# A REVISED REDUCED COMPRESSIBILITY CHART AND FUGACITY DIAGRAM FOR FLUIDS

## Gy. Varsányi

Department of Physical Chemistry, Technical University, H-1521 Budapest

Received April 10, 1986

### Abstract

Some tables containing reduced compressibility factors are not consistent to all thermodynamic properties of fluids. Permanent gases have an inversion point at low pressure and high temperature where the Joule-Thomson coefficient equals to 0 and the compressibility factor reaches a maximum with increasing temperature at constant pressure. A new compressibility table has been constructed using recent data given for air, ethylene and ammonia. These gases have different critical compressibility factors and represent therefore all types of fluids. Reduced fugacity charts have also been calculated from these data. Diagrams of gases with low critical compressibility factor show quantitative differences.

#### Introduction

Many textbooks in Physical Chemistry and manuals for engineers depict charts of reduced compressibility factors. Books from the forties like Chemical Engineering Thermodynamics by B. F. Dodge quote data from Cope et al. [1] and from Brown et al. [2]. Characteristic feature of these diagrams is the maximum in the slope of the starting isoterms at  $T_r = 5$ .

Later, textbooks and manuals like J. H. Perry: Chemical Engineer's Handbook use diagrams published by Watson and Smith [3], Gamson and Watson [4] and by Watson [5]. On the compressibility diagram in paper [3] this maximum in the slope is not clearly observable while the two others do not publish data reaching  $T_r = 5$ . In addition, in the Compressibility Tables, published by Lydersen et al. [6], below  $p_r = 8$  the compressibility factors, passing over a minimum, monotonously increase with temperature at constant pressure until  $T_r = 15$ .

## Joule-Thomson coefficient as a tool for the consistency of thermodynamic data

Joule-Thomson coefficient can be expressed by

$$\mu_{\rm JT} = \frac{RT_{\rm c}T_{\rm r}^2}{p_{\rm c}p_{\rm r}} \frac{1}{C_{\rm mp}} \left(\frac{\partial Z}{\partial T_{\rm r}}\right)_{\rm p_{\rm r}} \tag{1}$$

It means that in inversion points  $(\partial Z/\partial T_r)_{p_r}$  is equal to 0 otherwise its sign is identical to that of  $\mu_{JT}$ . Thus, if the compressibility factor increases until  $T_r = 15$  the Joule-Thomson coefficient is positive in the whole region. Lydersen and coworkers published in the very same work a diagram for Joule-Thomson coefficients displaying an inversion point at  $T_r \approx 3$  and  $p_r = 4$ . Unfortunately they do not follow the inversion curve over  $T_r = 7$ . Nevertheless, the former datum is in clear contradiction to their Table for compressibility factors because at  $p_r = 7$  the compressibility factor has no maximum.

Dr. Ulrich K. Deiters (Ruhr Universität Bochum) exposes that "the condition of constant pressure implies, at least for supercritical temperatures, that an increase in T has to be accompanied by a decrease in density. For high temperatures and low densities, however, the gas will approach the perfect gas behaviour (Z=1). Therefore ( $\partial Z/\partial T$ ) is negative at high temperatures. Since this derivative is known to be positive at low temperatures, the inversion temperature must lie at a finite value between the high temperature domain and the low temperature domain." [7].

Figure 1 depicts some inversion curves for reduced parameters. Similar curves are depicted as Brown's "Ideal Curves" among which also the inversion curve is figured in the paper of Angus [8]. The first curve has been drawn using the thermodynamic parameters of air, after the Tables of Baehr and Schwier [9]. The inversion point have been checked by the data of their T-s chart, using the relationship

$$\mu_{\rm JT} = -\frac{\rm V}{\rm T} \left(\frac{\partial \rm T}{\partial \rm s}\right)_{\rm h} \tag{2}$$

The isoenthalpic curves of air have a maximum until  $t = 390^{\circ}C$  ( $T_r = 5.0$  and  $p_r = 0.5$ ). Above 390°C the isoenthalpic curves monotonously increase, regardless to the pressure, indicating that the Joule-Thomson coefficient is negative. Thus, the compressibility factors, above  $T_r = 5$ , regardless to the pressure, ought to decrease with increasing temperature in sharp contrast with those given in the Tables of Lydersen et al.

The second curve has been constructed from the data of ethylene published by Angus et al. [10]. The curve ends at  $T_r = 1.5$  as the data can be found up to this temperature. The third curve connects the inversion points



of ammonia given in reduced parameters and published by Haar and Galagher [11]. The total inversion curve of a van der Waals fluid is also depicted. The corresponding equation derived from van der Waals equation, starting from the relation:

$$\mu_{\rm JT} = \frac{V_{\rm c}}{C_{\rm p}} \left[ T_{\rm r} \left( \frac{\partial V_{\rm r}}{\partial T_{\rm r}} \right)_{\rm p_{\rm r}} - V_{\rm r} \right]$$
(3)

is

$$T_{r,i} = \frac{15 \pm 4\sqrt{9 - p_r} - \frac{p_r}{3}}{4}$$
(4)

The points not connected by a curve are placed on the ground of the Tables of Lydersen et al. The strange shape is due to the fact that at  $p_r = 7$  and at lower pressures no maxima are to be found in the compressibility factors.

Also Beattie-Bridgeman equation [12] gives a condition for the high temperature inversion point at low pressure. The sign of the function  $y = 4cR + 2A_0T^2 - B_0RT^3$  is identical to that of the Joule-Thomson coefficient. The function equals to 0 at only one temperature i. e. the equation has only one root. These temperatures are for He: 43.6 K, for H<sub>2</sub> 227 K (calculated from the equation valid for low densities) and 231 K resp. (calculated from

the general equation), and for Ne: 254 K. For a van der Waals gas  $T_r = 6.75$  while for a van der Waals liquid  $T_r = 0.75$  at very low pressures. This low temperature value cannot be obtained from Beattie-Bridgeman equation as it is not valid for liquid state.

### The reduced compressibility table

A reduced compressibility table has been constructed for three gases of various critical compressibility factors. The three types are represented by ammonia [11] ( $Z_c = 0.244$ ), by ethylene [10] ( $Z_c = 0.278$ ) and by air [9] ( $Z_c = 0.316$ ). Betweeen  $T_1 = 223$  K and  $T_2 = 450$  K the data of air are given from two different equations the validity region of which are overlapping. In this temperature interval the calculated reduced data have been averaged weighted by  $(T-T_1)/(T_2-T_1)$  for the data given for higher temperatures while the data valid for lower temperatures have been weighted by  $(T_2-T_1)/(T_2-T_1)$ . Table 1 collects the compressibility factors at different parameters.

Figures 2, 3, 4 are compressibility charts in linear scale in the function of reduced parameters for air, ethylene and ammonia. Figures 5, 6, 7 are depicted in logarithmic scale where the 45° straight lines are also plotted in order to facilitate the determination of the pressure from known volume and temperature. Figures 2—7 have been plotted by computer Commodore PC 10 and Seconic SPC 410 plotter (IBM XT).















### Reduced fugacity coefficient chart

Two kinds of reduced fugacity charts can be found in the literature. The first which appeared also in Perry's Chemical Engineer's Handbook has been published by Gamson and Watson [4]. It is interesting that this chart is consistent to Joule-Thomson coefficient as the isoterm belonging to  $T_r=4$  starts with a maximal slope ( $T_r=5$  is not plotted). The isoterms below the critical temperature, however, seem to be not quite reliable. The second kind of reduced fugacity chart has appeared as a member of Chemical Process Principles Charts by Hougen et al. [13]. Here, the low temperature isoterms are correct but the high temperature isoterms taken from the data of Lydersen et al. [6] are not consistent to thermodynamic properties.

Fugacity coefficients have been calculated from the data of Table I and illustrated on Figs 8 and 9. Figure 8 is related to gases of critical compressibility 0.278 and 0.316 (ethylene and air) equally. As it can be seen, below  $T_r=1.5$  the data of air (points on the Figure) are very near to the corresponding isoterms of ethylene. Below the critical temperature the saturation of air is illustrated by two points connected by a short curve being the air a mixture. Fugacity data of gases of lower critical compressibility factor (ammonia) are somewhat different so that they are illustrated on a

| Table I | `able |  |
|---------|-------|--|
|---------|-------|--|

Chart of generalized reduced compressibility function

| pr                            |       | 0.01  |       |       | 0.1   |       |       | 0.2   |       |       | 0.3   |       |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Z <sub>e</sub> T <sub>r</sub> | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.5                           | 0.002 |       |       | 0.016 |       |       | 0.032 |       |       | 0.047 |       |       |
| 0.6                           | 0.971 |       |       | 0.014 |       |       | 0.028 |       |       | 0.042 |       |       |
| 0.7                           | 0.986 |       | 0.989 | 0.013 |       |       | 0.026 |       |       | 0.039 |       |       |
| 0.8                           | 0.992 |       | 0.993 | 0.908 |       | 0.926 | 0.026 |       | 0.844 | 0.038 | 0.048 |       |
| 0.90                          | 0.995 |       | 0.995 | 0.943 |       | 0.950 | 0.881 |       | 0.897 | 0.810 |       | 0.840 |
| 0.92                          | 0.995 |       | 0.995 | 0.948 |       | 0.953 | 0.891 |       | 0.904 | 0.828 |       | 0.852 |
| 0.94                          | 0.995 |       | 0.996 | 0.952 |       | 0.956 | 0.901 |       | 0.911 | 0.844 |       | 0.863 |
| 0.96                          | 0.995 |       | 0.996 | 0.956 |       | 0.959 | 0.909 |       | 0.917 | 0.858 |       | 0.873 |
| 0.98                          | 0.996 | 0.996 | 0.996 | 0.959 | 0.963 | 0.962 | 0.916 | 0.924 | 0.923 | 0,869 | 0.882 | 0.882 |
| 1.00                          | 0.996 | 0.997 | 0.996 | 0.962 | 0.965 | 0.964 | 0.922 | 0.929 | 0.928 | 0.880 | 0.890 | 0.889 |
| 1.01                          | 0.996 | 0.997 | 0.997 | 0.963 | 0.966 | 0.966 | 0.925 | 0.931 | 0.930 | 0.885 | 0.894 | 0.893 |
| 1.02                          | 0.997 | 0.997 | 0.997 | 0.965 | 0.967 | 0.967 | 0.928 | 0,933 | 0.932 | 0.889 | 0.897 | 0.897 |
| 1.03                          | 0.997 | 0.997 | 0.997 | 0.966 | 0.968 | 0.968 | 0.931 | 0.935 | 0.934 | 0.894 | 0.901 | 0.900 |
| 1.04                          | 0.997 | 0.997 | 0.997 | 0.967 | 0.969 | 0,969 | 0.933 | 0.937 | 0.936 | 0.898 | 0.904 | 0.903 |
| 1.05                          | 0.997 | 0.997 | 0.997 | 0.968 | 0.970 | 0.970 | 0.936 | 0.939 | 0.938 | 0.902 | 0.907 | 0.906 |
| 1.06                          | 0.997 | 0.997 | 0.997 | 0.970 | 0.971 | 0.971 | 0.938 | 0.941 | 0.940 | 0.905 | 0.910 | 0.909 |
| 1.07                          | 0.997 | 0.997 | 0.997 | 0.971 | 0.972 | 0.971 | 0.940 | 0.943 | 0.942 | 0.909 | 0.913 | 0.912 |
| 1.08                          | 0.997 | 0.997 | 0.997 | 0.972 | 0.973 | 0.972 | 0.942 | 0.945 | 0.944 | 0.912 | 0.916 | 0.915 |
| 1.09                          | 0.997 | 0.997 | 0.997 | 0.973 | 0.974 | 0.973 | 0.944 | 0.947 | 0.946 | 0.915 | 0.919 | 0.917 |
| 1.10                          | 0.997 | 0.997 | 0.997 | 0.973 | 0.975 | 0.974 | 0.946 | 0.948 | 0.947 | 0.918 | 0.921 | 0.920 |
| 1.12                          | 0.998 | 0.998 | 0.998 | 0.975 | 0.976 | 0.975 | 0.950 | 0.951 | 0.950 | 0.924 | 0.926 | 0.925 |
| 1.14                          | 0.998 | 0.998 | 0.998 | 0.977 | 0.977 | 0.977 | 0.953 | 0.954 | 0.953 | 0.929 | 0.930 | 0.929 |
| 1.16                          | 0.998 | 0.998 | 0.998 | 0.978 | 0.979 | 0.978 | 0.956 | 0.957 | 0.956 | 0.934 | 0.934 | 0.933 |
| 1.18                          | 0.998 | 0.998 | 0.998 | 0.980 | 0.980 | 0.979 | 0.959 | 0.959 | 0.958 | 0.938 | 0.938 | 0.937 |
| 1.20                          | 0.998 | 0.998 | 0.998 | 0.981 | 0.981 | 0.980 | 0.962 | 0.961 | 0.961 | 0.942 | 0.942 | 0.941 |
| 1.3                           | 0.999 | 0.999 | 0.999 | 0.986 | 0.985 | 0.985 | 0.972 | 0.971 | 0.970 | 0.958 | 0.956 | 0.955 |
| 1.4                           | 0.999 | 0.999 | 0.999 | 0.989 | 0.989 | 0.989 | 0.979 | 0.977 | 0.977 | 0.968 | 0.966 | 0.965 |
| 1.5                           | 0.999 | 0.999 | 0.999 | 0.991 | 0.991 | 0.991 | 0.983 | 0.983 | 0.982 | 0.975 | 0.974 | 0.973 |
| 1.6                           | 0.999 |       | 0.999 | 0.993 |       | 0.993 | 0.986 |       | 0.986 | 0.980 |       | 0.979 |
| 1.7                           | 0.999 |       | 0.999 | 0.994 |       | 0.995 | 0.988 |       | 0.989 | 0.982 |       | 0.984 |
| 1.8                           | 0.999 |       | 1.000 | 0.994 |       | 0.996 | 0.989 |       | 0.991 | 0.984 |       | 0.987 |
| 1.9                           |       |       | 1.000 |       |       | 0.997 |       |       | 0.993 |       |       | 0.990 |

|                |       |       |       |       |       | Table 1 (c | ont.) |       |       |       |       |       |
|----------------|-------|-------|-------|-------|-------|------------|-------|-------|-------|-------|-------|-------|
| p <sub>r</sub> |       | 0.4   |       |       | 0.5   |            |       | 0.6   |       |       | 0.7   |       |
|                | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316      | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.5            | 0.063 |       |       | 0.079 |       |            | 0.094 |       |       | 0.110 |       |       |
| 0.6            | 0.056 |       |       | 0.070 |       |            | 0.084 |       |       | 0.098 |       |       |
| 0.7            | 0.052 |       |       | 0.065 |       |            | 0.078 |       |       | 0.091 |       |       |
| 0.8            | 0.051 | 0.063 |       | 0.063 | 0.078 |            | 0.076 | 0.095 |       | 0.088 | 0.110 |       |
| 0.90           | 0.726 |       |       | 0.066 |       |            | 0.079 | 0.098 |       | 0.091 | 0.113 |       |
| 0.92           | 0.756 |       | 0.794 | 0.667 |       | 0.726      | 0.081 |       |       | 0.094 | 0.116 |       |
| 0.94           | 0.781 |       | 0.810 | 0.707 |       | 0.751      | 0.615 |       |       | 0.098 |       |       |
| 0.96           | 0.802 |       | 0.825 | 0.739 |       | 0.771      | 0.665 |       | 0.709 | 0.570 |       |       |
| 0.98           | 0.819 | 0.837 | 0.838 | 0.764 | 0.787 | 0.790      | 0.702 | 0.731 | 0.736 | 0.628 |       |       |
| 1.00           | 0.835 | 0.848 | 0.849 | 0.786 | 0.804 | 0.805      | 0.732 | 0.754 | 0.757 | 0.671 | 0.698 | 0.702 |
| 1.01           | 0.842 | 0.854 | 0.854 | 0.796 | 0.811 | 0.813      | 0.746 | 0.764 | 0.767 | 0.690 | 0.712 | 0.716 |
| 1.02           | 0.848 | 0.859 | 0.859 | 0.805 | 0.818 | 0.820      | 0.757 | 0.774 | 0.777 | 0.706 | 0.726 | 0.727 |
| 1.03           | 0.855 | 0.864 | 0.864 | 0.819 | 0.825 | 0.826      | 0.769 | 0.783 | 0.785 | 0.720 | 0.737 | 0.740 |
| 1.04           | 0.860 | 0.869 | 0.868 | 0.821 | 0.832 | 0.832      | 0.779 | 0.792 | 0.793 | 0.734 | 0.748 | 0.750 |
| 1.05           | 0.866 | 0.873 | 0.873 | 0.828 | 0.838 | 0.838      | 0.788 | 0.799 | 0.801 | 0.746 | 0.759 | 0.760 |
| 1.06           | 0.871 | 0.878 | 0.877 | 0.835 | 0.843 | 0.844      | 0.798 | 0.807 | 0.808 | 0.758 | 0.768 | 0.770 |
| 1.07           | 0.876 | 0.882 | 0.881 | 0.842 | 0.849 | 0.849      | 0.806 | 0.814 | 0.814 | 0.768 | 0.777 | 0.778 |
| 1.08           | 0.881 | 0.886 | 0.885 | 0.848 | 0.854 | 0.854      | 0.814 | 0.821 | 0.821 | 0.778 | 0.786 | 0.786 |
| 1.09           | 0.885 | 0.889 | 0.889 | 0.854 | 0.859 | 0.859      | 0.821 | 0.827 | 0.827 | 0.787 | 0.794 | 0.794 |
| 1.10           | 0.889 | 0.893 | 0.892 | 0.859 | 0.864 | 0.863      | 0.828 | 0.833 | 0.833 | 0.796 | 0.801 | 0.801 |
| 1.12           | 0.897 | 0.900 | 0.898 | 0.869 | 0.872 | 0.872      | 0.841 | 0.844 | 0.844 | 0.811 | 0.815 | 0.814 |
| 1.14           | 0.904 | 0.906 | 0.905 | 0.879 | 0.880 | 0.879      | 0.852 | 0.854 | 0.853 | 0.825 | 0.827 | 0.827 |
| 1.16           | 0.911 | 0.911 | 0.910 | 0.887 | 0.888 | 0.887      | 0.863 | 0.864 | 0.862 | 0.838 | 0.839 | 0.838 |
| 1.18           | 0.917 | 0.917 | 0.915 | 0.895 | 0.895 | 0.893      | 0.872 | 0.872 | 0.871 | 0.850 | 0.849 | 0.848 |
| 1.20           | 0.922 | 0.921 | 0.920 | 0.902 | 0.901 | 0.899      | 0.881 | 0.880 | 0.878 | 0.860 | 0.858 | 0.856 |
| 1.3            | 0.943 | 0.941 | 0.940 | 0.929 | 0,925 | 0.924      | 0.915 | 0.910 | 0.909 | 0.900 | 0.895 | 0.893 |
| 1.4            | 0.958 | 0.954 | 0.954 | 0.947 | 0.943 | 0.942      | 0.937 | 0.932 | 0.931 | 0.926 | 0.920 | 0.919 |
| 1.5            | 0.967 | 0.965 | 0.964 | 0.960 | 0.956 | 0.955      | 0.952 | 0.948 | 0.947 | 0.945 | 0.939 | 0.938 |
| 1.6            | 0.974 |       | 0.972 | 0.968 |       | 0.965      | 0.962 |       | 0.958 | 0.957 |       | 0.952 |
| 1.7            | 0.978 |       | 0.978 | 0.973 |       | 0.973      | 0.969 |       | 0.968 | 0.965 |       | 0.963 |
| 1.8            | 0.980 |       | 0.983 | 0.976 |       | 0.979      | 0.973 |       | 0.975 | 0.970 |       | 0.971 |
| 1.9            |       |       | 0.987 |       |       | 0.984      |       |       | 0.981 |       |       | 0.978 |

| r              | ),       |       | 0.8   |       |       | 0.9   |       |       | 1.00  |       |       | 1.05  |       |
|----------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Z <sub>e</sub> | <u> </u> | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.             | 5        | 0.126 |       |       | 0.141 |       |       | 0.157 |       |       | 0.165 |       |       |
| 0.             | 6        | 0.112 |       |       | 0.126 |       |       | 0.140 |       |       | 0.146 |       |       |
| 0.             | 7        | 0.104 |       |       | 0.117 |       |       | 0.129 |       |       | 0.136 |       |       |
| 0.             | 8        | 0.100 | 0.125 |       | 0.113 | 0.141 |       | 0.125 | 0.156 |       | 0.131 | 0.164 |       |
| 0.             | 90       | 0.104 | 0.128 |       | 0.116 | 0.143 |       | 0.128 | 0.158 |       | 0.134 | 0.166 |       |
| 0.             | 92       | 0.106 | 0.131 |       | 0.118 | 0.146 |       | 0.130 | 0.161 |       | 0.136 | 0.168 |       |
| 0.             | 94       | 0.110 | 0.135 |       | 0.122 | 0.150 |       | 0.134 | 0.164 |       | 0.140 | 0.172 |       |
| 0.             | 96       | 0.117 | 0.370 |       | 0.128 | 0.157 |       | 0.139 | 0.171 |       | 0.145 | 0.178 |       |
| 0.9            | 98       | 0.529 |       |       | 0.141 |       |       | 0.152 |       |       | 0.156 | 0,188 |       |
| 1.             | 00       | 0.598 | 0.631 | 0.634 | 0.494 | 0.538 |       | 0.244 | 0.278 | 0.316 | 0.185 | 0.213 |       |
| 1.             | 01       | 0.626 | 0.652 | 0.655 | 0.546 | 0.574 |       | 0.430 | 0.454 |       | 0.353 | 0.365 |       |
| 1.             | 02       | 0.647 | 0.670 | 0.674 | 0.582 | 0.605 | 0.608 | 0.482 | 0.516 | 0.515 | 0.419 | 0.452 | 0.453 |
| 1.0            | 03       | 0.667 | 0.686 | 0.688 | 0.605 | 0.627 | 0.628 | 0.528 | 0.552 | 0.548 | 0.482 | 0.502 | 0.492 |
| 1.0            | 04       | 0.686 | 0.701 | 0.702 | 0.627 | 0.647 | 0.647 | 0.566 | 0.584 | 0.577 | 0.531 | 0.546 | 0.531 |
| 1.0            | 05       | 0.700 | 0.714 | 0.716 | 0.649 | 0.665 | 0.665 | 0.592 | 0.609 | 0.605 | 0.562 | 0.576 | 0.569 |
| 1.1            | 06       | 0.715 | 0.726 | 0.729 | 0.669 | 0.681 | 0.682 | 0.618 | 0.619 | 0.630 | 0.591 | 0.600 | 0,601 |
| 1.0            | 07       | 0.728 | 0.738 | 0.739 | 0.684 | 0.695 | 0.695 | 0.638 | 0.646 | 0.647 | 0.613 | 0.619 | 0.620 |
| 1.0            | 08       | 0.740 | 0.748 | 0.749 | 0.700 | 0.708 | 0,708 | 0.657 | 0.662 | 0.663 | 0.634 | 0.638 | 0.639 |
| 1.0            | 09       | 0.751 | 0.758 | 0.759 | 0.713 | 0.720 | 0.721 | 0.674 | 0.679 | 0.680 | 0.653 | 0.656 | 0.658 |
| 1.             | 10       | 0.762 | 0.767 | 0.768 | 0.726 | 0.732 | 0.732 | 0.689 | 0.693 | 0.694 | 0.669 | 0.672 | 0.673 |
| ١.             | 12       | 0.781 | 0.784 | 0.784 | 0.749 | 0.752 | 0.752 | 0.716 | 0.719 | 0.718 | 0.699 | 0.701 | 0.700 |
| 1.             | 14       | 0.798 | 0.799 | 0.799 | 0.769 | 0.771 | 0.770 | 0.740 | 0.741 | 0.739 | 0.725 | 0.725 | 0.724 |
| 1.             | 16       | 0.813 | 0.813 | 0.812 | 0.787 | 0.787 | 0.785 | 0.760 | 0.760 | 0.758 | 0.747 | 0.746 | 0.744 |
| 1.             | 18       | 0.826 | 0.825 | 0.824 | 0.803 | 0.801 | 0.800 | 0.778 | 0.777 | 0.775 | 0.766 | 0.764 | 0.762 |
| 1.             | 20       | 0.839 | 0.836 | 0.835 | 0.817 | 0.814 | 0.812 | 0.795 | 0.792 | 0.790 | 0.784 | 0.781 | 0.778 |
| 1.             | 3        | 0.885 | 0.879 | 0.878 | 0.871 | 0.864 | 0.862 | 0.856 | 0.849 | 0.846 | 0.849 | 0.841 | 0.839 |
| 1.             | 4        | 0.917 | 0.909 | 0.907 | 0.906 | 0.898 | 0.896 | 0.896 | 0.886 | 0.885 | 0.891 | 0.881 | 0.879 |
| 1.             | 5        | 0.937 | 0.931 | 0.929 | 0.930 | 0.923 | 0.920 | 0.923 | 0.914 | 0.912 | 0.920 | 0.910 | 0.908 |
| 1.             | 6        | 0.952 |       | 0.945 | 0.947 |       | 0.939 | 0.942 |       | 0.932 | 0.939 |       | 0.929 |
| 1.             | 7        | 0.961 |       | 0.958 | 0.957 |       | 0.953 | 0.954 |       | 0.948 | 0.952 |       | 0.946 |
| 1.             | 8        | 0.967 |       | 0.967 | 0.964 |       | 0.964 | 0.962 |       | 0.960 | 0.961 |       | 0.958 |
| 1.             | 9        |       |       | 0.975 |       |       | 0.972 |       |       | 0.970 |       |       | 0.969 |

Table 1 (cont.)

| p_r  |                     | 1           | .10 |       |       | 1.15  |       |       | 1.20  |       |       | 1.25  |       |
|------|---------------------|-------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Z.   | T <sub>r</sub> 0.24 | <b>4</b> 0. | 278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.5  | 0.17                | 3           |     |       | 0.180 |       |       | 0.188 |       |       | 0.196 |       |       |
| 0.6  | 0.15                | 3           |     |       | 0.160 |       |       | 0.167 |       |       | 0.174 |       |       |
| 0.7  | 0.14                | 2           |     |       | 0.149 |       |       | 0.155 |       |       | 0.161 |       |       |
| 0.8  | 0.13                | 7 0.        | 171 |       | 0.143 | 0.179 |       | 0.149 | 0.186 |       | 0.155 | 0.194 |       |
| 0.90 | 0.14                | ) 0.        | 173 |       | 0.146 | 0.180 |       | 0.152 | 0.188 |       | 0.158 | 0.195 |       |
| 0.92 | 0.142               | 2 0.        | 175 |       | 0.148 | 0.183 |       | 0.154 | 0.190 |       | 0.160 | 0.197 |       |
| 0.94 | 0.14                | <b>6</b> 0. | 179 |       | 0.152 | 0.186 |       | 0.157 | 0.193 |       | 0.163 | 0.200 |       |
| 0.96 | 0.15                | 1 0.        | 184 |       | 0.157 | 0.191 |       | 0.162 | 0.198 |       | 0.168 | 0.205 |       |
| 0.98 | 0.16                | I 0.        | 194 |       | 0.166 | 0.200 |       | 0.171 | 0.206 |       | 0.176 | 0.213 |       |
| 1.00 | 0.18                | ) 0.        | 215 |       | 0.188 | 0.218 |       | 0.189 | 0.221 |       | 0.191 | 0.226 |       |
| 1.01 | 0.27                | 5 0.        | 294 |       | 0.202 | 0.261 |       | 0.201 | 0.240 |       | 0.200 | 0.240 |       |
| 1.02 | 0.35                | l 0.        | 384 | 0.363 | 0.284 | 0.311 | 0.303 | 0.263 | 0.280 | 0.279 | 0.245 | 0.257 | 0.272 |
| 1.03 | 0.429               | ) ().       | 449 | 0.419 | 0.376 | 0.387 | 0.366 | 0.333 | 0.336 | 0.338 | 0.294 | 0.304 | 0.322 |
| 1.04 | 0.490               | ) ().       | 504 | 0.474 | 0.447 | 0.453 | 0.427 | 0.395 | 0.403 | 0.396 | 0.347 | 0.355 | 0.370 |
| 1.05 | 0.52                | 5 <u>0.</u> | 540 | 0.527 | 0.490 | 0.500 | 0.488 | 0.447 | 0.458 | 0.452 | 0.406 | 0.414 | 0.418 |
| 1.06 | 0.56                | 2 0.        | 569 | 0.569 | 0.532 | 0.536 | 0.535 | 0.499 | 0.501 | 0.499 | 0.465 | 0.463 | 0.460 |
| 1.07 | 0.58                | 7 0.:       | 592 | 0.591 | 0.560 | 0.563 | 0.561 | 0.531 | 0.533 | 0.528 | 0.501 | 0.501 | 0.494 |
| 1.08 | 0.610               | ) ().(      | 613 | 0.613 | 0.586 | 0.587 | 0.586 | 0.560 | 0.561 | 0.557 | 0.534 | 0.533 | 0.527 |
| 1.09 | 0.63                | l 0.        | 634 | 0.635 | 0.609 | 0.610 | 0.611 | 0.586 | 0.587 | 0.586 | 0.563 | 0.562 | 0.559 |
| 1.10 | 0.649               | ) 0.        | 651 | 0.652 | 0.629 | 0.630 | 0.630 | 0.608 | 0.608 | 0.608 | 0.587 | 0.585 | 0.585 |
| 1.12 | 0.682               | 2 0.0       | 683 | 0.681 | 0.664 | 0.664 | 0.663 | 0.646 | 0.645 | 0.643 | 0.628 | 0.626 | 0.624 |
| 1.14 | 0.709               | 0.1         | 709 | 0.708 | 0.694 | 0.693 | 0.691 | 0.678 | 0.676 | 0.674 | 0.662 | 0.660 | 0.658 |
| 1.16 | 0.73.               | 3 0.1       | 732 | 0.729 | 0.719 | 0.717 | 0.714 | 0.706 | 0.703 | 0.699 | 0.692 | 0.688 | 0.685 |
| 1.18 | 0.754               | 4 0.1       | 752 | 0.749 | 0.741 | 0.739 | 0.736 | 0.729 | 0.726 | 0.723 | 0.716 | 0.713 | 0.709 |
| 1.20 | 0.772               | 2 0.        | 769 | 0.766 | 0.761 | 0.758 | 0.754 | 0.750 | 0.746 | 0.743 | 0.738 | 0.734 | 0.731 |
| 1.3  | 0.84                | 0.          | 834 | 0.831 | 0.834 | 0.826 | 0.823 | 0.827 | 0.819 | 0.815 | 0.819 | 0.811 | 0.808 |
| 1.4  | 0.880               | 5 0.5       | 876 | 0.874 | 0.881 | 0.870 | 0.868 | 0.876 | 0.865 | 0.863 | 0.871 | 0.860 | 0.857 |
| 1.5  | 0.910               | 6 0.9       | 906 | 0.904 | 0.913 | 0.902 | 0.900 | 0.909 | 0.898 | 0.896 | 0.906 | 0.895 | 0.892 |
| 1.6  | 0.93                | 7           |     | 0.926 | 0.934 |       | 0.923 | 0.932 |       | 0.920 | 0.930 |       | 0.917 |
| 1.7  | 0.95                |             |     | 0.943 | 0.949 |       | 0.941 | 0.948 |       | 0.939 | 0.946 |       | 0.937 |
| 1.8  | 0.960               | )           |     | 0.957 | 0.959 |       | 0.955 | 0.958 |       | 0.953 | 0.957 |       | 0.952 |
| 1.9  |                     |             |     | 0.967 |       |       | 0.966 |       |       | 0.965 |       |       | 0.964 |

. .

|                               |       |       |          |       |       | TADIC I (C | ome.  |       |       |       |       |       |
|-------------------------------|-------|-------|----------|-------|-------|------------|-------|-------|-------|-------|-------|-------|
| pr                            |       | 1.30  |          |       | 1.35  |            |       | 1.40  |       |       | 1.45  |       |
| Z <sub>e</sub> T <sub>r</sub> | 0.244 | 0.278 | 0.316    | 0.244 | 0.278 | 0.316      | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.5                           | 0.204 |       | tutor    | 0.212 |       |            | 0.219 |       |       | 0.227 |       |       |
| 0.6                           | 0.181 |       |          | 0.188 |       |            | 0.195 |       |       | 0.202 |       |       |
| 0.7                           | 0.168 |       |          | 0.174 |       |            | 0.180 |       |       | 0.187 |       |       |
| 0.8                           | 0.161 | 0.201 |          | 0.167 | 0.209 |            | 0.173 | 0.216 |       | 0.179 | 0.224 |       |
| 0.90                          | 0.164 | 0.202 | <u> </u> | 0.170 | 0.210 |            | 0.175 | 0.217 |       | 0.181 | 0.224 |       |
| 0.92                          | 0.166 | 0.204 |          | 0.172 | 0.212 |            | 0.178 | 0.219 |       | 0.183 | 0.226 |       |
| 0.94                          | 0.169 | 0,208 |          | 0.175 | 0.215 |            | 0.181 | 0.222 |       | 0.186 | 0.229 |       |
| 0.96                          | 0.174 | 0.212 |          | 0.180 | 0.219 |            | 0.185 | 0.226 |       | 0.191 | 0.233 |       |
| 0.98                          | 0.182 | 0.219 |          | 0.187 | 0.226 |            | 0.192 | 0.232 |       | 0.198 | 0.239 |       |
| 1.00                          | 0.195 | 0.231 |          | 0.199 | 0.237 |            | 0.204 | 0.243 |       | 0.208 | 0.249 |       |
| 1.01                          | 0.203 | 0.242 |          | 0.206 | 0.246 |            | 0.210 | 0.251 |       | 0.214 | 0.256 |       |
| 1.02                          | 0.233 | 0.254 | 0.270    | 0.226 | 0.256 | 0.272      | 0.225 | 0.259 | 0.275 | 0.227 | 0.263 | 0.278 |
| 1.03                          | 0.265 | 0.283 | 0.309    | 0.248 | 0.277 | 0.302      | 0.242 | 0.275 | 0.299 | 0.240 | 0.276 | 0.296 |
| 1.04                          | 0.309 | 0.320 | 0.348    | 0.284 | 0.305 | 0.332      | 0.270 | 0.295 | 0.323 | 0.264 | 0.293 | 0.314 |
| 1.05                          | 0.370 | 0.377 | 0.385    | 0.340 | 0.349 | 0.361      | 0.317 | 0.328 | 0.347 | 0.302 | 0.312 | 0.332 |
| 1.06                          | 0.430 | 0.427 | 0.423    | 0.396 | 0.394 | 0.394      | 0.363 | 0.367 | 0.375 | 0.339 | 0.350 | 0.356 |
| 1.07                          | 0.469 | 0.470 | 0.460    | 0.439 | 0.439 | 0.433      | 0.408 | 0.412 | 0.412 | 0.383 | 0.389 | 0.392 |
| 1.08                          | 0.507 | 0.505 | 0.497    | 0.480 | 0.477 | 0.471      | 0.452 | 0.451 | 0.449 | 0.427 | 0.427 | 0.427 |
| 1.09                          | 0.539 | 0.537 | 0.533    | 0.514 | 0.512 | 0.509      | 0.490 | 0.488 | 0.485 | 0.466 | 0.464 | 0.461 |
| 1.10                          | 0.565 | 0.562 | 0.561    | 0.542 | 0.539 | 0.538      | 0.520 | 0.517 | 0.514 | 0.498 | 0.495 | 0.491 |
| 1.12                          | 0.610 | 0.607 | 0.604    | 0.591 | 0.588 | 0.584      | 0.572 | 0.568 | 0.564 | 0.554 | 0.549 | 0.544 |
| 1.14                          | 0.646 | 0.643 | 0.641    | 0.630 | 0.626 | 0.623      | 0.614 | 0.610 | 0.606 | 0.598 | 0.593 | 0.589 |
| 1.16                          | 0.678 | 0.674 | 0.670    | 0.663 | 0.659 | 0.655      | 0.649 | 0.644 | 0.640 | 0.635 | 0.630 | 0.625 |
| 1.18                          | 0.704 | 0.700 | 0.696    | 0.691 | 0.687 | 0.683      | 0.679 | 0.674 | 0.669 | 0.666 | 0.661 | 0.656 |
| 1.20                          | 0.727 | 0.722 | 0.719    | 0.716 | 0.711 | 0.707      | 0.704 | 0.699 | 0.695 | 0.693 | 0.687 | 0.683 |
| 1.3                           | 0.812 | 0.804 | 0.800    | 0.805 | 0.796 | 0.792      | 0.797 | 0.789 | 0.785 | 0.790 | 0.782 | 0.777 |
| 1.4                           | 0.866 | 0.855 | 0.852    | 0.861 | 0.850 | 0.847      | 0.856 | 0.845 | 0.841 | 0.851 | 0.840 | 0.836 |
| 1.5                           | 0.902 | 0.891 | 0.888    | 0.899 | 0.888 | 0.884      | 0.895 | 0.884 | 0.880 | 0.892 | 0.880 | 0.877 |
| 1.6                           | 0.927 |       | 0.914    | 0.925 |       | 0.912      | 0.923 |       | 0.909 | 0.920 |       | 0.906 |
| 1.7                           | 0.945 |       | 0.934    | 0.943 |       | 0.932      | 0.942 |       | 0.930 | 0.940 |       | 0.928 |
| 1.8                           | 0.956 |       | 0.950    | 0.955 |       | 0.949      | 0.954 |       | 0.947 | 0.954 |       | 0.946 |
| 1.9                           |       |       | 0.963    |       |       | 0.962      |       |       | 0.960 |       |       | 0.959 |

Table 1 (cont.)

| p <sub>r</sub>                   |       | 1.50  |       |       | 1.6   |       |       | 1.7   |       |       | 1.8   |       |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Z <sub>e</sub><br>T <sub>r</sub> | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.5                              | 0.235 |       |       | 0.250 |       |       | 0.266 |       |       | 0.281 |       |       |
| 0.6                              | 0.208 |       |       | 0.222 |       |       | 0.236 |       |       | 0.249 |       |       |
| 0.7                              | 0.193 |       |       | 0.205 |       |       | 0.218 |       |       | 0.231 |       |       |
| 0.8                              | 0.185 | 0.231 |       | 0.197 | 0.246 |       | 0.209 | 0.261 |       | 0.221 | 0.276 |       |
| 0.90                             | 0.187 | 0.231 |       | 0.198 | 0.245 |       | 0.210 | 0.260 |       | 0.222 | 0.274 |       |
| 0.92                             | 0.189 | 0.233 |       | 0.201 | 0.247 |       | 0.212 | 0.261 |       | 0.223 | 0.275 |       |
| 0.94                             | 0.192 | 0.236 |       | 0.204 | 0.250 |       | 0.215 | 0.264 |       | 0.226 | 0.278 |       |
| 0.96                             | 0.197 | 0.240 |       | 0.208 | 0.254 |       | 0.219 | 0.267 |       | 0.230 | 0.281 |       |
| 0.98                             | 0.203 | 0.246 |       | 0.214 | 0.259 |       | 0.225 | 0.272 |       | 0.236 | 0.286 |       |
| 1.00                             | 0.213 | 0.255 |       | 0.223 | 0.267 |       | 0.233 | 0.280 |       | 0.243 | 0.292 |       |
| 1.01                             | 0.219 | 0.261 |       | 0.228 | 0.272 |       | 0.238 | 0.284 |       | 0.247 | 0.297 |       |
| 1.02                             | 0.229 | 0.268 | 0.282 | 0.237 | 0.278 | 0.292 | 0.245 | 0.290 | 0.304 | 0.254 | 0.301 | 0.315 |
| 1.03                             | 0.241 | 0.279 | 0.298 | 0.246 | 0.287 | 0.304 | 0.253 | 0.297 | 0.313 | 0.261 | 0.308 | 0.323 |
| 1.04                             | 0.259 | 0.292 | 0.313 | 0.259 | 0.297 | 0.315 | 0.263 | 0.305 | 0.322 | 0.269 | 0.315 | 0.331 |
| 1.05                             | 0.288 | 0.312 | 0.328 | 0.278 | 0.311 | 0.326 | 0.277 | 0.316 | 0.331 | 0.281 | 0.323 | 0.338 |
| 1.06                             | 0.316 | 0.338 | 0.349 | 0.297 | 0.329 | 0.341 | 0.291 | 0.329 | 0.343 | 0.292 | 0.334 | 0.347 |
| 1.07                             | 0.360 | 0.371 | 0.381 | 0.332 | 0.351 | 0.365 | 0.317 | 0.345 | 0.361 | 0.312 | 0.347 | 0.363 |
| 1.08                             | 0.403 | 0.407 | 0.412 | 0.367 | 0.379 | 0.388 | 0.344 | 0.366 | 0.379 | 0.333 | 0.363 | 0.377 |
| 1.09                             | 0.442 | 0.443 | 0.443 | 0.402 | 0.409 | 0.411 | 0.373 | 0.389 | 0.396 | 0.357 | 0.380 | 0.390 |
| 1.10                             | 0.476 | 0.475 | 0,472 | 0.437 | 0.440 | 0.437 | 0.406 | 0.416 | 0.418 | 0.385 | 0.402 | 0.409 |
| 1.12                             | 0.535 | 0.531 | 0.526 | 0.499 | 0.497 | 0.486 | 0.467 | 0.469 | 0.468 | 0.442 | 0.449 | 0.451 |
| 1.14                             | 0.582 | 0.577 | 0.573 | 0.551 | 0.546 | 0.538 | 0.521 | 0.518 | 0.514 | 0.495 | 0.496 | 0.493 |
| 1.16                             | 0.621 | 0.615 | 0.611 | 0.593 | 0.588 | 0.580 | 0.567 | 0.562 | 0.557 | 0.542 | 0.539 | 0.535 |
| 1.18                             | 0.653 | 0.648 | 0.643 | 0.629 | 0.623 | 0.618 | 0.605 | 0.599 | 0.594 | 0.582 | 0.578 | 0.572 |
| 1.20                             | 0.681 | 0.676 | 0.671 | 0.659 | 0.653 | 0.648 | 0.638 | 0.632 | 0.626 | 0.617 | 0.612 | 0.606 |
| 1.3                              | 0.783 | 0.774 | 0.770 | 0.768 | 0.760 | 0.755 | 0.754 | 0.746 | 0.741 | 0.741 | 0.733 | 0.727 |
| 1.4                              | 0.846 | 0.835 | 0.831 | 0.836 | 0.825 | 0.821 | 0.827 | 0.816 | 0.811 | 0.817 | 0.807 | 0.802 |
| 1.5                              | 0.888 | 0.877 | 0.873 | 0.882 | 0.870 | 0.866 | 0.875 | 0.864 | 0.859 | 0.869 | 0.857 | 0.852 |
| 1.6                              | 0.918 |       | 0.903 | 0.914 |       | 0.898 | 0.909 |       | 0.893 | 0.905 |       | 0.888 |
| 1.7                              | 0.939 |       | 0.926 | 0.936 |       | 0.922 | 0.933 |       | 0.919 | 0.930 |       | 0.915 |
| 1.8                              | 0.953 |       | 0.944 | 0.951 |       | 0.941 | 0.950 |       | 0.939 | 0.948 |       | 0.936 |
| 1.9                              |       |       | 0.958 |       |       | 0.956 |       |       | 0.955 |       |       | 0.953 |

|                  |        |       | 1.9   |       |       | 2.0   |       |       | 2.2   |       |       | 2.4   |       |
|------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $\frac{PT}{Z_e}$ | <br>Т, | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.5              |        | 0.297 |       |       | 0.312 |       |       | 0.343 |       |       | 0.374 |       |       |
| 0.6              |        | 0.263 |       |       | 0.277 |       |       | 0.304 |       |       | 0.331 |       |       |
| 0.7              |        | 0.243 |       |       | 0.256 |       |       | 0.280 |       |       | 0.305 |       |       |
| 0.8              |        | 0.233 | 0.291 |       | 0.245 | 0.305 |       | 0.268 | 0.334 |       | 0.291 | 0.363 |       |
| 0.90             | 0      | 0.233 | 0.288 |       | 0.244 | 0.302 |       | 0.267 | 0.329 |       | 0.289 | 0.356 |       |
| 0.92             | 2      | 0.235 | 0.289 |       | 0.246 | 0.303 |       | 0.268 | 0.330 |       | 0.290 | 0.357 |       |
| 0.94             | 4      | 0.237 | 0.291 |       | 0.248 | 0.305 |       | 0.271 | 0.331 |       | 0.292 | 0.358 |       |
| 0.90             | 6      | 0.241 | 0.294 |       | 0.252 | 0.308 |       | 0.274 | 0.334 |       | 0.295 | 0.360 |       |
| 0.98             | 8      | 0.246 | 0.299 |       | 0.257 | 0.312 |       | 0.278 | 0.338 |       | 0.299 | 0.363 |       |
| 1.00             | )      | 0.253 | 0.305 |       | 0.264 | 0.318 |       | 0.284 | 0.343 |       | 0.305 | 0.368 |       |
| 1.0              | 1      | 0.257 | 0.309 |       | 0.267 | 0.321 |       | 0.288 | 0.346 |       | 0.308 | 0.371 |       |
| 1.02             | 2      | 0.263 | 0.313 | 0.328 | 0.273 | 0.325 | 0.340 | 0.292 | 0.350 | 0.365 | 0.312 | 0.374 | 0.390 |
| 1.03             | 3      | 0.269 | 0.319 | 0.334 | 0.278 | 0.330 | 0.346 | 0.297 | 0.354 | 0.370 | 0.316 | 0.378 | 0.394 |
| 1.04             | 4      | 0.277 | 0.325 | 0.341 | 0.285 | 0.336 | 0.351 | 0.302 | 0.359 | 0.374 | 0.321 | 0.382 | 0.398 |
| 1.03             | 5      | 0.287 | 0.333 | 0.347 | 0.293 | 0.343 | 0.357 | 0.309 | 0.365 | 0.379 | 0.326 | 0.387 | 0.402 |
| 1.00             | 6      | 0.296 | 0.341 | 0.356 | 0.302 | 0.351 | 0.364 | 0.316 | 0.372 | 0.384 | 0.332 | 0.393 | 0,406 |
| 1.0′             | 7      | 0.312 | 0.352 | 0.367 | 0.315 | 0.359 | 0.374 | 0.326 | 0.380 | 0.392 | 0.340 | 0.400 | 0.412 |
| 1.08             | 8      | 0.328 | 0.365 | 0.379 | 0.328 | 0.375 | 0.384 | 0.335 | 0.393 | 0.400 | 0.348 | 0.411 | 0.418 |
| 1.09             | 9      | 0.348 | 0.378 | 0.390 | 0.344 | 0.382 | 0.393 | 0.347 | 0.400 | 0.407 | 0.357 | 0.417 | 0.424 |
| 1.10             | 0      | 0.372 | 0.396 | 0.405 | 0.364 | 0.397 | 0.407 | 0.361 | 0.413 | 0.417 | 0.368 | 0.428 | 0.432 |
| 1.12             | 2      | 0.421 | 0.435 | 0.441 | 0.407 | 0.431 | 0.436 | 0.394 | 0.442 | 0.439 | 0.393 | 0.452 | 0.449 |
| 1.14             | 4      | 0.472 | 0.478 | 0.477 | 0.455 | 0.470 | 0.468 | 0.431 | 0.475 | 0.463 | 0.422 | 0.480 | 0.469 |
| 1.10             | 6      | 0.520 | 0.520 | 0.517 | 0.501 | 0.509 | 0.504 | 0.472 | 0.504 | 0.492 | 0.456 | 0.505 | 0.491 |
| 1.18             | 8      | 0.561 | 0.559 | 0.554 | 0.542 | 0.546 | 0.539 | 0.512 | 0.542 | 0.521 | 0.492 | 0.538 | 0.515 |
| 1.20             | 9      | 0.597 | 0.593 | 0.589 | 0.580 | 0.581 | 0.573 | 0.549 | 0.573 | 0.552 | 0.527 | 0.566 | 0.541 |
| 1.3              |        | 0.728 | 0.720 | 0.714 | 0.715 | 0.710 | 0.702 | 0.692 | 0.696 | 0.681 | 0.671 | 0.683 | 0.665 |
| 1.4              |        | 0.808 | 0.798 | 0.793 | 0.799 | 0.790 | 0.784 | 0.782 | 0.779 | 0.769 | 0.767 | 0.768 | 0.756 |
| 1.5              |        | 0.862 | 0.851 | 0.846 | 0.856 | 0.846 | 0.840 | 0.844 | 0.837 | 0.829 | 0.832 | 0.829 | 0.819 |
| 1.6              |        | 0.900 |       | 0.884 | 0.896 |       | 0.879 | 0.888 |       | 0.871 | 0.880 |       | 0.865 |
| 1.7              |        | 0.927 |       | 0.912 | 0.925 |       | 0.909 | 0.919 |       | 0.903 | 0.913 |       | 0.899 |
| 1.8              |        | 0.947 |       | 0.934 | 0.945 |       | 0.932 | 0.942 |       | 0.928 | 0.939 |       | 0.925 |
| 1.9              |        |       |       | 0.951 |       |       | 0.950 |       |       | 0.947 |       |       | 0.945 |

Table 1 (cont.)

| p_r  |                |              | 2.6   |       |       | 2.8   |       |       | 3.0   |       |              | 3.5   |       |
|------|----------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|
| Ze   | T <sub>r</sub> | 0.244        | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0:244        | 0.278 | 0.316 |
| 0.5  |                | 0.405        |       |       | 0.436 |       |       | 0.467 |       |       | 0.544        |       |       |
| 0.6  |                | 0.358        |       |       | 0.385 |       |       | 0.412 |       |       | 0.479        |       |       |
| 0.7  |                | 0.330        |       |       | 0.355 |       |       | 0.379 |       |       | 0.440        |       |       |
| 0.8  |                | 0.316        | 0.392 |       | 0.338 | 0.421 |       | 0.360 | 0.450 |       | 0.417        | 0.520 |       |
| 0.9  | 0              | 0.311        | 0.383 |       | 0.333 | 0.411 |       | 0.355 | 0.438 |       | 0.408        | 0.504 |       |
| 0.9  | 2              | 0.312        | 0.384 |       | 0.334 | 0.411 |       | 0.355 | 0.437 |       | 0.408        | 0.502 |       |
| 0.9  | 4              | 0.314        | 0.385 |       | 0.335 | 0.411 |       | 0.357 | 0.438 |       | 0.409        | 0.502 |       |
| 0.9  | 6              | 0.317        | 0.386 |       | 0.338 | 0.413 |       | 0.359 | 0.439 |       | 0.410        | 0.502 |       |
| 0.9  | 8              | 0.320        | 0.389 |       | 0.341 | 0.415 |       | 0.362 | 0.440 |       | 0.412        | 0.502 |       |
| 1.0  | 0              | 0.325        | 0.393 |       | 0.346 | 0.418 |       | 0.366 | 0.443 |       | 0.416        | 0.504 |       |
| 1.0  | 1              | 0.328        | 0.396 |       | 0.348 | 0.420 |       | 0.368 | 0.445 |       | 0.417        | 0.505 |       |
| 1.0  | 2              | 0.332        | 0.398 | 0.416 | 0.351 | 0.423 | 0.441 | 0.371 | 0.447 | 0.466 | 0.420        | 0.507 | 0.528 |
| 1.0  | 3              | 0.335        | 0.402 | 0.419 | 0.355 | 0.426 | 0.444 | 0.374 | 0.449 | 0.468 | 0.422        | 0.508 | 0.530 |
| 1.0  | 4              | 0.339        | 0.405 | 0.422 | 0.358 | 0.429 | 0.446 | 0.377 | 0.452 | 0.471 | 0.425        | 0.510 | 0.531 |
| 1.0  | 5              | 0.344        | 0.410 | 0.425 | 0.363 | 0.432 | 0.449 | 0.381 | 0.455 | 0.473 | 0.428        | 0.512 | 0.533 |
| 1.0  | 6              | 0.349        | 0.415 | 0.429 | 0.367 | 0.436 | 0.452 | 0.385 | 0.458 | 0.476 | 0.431        | 0.515 | 0.535 |
| 1.0  | 7              | 0.356        | 0.420 | 0.434 | 0.373 | 0.441 | 0.457 | 0.390 | 0.462 | 0.479 | 0.435        | 0.517 | 0.537 |
| 1.0  | 8              | 0.362        | 0.429 | 0.439 | 0.378 | 0.447 | 0.461 | 0.395 | 0.466 | 0.483 | 0.439        | 0.520 | 0.540 |
| 1.0  | 9              | 0.370        | 0.434 | 0.444 | 0.385 | 0.452 | 0.465 | 0.401 | 0.470 | 0.486 | 0.443        | 0.523 | 0.542 |
| 1.1  | 0              | 0.379        | 0.443 | 0.450 | 0.392 | 0.458 | 0.470 | 0.407 | 0.475 | 0.491 | <u>0.448</u> | 0.527 | 0.545 |
| 1.1  | 2              | 0.399        | 0.463 | 0.464 | 0.409 | 0.473 | 0.482 | 0.422 | 0.486 | 0.501 | 0.458        | 0.535 | 0.552 |
| 1.14 | 4              | 0.422        | 0.485 | 0,480 | 0.429 | 0.490 | 0.495 | 0.438 | 0.498 | 0.512 | 0.470        | 0.545 | 0.560 |
| 1.1  | 6              | 0.450        | 0.506 | 0.499 | 0.451 | 0.509 | 0.511 | 0.457 | 0.513 | 0.525 | 0.484        | 0.556 | 0.569 |
| 1.1  | 8              | 0.481        | 0.534 | 0.519 | 0.478 | 0.529 | 0.528 | 0.480 | 0.530 | 0.540 | 0.500        | 0.568 | 0.579 |
| 1.2  | 0              | 0.513        | 0.558 | 0.541 | 0.506 | 0.551 | 0.546 | 0.504 | 0.548 | 0.556 | 0.518        | 0.582 | 0.590 |
| 1.3  |                | 0.654        | 0.670 | 0.654 | 0.641 | 0.657 | 0.648 | 0.631 | 0.648 | 0.646 | 0.620        | 0.661 | 0.658 |
| 1.4  |                | 0.753        | 0.757 | 0.745 | 0.741 | 0.745 | 0.737 | 0.732 | 0.737 | 0.732 | 0.716        | 0.739 | 0.731 |
| 1.5  |                | 0.822        | 0.820 | 0.811 | 0.813 | 0.812 | 0.805 | 0.805 | 0.805 | 0.800 | 0.791        | 0.803 | 0.796 |
| 1.6  |                | 0.872        |       | 0.859 | 0.866 |       | 0.854 | 0.860 |       | 0.851 | 0.848        |       | 0.849 |
| 1.7  |                | 0.909        |       | 0.895 | 0.905 | ····· | 0.891 | 0.901 |       | 0.889 | 0.893        |       | 0.887 |
| 1.8  |                | 0.936        |       | 0.922 | 0.934 |       | 0.920 | 0.931 |       | 0.919 | 0.927        |       | 0.919 |
| 1.9  |                | #4.94.500 Pt |       | 0.944 |       |       | 0.943 |       |       | 0.943 |              |       | 0.945 |

|                |                      |         |       |       |       | a anne 1 (e | om.,  |       |       |       |       |       |
|----------------|----------------------|---------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|
| p <sub>r</sub> |                      | 4.0     |       |       | 4.5   |             |       | 5.0   |       |       | 6     |       |
| Z <sub>c</sub> | T <sub>r</sub> 0.244 | 0.278   | 0.316 | 0.244 | 0.278 | 0.316       | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.5            | 0.620                | )       |       | 0.696 |       |             | 0.773 |       |       | 0.924 |       |       |
| 0.6            | 0.54                 | 5       |       | 0.611 |       |             | 0.677 |       |       | 0.807 |       |       |
| 0.7            | 0.500                | )       |       | 0.560 |       |             | 0.619 |       |       | 0.737 |       |       |
| 0.8            | 0.473                | 0.590   |       | 0.528 | 0.659 |             | 0.583 | 0.728 |       | 0.691 | 0.863 |       |
| 0.90           | 0.46                 | 0.569   |       | 0.513 | 0.633 |             | 0.564 | 0.697 |       | 0.664 | 0.821 |       |
| 0.92           | 0.460                | 0.567   |       | 0.511 | 0.630 |             | 0.562 | 0.693 |       | 0.661 | 0.815 |       |
| 0.94           | 0.460                | 0.565   |       | 0.511 | 0.627 |             | 0.560 | 0.689 |       | 0.658 | 0.810 |       |
| 0.96           | 0.46                 | 0.564   |       | 0.511 | 0.626 |             | 0.560 | 0.686 |       | 0.656 | 0.805 |       |
| 0.98           | 0.462                | 2 0.564 |       | 0.511 | 0.624 |             | 0.560 | 0.684 |       | 0.654 | 0.801 |       |
| 1.00           | 0.464                | 0.565   |       | 0.513 | 0.624 |             | 0.560 | 0.683 |       | 0.653 | 0.798 |       |
| 1.01           | 0,460                | 0.565   |       | 0.514 | 0.624 |             | 0.561 | 0.682 |       | 0.653 | 0.797 |       |
| 1.02           | 0.468                | 0.566   | 0.590 | 0.515 | 0.624 | 0.650       | 0.561 | 0.682 |       | 0.653 | 0.795 |       |
| 1.03           | 0.469                | 0.567   | 0.591 | 0.516 | 0.625 | 0.651       | 0.562 | 0.682 |       | 0.653 | 0.794 |       |
| 1.04           | 0.47                 | 0.568   | 0.591 | 0.518 | 0.625 | 0.651       | 0.564 | 0.682 |       | 0.653 | 0.793 |       |
| 1.05           | 0.474                | 0.570   | 0.592 | 0.520 | 0.626 | 0.651       | 0.565 | 0.682 |       | 0.654 | 0.793 |       |
| 1.06           | 0.470                | 0.571   | 0.593 | 0.522 | 0.627 | 0.652       | 0.566 | 0.683 | 0.709 | 0.654 | 0.792 |       |
| 1.07           | 0.479                | 0.573   | 0.595 | 0.524 | 0.628 | 0.652       | 0.568 | 0.683 | 0.709 | 0.655 | 0.791 |       |
| 1.08           | 0.482                | 0.575   | 0.597 | 0.526 | 0.630 | 0.653       | 0.570 | 0.684 | 0.710 | 0.656 | 0.791 |       |
| 1.09           | 0.480                | 0.577   | 0.598 | 0.529 | 0.631 | 0.654       | 0.572 | 0.685 | 0.710 | 0.657 | 0.791 |       |
| 1.10           | 0.490                | 0.580   | 0.600 | 0.532 | 0.633 | 0.656       | 0.575 | 0.686 | 0.711 | 0.659 | 0.791 | 0.819 |
| 1.12           | 0.498                | 0.585   | 0.605 | 0.539 | 0.637 | 0.659       | 0.579 | 0.689 | 0.712 | 0.662 | 0.791 | 0.819 |
| 1.14           | 0.501                | 0.592   | 0.610 | 0.546 | 0.642 | 0.662       | 0.586 | 0.692 | 0.715 | 0.666 | 0.792 | 0.819 |
| 1.16           | 0.518                | 0.599   | 0.617 | 0.555 | 0.648 | 0.667       | 0.593 | 0.696 | 0.718 | 0.670 | 0.794 | 0.819 |
| 1.18           | 0.530                | 0.608   | 0.624 | 0.564 | 0.654 | 0.672       | 0.601 | 0.701 | 0.721 | 0.675 | 0.796 | 0.820 |
| 1.20           | 0.544                | 0.618   | 0.632 | 0.575 | 0.662 | 0.678       | 0.609 | 0.706 | 0.725 | 0.681 | 0,799 | 0.822 |
| 1.3            | 0.62                 | 0.676   | 0.684 | 0.641 | 0.709 | 0.717       | 0.663 | 0.742 | 0.755 | 0.718 | 0.819 | 0.837 |
| 1.4            | 0.712                | 2 0.743 | 0.744 | 0.717 | 0.764 | 0,766       | 0.728 | 0.787 | 0.794 | 0.766 | 0.849 | 0.861 |
| 1.5            | 0.78                 | 5 0.804 | 0.800 | 0.786 | 0.818 | 0.816       | 0.792 | 0.834 | 0.836 | 0.818 | 0.882 | 0.890 |
| 1.6            | 0.843                | 3       | 0.851 | 0.842 |       | 0.861       | 0.847 |       | 0.876 | 0.866 |       | 0.919 |
| 1.7            | 0.888                | }       | 0.891 | 0.888 |       | 0.899       | 0.892 |       | 0.912 | 0.908 |       | 0.948 |
| 1.8            | 0.924                |         | 0.923 | 0.925 |       | 0.930       | 0.928 |       | 0.942 | 0.943 |       | 0.973 |
| 1.9            |                      |         | 0.948 |       |       | 0.956       |       |       | 0.967 |       |       | 0.995 |

Table 1 (cont.)

| p <sub>r</sub>   |                      | 7     |       |       | 8     |       |       | 9     |       |       | 10    |       |
|------------------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Z <sub>e</sub> T | Γ <sub>r</sub> 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316 |
| 0.5              | 1.076                |       |       | 1.226 |       |       | 1.382 |       |       | 1.534 |       |       |
| 0.6              | 0.936                |       |       | 1.064 |       |       | 1,191 |       |       | 1.317 |       |       |
| 0.7              | 0.852                |       |       | 0.967 |       |       | 1.079 |       |       | 1.191 |       |       |
| 0.8              | 0.797                | 0.995 |       | 0.902 | 1.126 |       | 1.004 | 1.255 |       | 1.105 |       |       |
| 0.90             | 0.762                | 0.943 |       | 0.859 | 1.063 |       | 0.953 | 1.181 |       | 1.046 |       |       |
| 0.92             | 0.757                | 0.935 |       | 0.852 | 1.053 |       | 0.945 | 1.169 |       | 1.036 |       |       |
| 0.94             | 0.753                | 0.928 |       | 0.846 | 1.044 |       | 0.938 | 1.158 |       | 1.028 |       |       |
| 0.96             | 0.749                | 0.922 |       | 0.841 | 1.036 |       | 0.931 | 1.148 |       | 1.020 |       |       |
| 0.98             | 0.747                | 0.916 |       | 0.837 | 1.023 |       | 0.926 | 1.138 |       | 1.012 | 1.247 |       |
| 1.00             | 0.744                | 0.911 |       | 0.833 | 1.022 |       | 0.920 | 1.130 |       | 1.006 | 1.237 |       |
| 1.01             | 0.743                | 0.908 |       | 0.831 | 1.018 |       | 0.918 | 1.126 |       | 1.003 | 1.232 |       |
| 1.02             | 0.742                | 0.906 |       | 0.830 | 1.015 |       | 0.916 | 1.122 |       | 1.000 | 1.227 |       |
| 1.03             | 0.742                | 0.904 |       | 0.829 | 1.012 |       | 0.914 | 1.118 |       | 0.997 | 1.222 |       |
| 1.04             | 0.741                | 0.902 |       | 0.827 | 1,009 |       | 0.912 | 1,114 |       | 0.994 | 1,218 |       |
| 1.05             | 0.741                | 0.901 |       | 0.826 | 1.007 |       | 0.910 | 1.111 |       | 0.992 | 1.214 |       |
| 1.06             | 0.741                | 0.899 |       | 0.825 | 1.004 |       | 0.908 | 1.108 |       | 0.990 | 1.209 |       |
| 1.07             | 0.741                | 0.898 |       | 0.825 | 1.002 |       | 0.907 | 1.104 |       | 0.987 | 1.205 |       |
| 1.08             | 0.741                | 0.896 |       | 0.824 | 1.000 |       | 0.905 | 1.102 |       | 0.985 | 1.202 |       |
| 1.09             | 0.741                | 0.895 |       | 0.823 | 0.998 |       | 0.904 | 1.099 |       | 0.983 | 1.198 |       |
| 1.10             | 0.742                | 0.894 |       | 0.823 | 0.996 |       | 0.903 | 1.096 |       | 0.982 | 1.195 |       |
| 1.12             | 0.743                | 0.893 |       | 0.823 | 0.993 |       | 0.901 | 1.091 |       | 0.979 | 1.188 |       |
| 1.14             | 0.745                | 0.892 | 0.922 | 0.823 | 0.990 |       | 0.900 | 1.086 |       | 0.976 | 1.182 |       |
| 1.16             | 0.748                | 0.891 | 0.920 | 0.824 | 0.987 |       | 0.900 | 1.082 |       | 0.974 | 1.176 |       |
| 1.18             | 0.751                | 0.891 | 0.919 | 0.826 | 0.986 | 1.017 | 0.900 | 1.079 |       | 0.973 | 1.171 |       |
| 1.20             | 0.754                | 0.892 | 0.919 | 0.827 | 0.984 | 1.015 | 0.900 | 1.076 |       | 0.972 | 1.167 |       |
| 1.3              | 0.780                | 0.901 | 0.922 | 0.843 | 0.984 | 1.009 | 0.908 | 1.067 | 1.095 | 0.973 | 1.150 | 1.181 |
| 1.4              | 0.814                | 0.919 | 0.934 | 0.868 | 0.992 | 1.011 | 0.924 | 1.067 | 1.089 | 0.982 | 1.142 | 1.168 |
| 1.5              | 0.854                | 0.941 | 0.952 | 0.898 | 1.005 | 1.020 | 0.946 | 1.072 | 1.089 | 0.997 | 1.141 | 1.161 |
| 1.6              | 0.894                |       | 0.973 | 0.930 |       | 1.032 | 0.972 |       | 1.095 | 1.016 |       | 1.159 |
| 1.7              | 0.932                |       | 0.994 | 0.963 |       | 1.046 | 0.998 |       | 1.102 | 1.038 |       | 1.161 |
| 1.8              | 0.965                |       | 1.013 | 0.993 |       | 1.060 | 1.025 |       | 1.110 | 1.060 |       | 1.164 |
| 1.9              |                      |       | 1.031 |       |       | 1.073 |       |       | 1.119 |       |       | 1.168 |

|                  |       |       |       |       |       | ranie r (c | 0m.)  |       |                                                                                                                 |      |                 |
|------------------|-------|-------|-------|-------|-------|------------|-------|-------|-----------------------------------------------------------------------------------------------------------------|------|-----------------|
| p <sub>r</sub>   |       | 15    |       |       | 20    |            |       | 25    |                                                                                                                 |      | Distance in the |
| Z <sub>e</sub> T | 0.244 | 0.278 | 0.316 | 0.244 | 0.278 | 0.316      | 0.244 | 0.278 | 0.316                                                                                                           |      |                 |
| 0.6              | 1.935 |       |       |       |       |            |       |       | All and the second s |      |                 |
| 0.7              | 1.732 |       |       |       |       |            |       |       |                                                                                                                 |      |                 |
| 0.8              | 1.595 |       |       | 2.060 |       |            |       |       |                                                                                                                 |      |                 |
| 0.90             | 1.493 |       |       | 1.916 |       |            |       |       |                                                                                                                 |      |                 |
| 0.92             | 1.476 |       |       | 1.892 |       |            |       |       |                                                                                                                 |      |                 |
| 0.94             | 1.460 |       |       | 1.868 |       |            |       |       |                                                                                                                 |      |                 |
| 0.96             | 1.445 |       |       | 1.846 |       |            |       |       |                                                                                                                 |      |                 |
| 0.98             | 1.431 | 1.771 |       | 1.825 |       |            |       |       |                                                                                                                 |      |                 |
| 1.00             | 1.417 | 1.752 |       | 1.805 |       |            |       |       |                                                                                                                 |      |                 |
| 1.01             | 1.411 | 1.742 |       | 1.795 |       |            |       |       |                                                                                                                 |      |                 |
| 1.02             | 1.404 | 1.733 |       | 1.785 |       |            |       |       |                                                                                                                 |      |                 |
| 1.03             | 1.398 | 1.725 |       | 1.776 |       |            |       |       |                                                                                                                 |      |                 |
| 1.04             | 1.392 | 1.716 |       | 1.767 |       |            |       |       |                                                                                                                 |      |                 |
| 1.05             | 1.386 | 1.708 |       | 1.758 |       |            |       |       |                                                                                                                 | <br> |                 |
| 1.06             | 1.381 | 1.700 |       | 1.749 |       |            |       |       |                                                                                                                 |      |                 |
| 1.07             | 1.375 | 1.692 |       | 1.741 |       |            |       |       |                                                                                                                 |      |                 |
| 1.08             | 1.370 | 1.684 |       | 1.733 |       |            | 2.082 |       |                                                                                                                 |      |                 |
| 1.09             | 1.365 | 1.676 |       | 1.724 |       |            | 2.071 |       |                                                                                                                 |      |                 |
| 1.10             | 1.360 | 1.669 |       | 1.717 |       |            | 2.060 |       |                                                                                                                 | <br> |                 |
| 1.12             | 1.350 | 1.655 |       | 1.701 | 2.098 |            | 2.039 |       |                                                                                                                 |      |                 |
| 1.14             | 1.342 | 1.641 |       | 1.687 | 2.078 |            | 2.019 |       |                                                                                                                 |      |                 |
| 1.16             | 1.333 | 1.629 |       | 1.673 | 2.058 |            | 2.000 |       |                                                                                                                 |      |                 |
| 1.18             | 1.325 | 1.617 |       | 1.660 | 2.040 |            | 1.982 |       |                                                                                                                 |      |                 |
| 1.20             | 1.318 | 1.605 |       | 1.647 | 2.022 |            | 1.964 |       |                                                                                                                 | <br> |                 |
| 1.3              | 1.290 | 1.555 |       | 1.593 | 1.942 |            | 1.886 |       |                                                                                                                 |      |                 |
| 1.4              | 1.271 | 1.516 |       | 1.551 | 1.876 |            | 1.823 |       |                                                                                                                 |      |                 |
| 1.5              | 1.261 | 1.485 | 1.518 | 1.520 | 1.821 |            | 1.772 |       |                                                                                                                 |      |                 |
| 1.6              | 1.256 |       | 1.489 | 1.497 |       |            | 1.732 |       |                                                                                                                 |      |                 |
| 1.7              | 1.255 |       | 1.466 | 1.480 |       | 1.771      | 1.700 |       | 2.067                                                                                                           | <br> |                 |
| 1.8              | 1.257 |       | 1.446 | 1.467 |       | 1.732      | 1.675 |       | 2.012                                                                                                           |      |                 |
| 1.9              |       |       | 1.430 |       |       | 1.699      |       |       | 1.964                                                                                                           |      |                 |

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                        |                                                        |                                                        |                                                        | ()                                                     |                                                        |                                                        |                                                        |                                                        |                                                         |                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|
| p,             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                    | 0.2                                                    | 0.3                                                    | 0.4                                                    | 0.5                                                    | 0.6                                                    | 0.7                                                    | 0.8                                                    | 0.9                                                    | 1.0                                                    | 1.05                                                    | 1.10                                                   |
| T,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 0.316                                                  |                                                        |                                                        |                                                        |                                                         |                                                        |
| 2.0            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.997                                                  | 0.994                                                  | 0.992                                                  | 0.990                                                  | 0.988                                                  | 0.986                                                  | 0.983                                                  | 0.981                                                  | 0.979                                                  | 0.978                                                  | 0.977                                                   | 0.976                                                  |
| 2.5            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                  | 0.999                                                  | 0.999                                                  | 0.999                                                  | 0.999                                                  | 0.999                                                  | 0.999                                                  | 0.999                                                  | 0.999                                                  | 1.000                                                  | 1.000                                                   | 1.000                                                  |
| 3.0            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.001                                                  | 1.001                                                  | 1.002                                                  | 1.003                                                  | 1.004                                                  | 1.005                                                  | 1.006                                                  | 1.006                                                  | 1.007                                                  | 1.008                                                  | 1.009                                                   | 1.009                                                  |
| 4              | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.001                                                  | 1.003                                                  | 1.004                                                  | 1.005                                                  | 1.007                                                  | 1.008                                                  | 1.009                                                  | 1.011                                                  | 1.012                                                  | 1.013                                                  | 1.014                                                   | 1.015                                                  |
| 5              | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.001                                                  | 1.003                                                  | 1.004                                                  | 1.006                                                  | 1.007                                                  | 1.009                                                  | 1.010                                                  | 1.012                                                  | 1.013                                                  | 1.014                                                  | 1.015                                                   | 1.016                                                  |
| 6              | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.001                                                  | 1.003                                                  | 1.004                                                  | 1.005                                                  | 1.007                                                  | 1.008                                                  | 1.010                                                  | 1.011                                                  | 1.013                                                  | 1.014                                                  | 1.014                                                   | 1.015                                                  |
| 8              | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.001                                                  | 1.002                                                  | 1.004                                                  | 1.005                                                  | 1.006                                                  | 1.007                                                  | 1.008                                                  | 1.010                                                  | 1.011                                                  | 1.012                                                  | 1.013                                                   | 1.013                                                  |
| 10             | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.001                                                  | 1.002                                                  | 1.003                                                  | 1.004                                                  | 1.005                                                  | 1.006                                                  | 1.007                                                  | 1.008                                                  | 1.010                                                  | 1.011                                                  | 1.011                                                   | 1.011                                                  |
| p <sub>r</sub> | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.20                                                   | 1.25                                                   | 1.30                                                   | 1.35                                                   | 1.40                                                   | 1.45                                                   | 1.50                                                   | 1.6                                                    | .1.7                                                   | 1.8                                                    | 1.9                                                     | 2.0                                                    |
| T,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                        | 0.316                                                  |                                                        |                                                        |                                                        |                                                         |                                                        |
| 2.0            | 0.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.974                                                  | 0.973                                                  | 0.972                                                  | 0.972                                                  | 0.971                                                  | 0.970                                                  | 0.970                                                  | 0.968                                                  | 0.967                                                  | 0.966                                                  | 0.965                                                   | 0.964                                                  |
| 2.5            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                  | 1.000                                                  | 1.001                                                  | 1.001                                                  | 1.001                                                  | 1.001                                                  | 1.001                                                  | 1.002                                                  | 1.003                                                  | 1.003                                                  | 1.004                                                   | 1.005                                                  |
| 3.0            | 1.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.010                                                  | 1.011                                                  | 1.012                                                  | 1.012                                                  | 1.013                                                  | 1.013                                                  | 1.014                                                  | 1.015                                                  | 1.017                                                  | 1.018                                                  | 1.019                                                   | 1.020                                                  |
| 4              | 1.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.017                                                  | 1.017                                                  | 1.018                                                  | 1.019                                                  | 1.020                                                  | 1.021                                                  | 1.021                                                  | 1.023                                                  | 1.024                                                  | 1.026                                                  | 1.028                                                   | 1.029                                                  |
| 5              | 1.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.018                                                  | 1.018                                                  | 1.019                                                  | 1.020                                                  | 1.021                                                  | 1.021                                                  | 1.022                                                  | 1.024                                                  | 1.025                                                  | 1.027                                                  | 1.028                                                   | 1.030                                                  |
| 6              | 1.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.017                                                  | 1.018                                                  | 1.018                                                  | 1.019                                                  | 1.020                                                  | 1.020                                                  | 1.021                                                  | 1.023                                                  | 1.024                                                  | 1.026                                                  | 1.027                                                   | 1.029                                                  |
| 8              | 1.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.015                                                  | 1.015                                                  | 1.016                                                  | 1.017                                                  | 1.017                                                  | 1.018                                                  | 1.018                                                  | 1.020                                                  | 1.021                                                  | 1.022                                                  | 1.024                                                   | 1.025                                                  |
| 10             | 1.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.013                                                  | 1.013                                                  | 1.014                                                  | 1.014                                                  | 1.015                                                  | 1.015                                                  | 1.016                                                  | 1.017                                                  | 1.018                                                  | 1.019                                                  | 1.020                                                   | 1.022                                                  |
|                | Pr<br>Tr<br>2.0<br>2.5<br>3.0<br>4<br>5<br>6<br>8<br>10<br>Pr<br>Tr<br>2.0<br>2.5<br>3.0<br>4<br>5<br>6<br>8<br>10<br>2.5<br>3.0<br>4<br>5<br>6<br>8<br>10<br>2.5<br>5<br>6<br>8<br>10<br>2.5<br>5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>6<br>8<br>10<br>2.5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Table 1 (cont.)

| p <sub>r</sub>   | 2.2   | 2.4   | 2.6   | 2.8   | 3.0   | 3.5   | 4.0   | 4.5   | 5.0   | 6     | 7     | 8     | 9     |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Z <sub>e</sub> T |       |       |       |       |       |       |       | 0.316 |       |       |       |       |       |
| 2.0              | 0.963 | 0.962 | 0.961 | 0.961 | 0.961 | 0.964 | 0.969 | 0.976 | 0.987 | 1.013 | 1.047 | 1.085 | 1.127 |
| 2.5              | 1.006 | 1.008 | 1.010 | 1.012 | 1.014 | 1.021 | 1.028 | 1.037 | 1.047 | 1.068 | 1.096 | 1.125 | 1.156 |
| 3.0              | 1.023 | 1.026 | 1.029 | 1.032 | 1.035 | 1.043 | 1.051 | 1.061 | 1.071 | 1.092 | 1.115 | 1.140 | 1.166 |
| 4                | 1.032 | 1.036 | 1.039 | 1.043 | 1.046 | 1.055 | 1.063 | 1.072 | 1.082 | 1.100 | 1.122 | 1.141 | 1.161 |
| 5                | 1.033 | 1.036 | 1.040 | 1.043 | 1.046 | 1.054 | 1.063 | 1.071 | 1.079 | 1.096 | 1.113 | 1.131 | 1.148 |
| 6                | 1.032 | 1.035 | 1.038 | 1.041 | 1.044 | 1.051 | 1.059 | 1.067 | 1.074 | 1.089 | 1.105 | 1.120 | 1.135 |
| 8                | 1.027 | 1.030 | 1.033 | 1.035 | 1.038 | 1.044 | 1.051 | 1.057 | 1.063 | 1.076 | 1.089 | 1.102 | 1.114 |
| 10               | 1.024 | 1.026 | 1.028 | 1.030 | 1.033 | 1.038 | 1.044 | 1.049 | 1.055 | 1.066 | 1.077 | 1.087 | 1.098 |

| Table 1 (cont.) |                |       |       |       |       |  |  |  |
|-----------------|----------------|-------|-------|-------|-------|--|--|--|
|                 | p <sub>r</sub> | 10    | 15    | 20    | 25    |  |  |  |
| Ze              | T <sub>r</sub> | 0.316 |       |       |       |  |  |  |
|                 | 2.0            | 1.172 | 1.417 | 1.671 | 1.922 |  |  |  |
|                 | 2.5            | 1.189 | 1.371 | 1.567 | 1.764 |  |  |  |
|                 | 3.0            | 1.193 | 1.342 | 1.501 | 1.662 |  |  |  |
|                 | 4              | 1.182 | 1.296 | 1.416 | 1.537 |  |  |  |
|                 | 5              | 1.166 | 1.259 | 1.357 | 1.456 |  |  |  |
|                 | 6              | 1.151 | 1.230 | 1.313 | 1.397 |  |  |  |
|                 | 8              | 1.127 | 1.189 | 1.251 | 1.315 |  |  |  |
|                 | 10             | 1.109 | 1.160 | 1.212 | 1.263 |  |  |  |
|                 |                |       |       |       |       |  |  |  |



Fig. 8



separate Figure (Fig. 9). Fugacity coefficients have been calculated from the following formula:

$$\ln \varphi = Z_{0.01} - 1 + \int_{0.01}^{p_{\rm r}} (Z - 1) d\ln p_{\rm r}$$
(5)

where  $Z_{0.01}$  stands for the compressibility factor at  $p_r = 0.01$ .

It is true that nowadays equations of states are rather used employing computers but a quick orientation and calculations not requiring very accurate result can take advantage of the tables and charts enclosed in the present paper.

### Acknowledgements

I have to express my thanks to Professor H. V. Kehiaian who has facilitated to get acquaintance with the most recent opinions, literature and data. I thank the collaboration of A. Rée for the elaboration of drawing programs and for their adaptation to computer.

### Literature

- 1. COPE J. Q.-LEWIS W. K.-WEBER H. C.: Ind. Eng. Chem. 23, 887 (1931)
- 2. BROWN G. G.-SOUDERS M.-SMITH R. L.: ibid 24, 513 (1932)
- 3. WATSON K. M.-SMITH R. L.: National Petroleum News 28, July 1 (1936)
- 4. GAMSON B. W. WATSON K. M.: ibid 36, Sept. 6 (1944)
- 5. WATSON K. M.: Ind. Eng. Chem. 35, 4, 398 (1943)
- 6. LYDERSEN A. L.-GREENKORN R. A.-HOUGEN O. A.: Thermodynamic Properties of Pure Fluids, Madison, Wisconsin, 1955.
- 7. DEITERS U. K .: Private communication
- 8. ANGUS S.: Guide for the Preparation of Thermodynamic Tables and Correlations of the Fluid State. CODATA Bulletin 51, (1983)
- 9. BAEHR H. D.-SCHWIER K .: Die Thermodynamischen Eigenschaften der Luft, Springer, 1961.
- ANGUS S.-ARMSTRONG B.-DE REUCK K. M. et al.: International Thermodynamic Tables of the Fluid State-Ethylene, 1972 Pergamon Oxford, 1974.
- 11. HAAR L.-GALLAGHER J. S.: Thermodynamic Properties of Ammonia. J. Phys. Chem. Ref. Data 7, 635 (1978)
- 12. BEATTIE J. A.-BRIDGEMAN O. C.: Proc. Am. Acad. Arts. Sci. 63, 229 (1928)
- 13. HOUGEN O. A.-WATSON K. M.-RAGATZ R. A.: Chemical Process Principles Charts N. Y. 1960.

Prof. Dr. György Varsányi