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Abstract 

A new theory called "Thermokinetics" is explained which completes former classical 
theories, as "Thermostatics" and "Non-equilibrium Thermodynamics". Thermokinetics is based 
upon the concept of mutual "inward" process rates. Canonical forms of rate equations are 
formulated and a Symmetry Principle ofInward Rate Equations is presented. The canonical rate 
equations make possible a reformulation of the linear phenomenological transport equations, 
and new interpretations for the Onsager-relations and the transport coefficients. A modified and 
completed "three-pole" scheme of the fundamental properties and relations is drawn. 

Introduction 

The two main theories of macroscopic systems, thermostatics and (non­
equilibrium) theTIJlodynamics provide an exact and complete treatment of the 
great majority of systems and processes. Nevertheless, there are some 
phenomena which could not be interpreted properly with the concepts of the 
two theories mentioned. 

Such phenomena are first the dynamic properties of equilibria: the extent 
of "reversibility", the intensity of compensated mutual exchange processes. 

Second, the construction of a general macroscopic kinetic theory was 
difficult due to the lack of a universal, "canonical" formulation of rate 
equations. 

Third, thermodynamics can treat only near-equilibrium situations 
properly. The way of the extension to far from equilibrium systems induces 
serious complications. 

Most of these problems can be circumvented by founding a theory on the 
concept of the mutual "inward" process rates which enables a third additional 
theory, "thermokinetics", to be constructed. 

Thermokinetics, thermostatics and thermodynamics together form a 
complete and symmetrical theory of macroscopic systems and processes and 
provide new tools for solving problems so far too complicated and difficult, for 
example in far from equilibrium and non-linear systems. 
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In this paper the theory is applied to elementary "one step" processes 
(discontinuous systems), while the extension to diffusion-type ("multi-step") 
processes and chemical reactions will be discussed in other papers. 

Inward fluxes 

Thermokinetics is based upon the existence of mutual "inward" rates of 
fluxes or processes, respectively. 

As is known, all thermodynamic systems are composed of a great number 
of similar microscopic elementary systems, e.g. molecules. Similarly, all 
thermodynamic processes are the resultants of elementary events on the 
microscopic-molecular level. For example, at a liquid surface a molecular 
process can result in a molecule leaving the liquid phase. The sum of all these 
processes results in an evaporation mass flux U'). Such fluxes will be called 
"inward fluxes". On the same surface, the inverse molecular processes can 
proceed simultaneously with the reverse result: molecules enter the fluid from 
the vapour phase. The macroscopic sum of these inverse mass transport 
processes results in a condensation flux U"). Another example is: decomposition 
of an electrode process into an anodic and a cathodic inward exchange current. 

The role of inward fluxes is also conceivable for heat transfer: an energy 
change takes place on the molecular level via interactions between molecules of 
the two phases at the interface. Some of these interactions result in energy gain 
for phase (Sy'), other interactions for the other phase (Sy"). The macroscopic 
sum of the energy transfer 

Sy'~Sy" 

is an inward energy flux J~ and the sum of the inverse processes 

Sy' +-Sy" 

is the inverse inward energy flux J;: . 
These mutual inward fluxes exist also in equilibrium. In such a case, 

however, these processes do not contribute to the entropy production and are 
not to be estimated by observing the changes in some properties of the systems. 
They are measured indirectly in many cases (similarly to the indirect evaluation 
of mass transport in general). Such methods are e.g. isotopic indication or, in 
electrode kinetics, analysing the current-voltage characteristics. Statistical 
calculations often refer to these inward process rates. (The word "inward" was 
taken from a work of this area [lJ). 
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Equilibrium systems. A three-pole structure 

Classical thermostatics deals with two fundamental groups of state 
parameters. These are the extensities (EJ and the appropriate "potentials" (F;). 
When dealing with "local" systems, the role of the extensities is taken over by 
the appropriate "densities" or concentrations (Ci): 

1. (Ei) Ci = lm - . 
v--o V 

(1) 

The potentials are defined as 

(OS) (ocs) Fi= OEi = oCi . (2) 

where 5 is the entropy and Cs the entropy-density. In order to complete the 
characterisation of equilibrated (two-phase) macro-systems, we introduce the 
inward flux densities U;) as a third fundamental group. 

In this paper we treat "one-step" processes only. (Applications: transfer 
from one phase to another, free flow of molecules in a Knudsen-gas, chemical 
transformations). 

These three sets of quantities are of equal importance: 

tc i<---'> F i<---'> j i· t 

Three kinds of constitutive relationships exist between them (Fig. 1). 
a) The Fi<---'>C i relationships are the fundamental constitutive equations of 

thermostatics. Some of them are: 

f.1; = f.1; + R In Ck (ideal system) 

p 
- =Rc 
T 

(ideal gas) 

Thermostatlcs Thermokinetics 
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(-t) 
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Fig. 1. Three-pole structure of equilibrium properties 
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b)Theji~ci rate equations are familiar in many processes. e.g. amass flow 
against a fluid surface from an (ideal gas) vapour phase can be written as 

'11' 1 
) =) cond = "2 u . c mole/m2s, (3) 

where u means the average velocity component perpendicular to the surface. 
(u is proportional to the square root of the temperature). 

Using this interpretation, the inverse rates of the same process (here, the 
rate of evaporation) have dissimilar forms, e.g . 

. ,. K' 'T'TJ' (LJH yap) ) =Jevap= . 1 'exp - ~ . (4) 

where an unlike temperature-dependence is remarkable. 
In most cases, rate equations of this kind are not consistent in the sense 

that the set of independent variables is a mixed one: some of them are densities 
while others are potentials (e.g. temperature). Most chemical rate equations 
show such a mixed representation. 

c) The ji~Fi "canonical" equations may be called the "constitutive 
relations of thermokinetics". These show some important general features and 
are capable of making connections with Onsager's non-equilibrium thermody­
namics. In mass trasfer processes, a typical form of the canonical rate equations 
IS 

j=/' exp (:T). (5) 

and /, in general, varies with the temperature as follows: 

/=K' rexp ( - :T). (6) 

Some of the parameters in (5) and (6) depend on the properties of the bulk, others 
(e.g. the activation energy, E) measure the per me abilities of the boundary. 

The constitutive equations (similarly to the thermostatical state 
equations) are in general non-linear. As it will be shown later, the set of 
canonical inward rate equations involve all the information about the 
transport process rates in linear and non linear situations. 

Equilibrium criteria. Principle of detailed balance 

Contrary to non-equilibrium thermodynamics, thermokinetics deals also 
with equilibria. Inward fluxes not vanishing in equilibrium provide it with a 
dynamic character ("dynamic equilibrium"). The intensities of the inward rates 
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measure the "intensity" or "reversibility" of the equilibrium. (An electrode­
electrolyte equilibrium is called more or less "reversible" with higher or smaller 
exchange currents.) 

Equilibrium is specified in various ways: 
a) Thermostatics: some fundamental thermodynamic quantities corre­

sponding to the existing constraints have extreme values. In a closed system, 
entropy should have a maximum value. [2, 3} 

S=maxirnum (7) 

b) Equilibria can also be characterized by the concepts of non­
equilibrium thermodynamics. According to this theory, in equilibria all 
thermodynamic forces (XJ vanish [4, 5J 

Xi=F;'-F;=O (i=1,2, .. . ,n). (8) 

c) In thermokinetics equilibria are characterized by the law of "Detailed 
Balance" (DB): in equilibria the inverse inward fluxes are equalized in all 
details: 

(i = 1,2, ... , n). (9) 

(Inward fluxes are considered positive in the direction "out"). 
In equilibria, a, b, and c are satisfied simultaneously. Comparing band c, 

interesting conclusions can be drawn as to the inward rate equations. [6, 7J 

Symmetry of the inferse inward rate equations 

As we have seen, in equilibria both the potentials and the partial rates 
show transitivity. 

F;=Fi' ( =Fi) 

( =ji) (DB). 

Let us now change any of the potentials Fk by L1Fk equally in both 
equilibrium systems so that a new equilibrium characterized by new potentials 

is established. 
As a consequence of the law of DB it must be valid for the new fluxes that 

ji + L1ji = K + L1j;' 

Supposing that both L1Fk and L1ji are small: 

(10) 
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or, by omitting the distinction between j; and j;' , F~ and F~ 

L1ji= Z; (:iJL1Fk • (11) 

As the values of F~ s may be selected arbitrarily, and (8) and (9) must be 
valid simultaneously for all equilibria, the flux rate equations must have the 

Sy' Sy" 

F' = F" 

j'J-~ 
-L--i j" 

, 
AF : 

Equil(l) 

lp: IF''[' 
2 , 2 • : Equil (2) 
F = F l-----

, 
I , , 

1 j' = 2j"= 

= 1 j" : 2j" L-__ ~ __ ~ ________ ~j.~ 

Fig. 2. Inward process rates in various equilibria (1 and 2). Canonical (j<->F) relations are 
common to the inverse inward processes 

same functional form for the inverse rates j; and R supposing that the rate 
equations are formulated canonically (see Fig. 2). 

(12) 

This fact may be surprising if the transport takes place between phases of 
different properties (e.g. a liquid and its vapour). 

Non-equilibrium systems. Net fiuxes 

Let us now consider a system in non-equilibrium. In subsystem Sy' the 
potentials are F~ and the appropriate fluxes are j;. Let us now change the 
potentials by L1Fk in subsystem Sy" only. Consequently, the inward fluxes K 
change too. 

The situation may be represented as shown in Fig. 3 and 4. 
Due to the disequilibration of the inward fluxes, "net" transport rates 

arise (J i ) 

(13) 
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Fig. 3. Three-pole structure of non-equilibrium systems 
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Fig. 4. Inward process rates in non-equilibrium systems 
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These net fluxes are the fundamental fluxes in the Onsager-theory. 
Contrary to the equilibrium discussion in chapter 5, symbol Ll means here a 
difference and not a change. Similarly, LlFk means a difference of the potential 
F k , which is equal to the k'th thermodynamic force (X k) and not to the variation 
of Fk inside one (or both) subsystem. 

Xk=F~ -F~=LlFk' (14) 

In the vicinity of equilibrium, where 

Llji 1 
-.-~ (15) 
li 

according to (11) and (14) 

J i= -Llji= - ~ (:iJXk (16) 
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which is equivalent to the known set oflinear phenomenological equations of L 
Onsager: 

(17) 

In the sense of Thermokinetics, these equations form a lacobian set of 
full differentials where 

(18) 

(18) forms an important link between Thermokinetics and the Onsager­
Thermodynamics which allows a deeper insight into the physical meaning of 
the phenomenological coefficients. For example, in the case of mass transport 
from one phase to another, Lmm shows not only the extent to which the interface 
is permeable to some species, but also the variation of the inward mutual 
permeation fluxjm with respect to the variation ofthe quantity ( - fliT). By heat 
transfer, the transport coefficient is equal to the negative derivative of the 
inward heat transfer flux with respect to the reciprocal temperature (lIT). 

The physical meaning of the cross effect is, in this sense, that the inward 
transfer flux ofthe i'th quantity varies not only with the variation of the i'th but 
also with another (kith) potential too. A mass flow carries heat if the inward 
mass flux is temperature-dependent. 

In general,far from equilibrium approximations (10) and (15) are not valid. 
Such problems are common in chemical kinetics. In such cases, use ofthe linear 
Onsager-theory is very difficult, what is more, the use of the concept "force" 
(Affinity) looses its meaning. The fluxes are to be expressed as functions of the 
potentials and not of potential differences. The right way is not to extend the 
linear theory (with forces) but turning back to Thermokinetics without the 
linear approximations. For example with (5) a mass transport rate is 

Jm= -L1jm= _j~(ell'IRT _ell"IRT). 

Summary of results 

Based upon the mutual "inward" fluxes and their rate equations, a three­
pole structure and three fundamental sets of relationships are presented. One of 
them, not commonly used up to now, has a particular importance. This is the 
set of rate equations of the type ji~Fi called "canonical" rate relations. It has 
been shown that, due to the principle of detailed balance, the inverse canonical 
inward rate equations must have the same functional form and common values 
of the constant parameters in them. 
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It has also been shown that these relationships may be regarded as 
sources of all thermodynamic transport equations including that of Onsager's 
phenomenological rate equations. 

In terms of this theory the familiar rate relations may be reformulated. 
The phenomenological linear relations are equivalent to a set of lacobian 
differential relations of the inward rate equations and Onsager's (dj;+-*dFJ 
reciprocity relations lead to symmetry relations of the derivatives of the inward 
fluxes with respect to the potentials. Far from equilibrium in nonlinear cases, 
rate relations of the type J;+-* X k lose their sense and relations of J i and F~ and 
F~ are meaningful only. 
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