 5: the inhibitor Wis produced; Sn + 2 ... Srn denote the necessary starting 

materials and enzymes; alternatively this step may be realized by a 
constant input of W 

CA 6: W desactivates Y, the product is the inactive }T' 
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Let us assume that the reaction rates are of the form 

Il=fl(Sj); i=1, ... n; sj=const. 

12 = fzC§)x; y = const. 

13=f3(Sn+l)Y; Sn+l =const. 

14 =k4 xz 

1 s = fs(sj); i = n + 2, ... m; Sj =const. 

16=k6W Y 
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(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

where the J;-s are positive definite functions, kcs are positive constants. If the 
conditions 

(23) 

hold, this system, in the same way as (9-12), gives (3) with the notations 

K2 = f3(Sn+ 1)' 

K4= fs(Sj) 

K3 = f2(.Y), 

(24) 

It is noteworthy that Kaufman & Thomas (1987) proposed a model for 
the humoral immune response, which has some analogy with this system. 

4. Cross catalysis 

Making use of the biochemical zero-order processes one can construct a 
scheme directly according to (3) as follows: 

(CR 1) 

(CR2) 

(CR 3) 

(CR4) 

CR 1: production of mRNA chains X coding ribonuclease, i.e. transscription; 
SI' .. Sn denote DNA, nucleotides, and enzymatic factors 

CR 2: the synthesis of ribonuclease, Sn+ 1 ... Srn denote amino acids, tRNA, 
and enzymatic factors 

CR 3: hydrolysis of the mRNA X by the ribonuclease Y to the products 
PI ... Pc 
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eR 4: desactivation of Yby the action of another enzyme U, this may be some 
specific one or a general protein hydrolase 

Let us assume that the reaction rates are of the form: 

11 = 11 (Si); i = 1 ... n; Si = const. 

12 = I2(sJx; i = n + 1 ... m; Si = const. 

13 =k3y 

14=k4u; u=const. 

- - - ---=:;;;;.;=-.......,..-""""'" 

L-------------r---~~y 
y* 

Fig. 1. Rate of an enzyme reaction depending on substrate concentration 

(25) 

(26) 

(27) 

(28) 

Here the functions 11 and 12 are positive and definite, k3 and k4 are positive 
constants, (27) and (28) mean enzyme catalysed zero-order decay for X and 
Y, respectively. This requires the conditions (29-30) to be held (Fig. 1): 

y>y* 

x>x* 

(29) 

(30) 

In other words, in the domain of concentrations characterized by (29-30) 
zero-order kinetics is valid to a good approximation. The system (25-28) is 
equivalent to (3) with the notations 

(31) 

Some similar biochemical oscillators were reviewed by Nicolis (1971). 
It should be noted that model (3) does not contain any autocatalytic reaction 
or other nonlinearities which are often stated in the literature as necessary for 
oscillatory systems. 

(24) and (31) contain a lot of adjustable parameters and therefore we hope 
that experimental biochemists will realize these models some day in vitro or 
in vivo. 
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5. Stability analysis and numerical examples 

To investigate the (9-12) system, we should transform it into a simpler 
form. By scaling one has: 

X=l-XZ (32) 

Y=A(X - YW) (33) 

Z=B(Y-XZ) (34) 

W=C(l- YW) (35) 

which results in a unique steady state (1, 1, 1, 1). 
However, we should like to relate the four-dimensional system to the 

two-dimensional approximate form. For this, we use another scaling: 

xjX -zjZ-k jk }JjY=wjW=k4Jk21/a2k31/2, - - 4a 3, 

U - k kl/2jkl/2k 
- 1 3 2a 4a' 

U 2 = k2b(k4Jki~2k~/2), U 4 = k4a(k4ajk2ak3) 

which transforms the system (9-12) into the form: 

U4 

100/ 
90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 

U =0.1 

X=U U2XZ 

Y=X-U4YW 

Z Y-U 2XZ 

W=l U4 YW 

50 

U=0.2 

100 

Fig. 2. Bifurcation curves g = 0 of system (37-40) 

6 Periodica Polytechnica Ch. 33/3-4 

(36) 

(37) 

(38) 

(39) 

(40) 
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y 

.010 

.oos 

O~~~~-r-r-r~~~~~ X 
o .OOS .010 

y 

.010 

.oos 

O~~-r-r-.~~~r-~~~-'X 

o .OOS .010 

Fig. 3. Trajectories of systems (9-12) (a) and (3) (b) for a one-minute oscillator 
Parameter values: a) kl =6.98' 10- 4

, k2a =0.140, k2b = 1400, 
k3 =7.85·1O- 2 , k4a =3.93·1O- 4

, k4b =785; b) K1=k1, 
K2=k22' K3=k3' K4=k4a 

Note that the limiting process (16) for the system (37-40) takes the form: 

U 2 -?(JJ 

while the parameter U is not affected. 

(41) 
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A lengthy, but straightforward calculation proves that the condition of 
Hopf bifurcation is: 

where 
g(V, V 2 , V 4)= V~+ V 2(V + l/V - V 3Vi)+ 

+(1 + V 2 
- V 4 - 2v2 Vi - v 4vi - V4V~) 

(42) 

(43) 

The curves of Hopf bifurcation in the V 2 - V 4 plane for different values of 
V are plotted in Fig. 2. It can be shown that at parameter values satisfying 
condition (42), two of the eigenvalues of the lacobian have negative real parts 
and the other two eigenvalues are imaginary. The stationary point (1, V, 
V/V 2' l/VV 4) is stable if 9 >0 and unstable if 9 <0, at least near the bifurcation 
curve. 

Fig. 3 demonstrates the validity of the approximation (13-14): a) refers 
to the four-dimensional system (9-12), b) refers to the approximate two­
dimensional system (3). The numerical values of the parameters were chosen 
to be adequate to have biochemical meaning. We remark that all cyclic or 
spirallizing curves in the phase-plane are counter-clockwise. 

Fig. 4 shows an interesting effect: the amplitude of the oscillation at first 
gradually decreases, and then grows higher than its original value. This 
behaviour resembles an experimentally found phenomenon: chemical oscillation 

2. 0 ~ 

i i i ) T 
o 250 500 750 

Fig. 4. "Pause"-like behaviour under the bifurcation curve g = 0, V = 1, V 2 = 1.3, V 4 = 0.9. The 
other three variables show a similar time depends dependence. System (37-40) 

6* 
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y 

2. 0 

1.0 

o 1.0 2. 0 
Fig. 5. Stable limit cycle over the bifurcation curve g=O, U = 1. System (37-40), U 2 = 1.3, U 4= 1.1 

in a special Belousov-Zhabotinsky system has a pause (Wittmann et aI., 1987). 
So far there is no mathematical model for that pause. 

Fig. 5 demonstrates that our system (37-40) has a stable limit cycle. The 
parameters were chosen in the region above the bifurcation curve U = 1 of 
Fig. 2. 
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