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Abstract

In the paper ultrasonic techniques more frequently used for studies of complex materials are reviewed.
The scope of the paper is limited to methods that serve for evaluation of material properties, neglecting
other methods as for example those, which are applied in image analysis. Discussion of selected
applications of the discussed techniques for identification of properties of some complex materials
and remarks to model approaches used within the procedures are included.

Keywords: ultrasonic waves, inhomogeneous, multiphase materials, non-destructive techniques,
modeling.

1. Introduction

Most natural materials such as soils, rocks or biological tissues as well as a new
generation of engineered materials, belonging to the class of smart or functional
media, are complex with respect to their microscopic constitution, internal struc-
ture and majority of macroscopic properties. Among characteristic features of such
materials are their multiphase or multicomponent nature, complex internal struc-
ture, scale dependent properties, inhomogeneity, anisotropy, existence of various
dissipation mechanisms significant during mechanical deformations and sensitivity
of physical properties of the materials to non-mechanical external loads such as
changes of chemistry of the surrounding environment, magnetic or electric fields,
etc. (Fig. 1).

Due to the above mentioned features, in order to evaluate mechanical or
structural properties of complex materials, special techniques are required, which
must refer to a particular scale and apply appropriate models representing internal
and external interactions.

The purpose of this paper is to present frequently used ultrasonic techniques
and to show the applicability of the methods to study complex materials. Selected
results for model and real complex materials are described to illustrate different

1The paper was presented at the Seminar of the Department of Physical Chemistry, Budapest
University of Technology and Economics. The author greatly acknowledges hospitality of Prof.
Miklés Zrinyi.
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Complex materials:

- multiphase/multicomponent,

- with internal structure,

- inhomogeneous,

- anisotropic,

- with scale dependent properties,

- with various dissipation mechanisms,

- sensitive to external loads: chemical, magnetic, electric, ...

Fig. 1. Features of complex materials

capabilities of ultrasonic methods. A short discussion of basic modeling approaches
used to evaluate mechanical and structural properties of the materials is included in
the Appendix.

2. Ultrasonic Techniques

Different ultrasonic techniques using low energy mechanical waves have been de-
veloped to study properties of materials including their mechanical and structural
characteristics. Among the most widely used techniques are (see e.g. [], [28]:

* pulse/tone burst methods with in time domain analysis of signals,
broadband ultrasonic spectroscopy,

e continuous wave methods,

* resonance spectroscopy,

critical angle reflectometry,

acoustical microscopy.

All the techniques, with the exception of resonance spectroscopy, apply run-
ning or standing pure bulk waves (longitudinal or shear waves), surface waves
(e.g. Raleigh or Love waves) or geometrically dispersed modes. The method of
resonance spectroscopy requires the solution of a boundary value problem to deter-
mine complex modes of vibrations which are the result of interaction of the applied
disturbance with boundaries of studied samples.

2.1. Pulse/Tone Burst Methods with Time Domain Analysis of Sgnals

Short — broadband pulses or wave packets containing a number of cycles referred
to as tone bursts (or bursts), most frequently used as ultrasonic disturbances are
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Fig. 2. Experimental setup for pulse/tone burst tones: A) reflection (echo) method,
B) reflection method with delay line, C) transmission method, D) transmission
method with double delay line, E) transmission method for studies of surface waves

applied to investigate materials, see e.g. [L0], cite21. The pulse or burst mechanical
disturbance is usually generated by appropriately excited piezoelectric transducer
— transmitter (T) (exciting voltage is of a short spike type or packet of sinusoidal
voltage), it enters the studied material (S) (in some cases indirectly through a delay
line (DL)) and after transmission through or reflection from the internal boundary
of the sample it is transformed by the receiving transducer (R) (in the case of
echo mode the transmitting transducer works also as the receiver) into voltage,
which is recorded and/or measured, see Fig. 2. The analysis of time of flight or
comparison of amplitudes of the measured signals with a reference signal is then
used to determine the wave velocity and attenuation. The evaluation of time of
flight in the pulse method is usually done by detecting, e.g. 24]:

« first arrival transit time, t,
e 10% threshold transit time, t, or
» first zero crossing transit time, t,, see Fig. 3.

Similar criteria for determination of time of flight with additional zero crossing
times are used in the case of tone burst signals, see Fig.3b. An alternative way for
determination of time of flight is the method of correlation, see e.g. B]. From the
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time of flight the velocity is evaluated as the ratio of distance that the wave passes
through the studied material, L, and the determined time of flight, t,i.e. v = L/t;,
where i refers to one of the above indicated methods of evaluation of time of flight
(a, t, or 2).
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Fig. 3. Criteria for determination of time of flight in case of pulse or tone burst method: t 5

—first arrival transit time, t; — 10 % threshold transit time, and t; —ith zero crossing
transit time
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When the frequency dependence of wave velocity (dispersion) is insignifi-
cant the time of flight method gives good approximations of both phase and group
velocities; otherwise the time of flight gives a better approximation of the group
velocity, ( [35]). Measurement of attenuation coefficient directly from recorded
in time domain signals can be performed using the definition of attenuation « as
the logarithm of the ratio of amplitudes of measured and reference signals, Ay,
A, respectively, divided by the length of pathway of the wave through the tested
sample, L, see (Fig. 4)

a:llnh.
L A

The reference signal may correspond to the wave transmitted through a low attenu-
ating material, as compared with the studied one, or to the wave transmitted through
a shorter sample of the investigated material. In the latter case the distance L is
equal to the difference in pathway the waves pass through the two samples.

While using the pulse method the determined value of attenuation gives ap-
proximation corresponding to the center frequency of the spectrum of the pulse,
the burst technique allows for measurement of attenuation for the frequency of the
wave packet of burst.
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Fig. 4. Amplitudes required for determination of attenuation from pulse methods

2.2. Broad Band Ultrasonic Spectroscopy

The technique is based on application of broad band pulses in reflection or transmis-
sion mode, see. Fig. 2, and on the analysis of the signals in the frequency domain,
e.g. [10], [44].

For determination of wave propagation parameters for a range of frequency
reference and measured signals are needed. In reflection mode the reference signal
is usually one of the echoes recorded from the back surface of the sample. In trans-
mission mode the reference signal is obtained as transmitted through a reference
material or as transmitted through the studied material of different thickness than
the measured one (the technique is also called the substitution method). A signif-
icant advantage of the latter option is the fact that it allows to avoid correction for
loss of energy due to the reflected wave. The spectral analysis of pulses is usually
performed numerically with help of the Fast Fourier Transform algorithm giving
amplitude and phase spectra of the reference and measured signals, see Fig.5.

In the case of measurements performed by transmission method for two sam-
ples of the same material and different thickness, L; and L, the propagation pa-
rameters, phase velocity v and attenuation coefficient « as functions of frequency
f can be calculated as follows, ( [44]:

v(f)— 27Tf(L2—L1)
© ga(f) —@u(f) —27n
and
a(f) = Lo A

Lo—Li A(f)

where A;(f) and Ay(f) are amplitudes, ¢;(f) and ¢,(f) are phases of the spec-
tral components of the reference and measured pulses, n is the total number of
wavelength for a given frequency, which is contained in the distance L, — L;.
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Fig. 5. Schematic view of signal analysis done in broad band ultrasonic spectroscopy along
with the example of phase and amplitude spectra for one of the signals

2.3. Continuous Wave Methods

The methods are mostly used for precise measurement of phase velocity of ultrasonic
waves. A continuous harmonic excitation of transmitter is applied and amplitude
or phase of the signal obtained by the receiver are recorded, while frequency of
the transmitted signal or thickness of the sample change (the latter method may be
used only for study of fluids), ( [38], [39]. A schematic view of experimental setup
for the two applications of continuous wave methods with tuning of frequency is
shown in Fig. 6. The amplitude method is based on detection of the phenomenon
of standing wave in a sample of tested material. Assuming insignificant changes
in phase velocity at a given frequency range of excited waves, the detection of
frequencies f; corresponding to successive maxima of amplitude of standing waves
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enables one to determine the propagation velocity in studied material as:
21(fx — fn)
V= —,
k—n
where k and n are selected peaks of amplitude and | is the thickness of sample.
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Fig. 6. Setup for continuous wave methods with tuned frequency: A. The branch with
amplitude detection. B. The branch with phase detection

The phase method is based on the comparison of phase changes of continuous
wave transmitted through a specimen and a reference channel with transducers being
in contact through a coupling medium. The phase velocity can then be determined
from the equation

Af
v =2mwl—,
Ag
where AT is the change of frequency of the applied excitation and A is the corre-
sponding difference of phases as measured from comparison of signals transmitted
through the sample and the reference channel.

2.4. Resonant Spectroscopy

Resonant spectroscopy is focused on studies of vibrations of free standing sample
made of tested material ([20], [42]). Having experimentally determined resonance
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frequencies of vibrating modes f"and analytical or numerical solutions appropriate
foragiven geometry of tested sample along with the predicted resonance frequencies
f! the material parameters (e.g. wave velocities, elastic modules) are found by mini-

mizing the error function E which can be defined ase.g. E = \/Zr'?':l (fm— fnt)z.
It is observed that the resonant methods have become currently important prac-
tical tools due to significant development of computer methods of simulation of
mechanical vibrations of solid bodies.

2.5. Critical Angle Reflectometry

The technique employs measurements of amplitude and/or phase of reflection co-
efficients as the functions of angle of incidence of the wave that first travels in fluid
and then hits the flat surface of tested material (Fig.7) e.g. [34], [1] [33]. The
excited wave is usually of the pulse type. The knowledge of extreme values of
the components of reflection coefficient (its amplitude and phase) together with the
generalized Snell’s law are used to determine propagation velocities of waves. In
some cases, depending mostly on the properties of studied materials, the method can
be useful to determine velocities of longitudinal and shear waves, but it is mostly
applied to measure the velocity of surface waves of Rayleigh or Love type. An
appropriate model of wave propagation in the tested material must always be used.

GENERATOR

@ OSCILLOSCOPE
FLUID PC

Tested material

-

Fig. 7. Experimental setup for critical angle reflectometry
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2.6. Acoustic (Ultrasonic) Microscopy

Acoustic or ultrasonic spectroscopy uses waves of the frequency range from 50
to 2000 MHz to visuaize the microstructure of materials (acoustic imaging) or to
study their local mechanical properties such as elastic modules, wave vel ocities and
attenuation coefficients ([12] ). The methods of acoustic imaging called scanning
acoustic microscopy serve astechniquesfor surfaceinspectionin particular to detect
structural characteristics of phases. surface fractions, characteristic size of inclu-
sions, distributions of inclusions, parameters of fabric, flaws, etc. For measurement
of local mechanical properties in aregion being comparable with the wavelength
of the applied waves in acoustic microscope the reflected or transmitted waves in
one of the configurations shown in Fig. 8 can be used together with analysis of
interference pattern of the running and reflected waves, seee.g.[L3] .
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Fig. 8. Schematic diagramsof scanning acoustic microscopesintransmission (A) and pulse
(B) modes
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3. Selected Applications of Ultrasound

Examples of application of ultrasonic methods to study properties of complex ma-
terials will be discussed paying attention mostly to the qualitative results. Details
of experimental systems, applied measurement techniques and models used are not
discussed in details.

3.1. Sudies of Dispersion and Frequency Dependence of Attenuation of
Ultrasonic Waves in Saturated Porous Materials

Due to continuity of fluid and solid phases in saturated porous materials with open
porosity the materials may transmit additional wave modes as compared with usual
— impermeable solid materials, see eg. [4]; [15] . In isotropic case three bulk
waves: two longitudinal waves (called the fast and slow ones) and one shear wave
can propagate in fully saturated materials. The schematic view of an experimental
configuration that enables the observation of the waves (immersion method with
rotated sample) on the example of the three pulses recorded for water saturated
sintered porous glass with average diameters of glass beads of 80 um are shown in
Fig. 9, seeeg. [30] and [23].

Amplitude [V]
)

fast wave

Time [us]

Fig. 9. Immersion method and pul ses of fast, shear, and slow waves (the order corresponds
to wave velocities) recorded for water saturated porous glass

The dependence of phase velocity and attenuation coefficient on frequency
for each wave mode is determined using pulses transmitted through two samples
of different thickness and application of spectral analysis (broad band ultrasonic
technique). The results for water saturated glass with an average diameter of glass
beads equal to 80 um are given in Fig. 10.

The dlow wave exhibits the highest attenuation and the strongest dependence
on frequency. Such behavior is in agreement with macroscopic Biot’s theory of
wave propagation in saturated porous materials, which assumes that viscous dis-
sipation due to interaction of phases is the dominant attenuation mechanism and
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neglects scattering of waves on inhomogeneous elements of microstructure. When
the wavelength, which isequal to theratio of wave velocity and frequency, becomes
comparable to the size of micro-inhomogeneities (e.g. pores or grains) the role of
scattering becomes significant both for velocity and attenuation and Biot’s model is
no longer appropriate to describe wave parameters. The examples of propagation
parameters obtained for thetwo longitudinal wavesin water saturated sintered glass
beads of average diameter equal to 275 um are given in Fig. 11.
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10. Frequency dependence of phase vel ocities and attenuation coefficientsfor thethree
bulk waves in water saturated sintered glass beads of average diameter 80 um
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Fig. 11. Frequency dependence of phase velocities and attenuation coefficients for the

longitudinal waves in water saturated sintered glass beads of average diameter
275 um

The observed decrease of phase velocity with frequency (negative dispersion)

and power law type dependence of attenuation on frequency are characteristic for
Rayleigh scattering range of wave propagation. An extension of the Biot’s model
is necessary to describe the behavior of scattered waves, see[L7].



122 M. KACZMAREK
3.2. Determination of Micro- and Macro-Parameters of Pore Structure

Internal structure of inhomogeneous materialsisdescribed by structural parameters
referred to as microscopic parameters such as characteristic size of inhomogeneities
or distance between inhomogeneities and macroscopic parameters the examples of
which are volume or mass fractions of phases. In porous materials the impor-
tant microscopic parameters are characteristic size of pores and single elements
of skeleton (grains, fibers, etc.). The fundamental macroparameters are porosity,
permeability and tortuosity, whichareinthe Biot’smodel. Sincethestructural prop-
erties play important rolein the physical behavior of porous materials and influence
mechanical and transport characteristics of the materials (e.g. permeability is the
key parameter for advective flow, while tortuosity determines diffusive and ionic
transport in pore fluid) the identification of the parameters is extremely important
from the point of view of modeling and application of porous materials. While the
standard methods of determination of structural characteristics are mostly based
on different microscopy techniques the ultrasonic methods can also be useful, see
e.g. [22] and [2][16] [37]. Taking into account the fact that scatterings of waves
appears when the wavel ength becomes comparable with the size of inhomogeneity
and different type of scattering can be distinguished depending on the ratio of the
two quantities, the analysis of attenuation and dispersion can lead to evaluation
of average size of pores or grains. In Fig. 12 the propagation characteristics for
the fast wave are presented for sintered glass with average diameter of beads of
550 um showing atransition from the Rayleigh scattering (negative dispersion and
attenuation proportional approximately to frequency up to power four) to stochastic
scattering (positive dispersion and attenuation proportional to square of frequency).
The correlation between wavelength corresponding to the bounds of the particular
scattering region and size of inhomogeneities can serve as the basis for determina-
tion of characteristic size of micro-inhomogeneities.
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Fig. 12. Dispersion and frequency dependence of attenuation for sintered glass beads of
diameter of 550 um

Determination of macro-structural parameters of porous materials through
ultrasonic techniques requires the application of a model including the searched
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parameters. An example of such procedure which applies ultrasonic data from

non-scattering region and can be used to find permeability and tortuosity from
wave parameters determined by broad band spectroscopy is shown in Fig.13.

[ BIOT'S MODELJ

. )
Experlmeptal data: Computer Aided I(noxyn parametel.‘s..
attenuation and N <:| coefficients of elasticity,
- Optimisation System - . .
velocity vs frequency ) densities, fluid viscosity
)
PERMEABILITY
& TORTUOSITY
_J

Fig. 13. Diagram of the optimization procedure used for determination of structural pa-
rameters

The experimental results supplemented by known material parameters (inthis
case coefficients of elasticity, porosity, densities and fluid viscosity) with Biot’s
model allow to formulate the numerical optimization problem with an objective
function which depends on the differences between theoretical and measured values
of wave propagation parameters (attenuation and velocity) determined in a set of
frequency points. Theoptimization problem should alsoincorporatethe constraints,
which in considered case require that permeability must be positive and tortuosity
isnot less than 1.

3.3. Evaluation of Quality of Tissues (Bones)

Noninvasive low energy ultrasound is not only widely used in medical imaging
but also in determination of the quality of tissues, for example bone tissues and
then in diagnosis of bone disorder related to ageing or diseases (e.g. 0steoporosis).
One of the standard methods in this field called quantitative ultrasound is based on
determination of wave velocities through bones (mostly in heels) and on value of
attenuation or increase of attenuation in a particular frequency range (called broad
band attenuation), seee.g. [9]; [26]; [7] . Thepropagation parameters are correlated
with density of bones determined by X-ray methods and other techniques. Despite
the above mentioned acknowledged application of ultrasonic technique intensive
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studies of bones areled mostly, in vitro, to extend the range of predictions of quality
of bones from ultrasound. Particular attention is devoted to the possibility of deter-
mination of changes in structure of trabecular bones related to osteoporosis. One
promising direction of such efforts is associated with studies at higher frequencies
of ultrasound, ([26] and [19] ). In Fig. 14 the examples of ultrasonic signals trans-
mitted through a sample of marrow saturated bovine trabecular bone studied by the
transducers with resonance frequencies equal to 0.5, 1 and 2.25 MHz are shown.

0.5 MHz 1 MHz 2.25 MHz

Fig. 14. Pulse waves of different frequencies (0.5, 1, 2.25 MHZz) recorded as transmitted
through marrow saturated trabecul ar bone

The signals received from the transducers of 0.5 and 1 MHz contain single
wave modes, i.e. the fast wave. In turn the signal from 2.25 MHz transducers
is composed of two pulses. a lower amplitude pulse of fast wave and a higher
amplitude pulse of slow wave mode. It can also be noticed that the period of fast
waveissignificantly longer than the period of slow wave. Theobtained resultsprove
that studies of bones at higher frequency can supply additional data as compared
with standard studiesat frequenciesbelow 1 MHz. Sincetheslow waveisessentially
influenced by the structure of porous materials the properties of the wave could be
particularly useful as predictors of structural changes in bones.

3.4. Sudy of Magnetically Sensitive Materials

An example of application of ultrasound to study the coupled effect of external
fieldson mechanical propertiesof materialsaretheresultsobtained for magnetically
sensitive materials such as ferrofluids and ferrogels, see e.qg. [29]; [40]; [18]; [36].
Ferrofluids are colloidal suspensions of magnetic particles in a carrying fluid such
as water, kerosene or oils. The typical diameter of magnetic particles varies from
5 to 10 nm and the surface of the particles is covered with a surfactant in order to
prevent their coagulation. When a magnetic fluid is exposed to constant magnetic
field certain amount of particles gather into clusters. In turn clusters interact with
each other constituting chains. The evolved microstructure forms a soft skeleton
that can carry some mechanical load and influences the effective stiffness of the
material. This process is clearly confirmed in studies with application of wave
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propagation, where attenuation and phase velocity change due to the variation of
strength of magnetic field, see Fig. 15.
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With the increase of magnetic field the wave velocity increases showing the
effect of saturation. For weaker magnetic fields the attenuation increases propor-
tionally to the strength of magnetic field. The behavior can berelated to the growing
number of clusters interacting through viscous forces with the surrounding liquid.
Then because the relative motion of clustersin liquid islimited by mutual magnetic
interactions among clusters, the attenuation decreases. Such scenario can aso be
predicted by the two-phase model of magnetic fluid with the postulated evolution
of stiffness of skeleton, see [18]. The predictions of the model for wave parameters
showing qualitative agreement with experimental results are shown in Fig.16.
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4. Conclusions

The presented discussion of ultrasonic methods is not complete since it neither
includes specific techniques of image analysis nor other methods which could be
distinguished from the point of view of methods of signal generation, its reception
or applied signal analysis. The usefulness of ultrasonic methods to study materials,
their mechanical and structural parameters and the influence of external loads on
some materia properties were illustrated presenting afew examples. The capabil-
ities of the methods, however, are much broader including advanced applications
as determination of size and size distributions of particles or clustersin suspension,
diagnosis of progress of chemically driven degradation of materials such asconcrete
and polymers and evaluation of influence of external conditions (e.g. temperature
or electric field) on mechanical properties of materials.

In al cases depending on the type of materials and involved fields the appro-
priate models must be applied, incorporating evolution lawsfor internal interactions
and form of influence of external fields on the material properties.

Appendix

Remarks to Modeling Approaches Used in Description of Waves in Complex
Materials

The necessary components of identification procedures of complex material proper-
ties are models incorporating the studied effects, for example constitution, internal
structure, interactions between phases and/or influence of external fields on the ma-
terials. If the considered materials are made of a single phase or from number of
phases having macroscopically the same kinematics (there is no relative movement
among them), as in the case of solid composites, the models can be formulated
starting with the balance of mass and linear momentum for the single material
continuum ( [11]):

d
— div (pv) =0,
atp+ (pV)

%(pv) +div (pw) —divT — pb =0,

where p, v, T and pb dencte mass density, velocity vector, stress tensor and body
force, respectively. Specific properties of single phase materials are in most cases
expressed by a form of proposed constitutive function for stress tensor. In par-
ticular, the dissipation and scattering effects which result from internal friction or
energy loss due to reflections on micro-inhomogeneities of complex materials are
determined through different types of viscoelastic models, being generalizations of
Hooke’s model of elastic materials. In the case of harmonic excitations or equa-
tions transformed into frequency domain the viscoelastic models are expressed by
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eguation
T = Ae,

where the stress tensor T is related to the strain tensor ¢ and A is a constant or a
frequency dependent tensor of material coefficients represented by complex num-
bers. While considering wave propagation the real and imaginary components of
A arerelated to transmission and loss of energy of the waves, respectively, see e.g.
[43] and [21]; . The extensions into frequency dependent form of the moduli are
applied to describe dispersive properties of waves due to complex internal friction
or scattering mechanisms ( [3] ).

In order to develop amodel for multiphase materials when independent kine-
matics plays a role the concept of superimposed continua must be used with sep-
arated balances of mass and linear momentum for each phase, as in the following
forms ([6] ):

0 . .
priiins div (pivi) =,

%(Pivi) +div (pvivi) —divT; — pibj = R;.

The equations contain mass densities n, velocity vectors v;, stress tensors Tj,

body forces pobj, intensities of mass m; and momentum R; exchange between

phases. When atransport processtakesplacethrough the described material onealso
needs to consider balances of mass for components of phases. For consideration of
influenceof electric or magnetic fieldson the material behavior, equationsgoverning
the additional fields and coupled effects in the mechanical model should be added.
In some cases the rotational degrees of freedom and balance of linear momentum
must also be considered. Indynamical processesthe mass exchange between phases
is usually not important (m = 0). In genera, in order to close the system of
equations and express the interactions between phases as well as the external fields
and materials, and to describe the evolution of properties of materials a set of
equations for my, T; and R; isrequired specifically constituted for given materias
and existing loads. If, as an example, one considers the widely applied model of
fluid saturated porous materials the basic set of constitutive functions in isotropic
and elastic cases has the form ( [4]):

T¢ = (Qtres+ Rtreq)l,
Rs = _Rf = C(Vf _Vs) +d(\7f _Vs)s

whereindexessand f refer to solid and fluid phase, N, A, Q, and R stand for elastic
parameters of the system, and coefficients ¢ and d are responsible for viscous and
dynamic interaction between phases and are dependent on parameters describing
theinternal structure of the materials such as porosity, tortuosity, and permeability.
Itis now evident that the range of applicability of the above model is much broader
than modeling saturated porous materials and can be used for example for liquid
suspensions (e.g. [27]), structured liquids (e.g. [18]) and gels (e.g. [41]; [14]).
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