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Summary 

It is demonstrated by calculation on two models that already in such simple cases, the 
most important thermal properties can be interpreted. It could be shown what negative 
temperature means and what entropy and heat capacity of such systems are. On considering 
three possible states, equilibrium and non-equilibrium states could be compared. It was shown, 
by a kinetic method, how equilibrium is reached, why entropy is a maximum at equilibrium, and 
why it does increase if there is no equilibrium. It was demonstrated the simplest elemental system 
which can have a temperature, and shown why a non-equilibrium system did not have a definite 
temperature. Finally, it has been shown how the different averages (entropy, internal energy, free 
energy) can be visualized by In Xi-Ei plots. 

A thermodynamic system is a macroscopic body consisting of a great 
number of indistinguishable elements (e.g. molecules). These elements can have 
different states which can vary either continuously or discontinuously. These 
different states mean different energies within one degree of freedom (such as of 
translational, rotational or vibrational type). 

A property of the macroscopic body is either the sum of the appropriate 
properties of its elements (as e.g. mass), or some type of an average ofthem (e.g. 
temperature, entropy, etc.). 

Special states of thermodynamic systems are the equilibrium states. If a 
body is completely isolated from outside changes, it reaches equilibrium 
relatively quickly. 

The macroscopic observation, characterization of the states of systems 
generally requires the assumption of an equilibrium state. Temperature can be 
unambiguously measured, e.g., if at le.ast the part of the system in contact with 
the thermometer is in thermal ("local") equilibrium (i.e. it has a definite 
temperature) and this temperature is equal to the temperature of the 
thermometer. 
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A non-equilibrium state can also be imagined, where no temperature can 
be defined at all, as numerous temperatures exist simultaneously in the same 
place. 

As it is known, thermodynamic equilibrium can be characterized in 
various ways: 
a) Thermostatic definition: in a closed system, entropy is a maximum at 

equilibrium. 
b) Thermodynamic definition: at equilibrium the forces vanish, the appro

priate "potentials" (e.g. temperature) equilibrate. 
c) Kinetic definition: The rates of internal ordering processes (relaxation) 

vanish, a steady state is achieved. 
Statistical mechanics studies equilibrium in a different way. In statistical 

mechanics, the main questions are [1]. 
a) What is the numerical distribution of the elements in the different states and 

at equilibrium? 
b) What relationships exist between the different averages and the quantities 

measurable macroscopically (e.g. entropy, temperature).? 
c) What is the kinetics of internal relaxation processes, what fluctuations 

around the equilibrium are possible? 
Theories based on statistics generally postulate that the actual state of all 

molecules is never known in a macroscopic system, neither is their real 
distribution: this would really exceed the possibilities of observation. What we 
actually know is only a probability. (E.g. we do not know what we shall throw 
with a dice, but we know exactly that the probability for throwing e.g. 2 is 1/6.) 

Thus e.g. the molar entropy (S) can be defined as 

S=k·lnW (1) 

(here ~ is the Boltzmann constant, Wis the overall thermodynamic probability 
of the system). Or, if Pi means the probability of residence in the i-th microstate, 
then 

S= -RLPi1nPi 
i 

(2) 

We do not know anything about the real momentary distribution, i.e. 
what fraction of the molecules is in the i-th state (Xi) 

ni 
X i=--

~ni 
I 

(3) 

However, we know that in an unperturbed state for molecules of a 
considerable number 
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The situation is different if the methods of statistics are applied for 
mathematical models. In the case of models, there are no constraints for 
cognizability, we provide all the necessary information. We can design a 
thermodynamic model by providing the state of every Xi. In this case, there is 
no need for working with probabilities. By analog to (2), we can define an 
entropy which, naturally, will not be completely identical with that defined in 
terms of probabilities, but it will behave very similarly, the two kinds of entropy 
are identical. For equilibrium systems, 

s= -R~xilnxi (4) , 

This entropy is the average ofln x/so This entropy is determined exclusively by 
the distribution, and can be interpreted for every distribution (i.e. not only for 
equilibrium systems) [5]. (As we shall see later, this is not true for the 
temperature!) 

Similarly, the system always has an internal energy (U), which is the sum 
of the energies of the elements: 

(5) 

In the models whose thermodynamic behavior is studied the following 
parameters are kept constant: 

- energy levels (in real systems this is equivalent to a constant volume), 
- the total number of particles (constant mass). These models have only 

one degree of freedom. 

Model system with two states 

This is the simplest model possible: it has only one ground state (1) and 
one excited (2) state. As will be shown, already in this sil1}ple case we can define 
not only the internal energy and entropy, but also the temperature and heat 
capacity. The numbers ofpartic1es are n1 and nz, energies ofthe levels are El 
and E z. For the sake of simplicity, let El =0 and Ez = E. Variables are: internal 
energy (U) and the distribution between the two states, i.e. the entropy changes, 
too. 

Distributions are characterized by: 

n1 
Xl = --=--

- n1 +nz 
and 

According to (4), entropy is defined as: 
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and the internal energy as: 

U= EX2 

Other thermal quantities are derived from these in the usual way as in 
thermodynamics in general [3J 

l/T= iJS/iJU = R/E In XtlX2 

T= 8U/8S = E/R (In xtlx2)-1 

-ljT 2Cv = 82S/8U2 = _ R/E2 _1_ 
X 1 X 2 

Cv=RX1X2 (In :~y 

(6) 

(7) 

(8a) 

(8b) 

Calculation results summarized in Table 1 should be studied in two regions 
separately: 

Table 1 

Xl +X2=1 

XI In XI +xlln X2 XI (I<:rl XIX1(1<:y Xl In-
X 2 Xl' X 2 

0 0 +co 0 +co 0 
0.001 0.00791 6.9067 0.1447 1001 0.0476 
0.01 0.0560 4.5951 0.2176 101.0 0.2090 
0.Q2 0.0980 3.8918 0.2569 51.02 0.2968 
0.03 0.1347 3.4761 0.2877 34.36 0.3517 
0.04 0.1679 3.1780 0.3146 26.04 0.3879 
0.05 0.1985 2.9444 0.3396 21.05 0.4119 
0.06 0.2270 2.7515 0.3634 17.73 0.4270 
0.07 0.2536 2.5867 0.3866 15.36 0.4356 
O.OS 0.2788 2.4423 0.4094 13.59 0.4390 

0.09 0.3025 2.3136 0.4322 12.21 0.4384 
0.1 0.3251 2.1972 0.4551 11.11 0.4345 
0.2 0.5004 1.3863 0.7213 6.25 0.3075 
OJ 0.6109 0.8473 1.1802 4.76 0.1508 
0.4 0.6730 0.4055 2.4663 4.17 0.0394 
0.5 0.6931 0 co 4.00 0 
0.6 0.6730 -0.4055 -2.4663 4.17 0.0394 
0.7 0.6109 -0.8473 -1.1802 4.76 0.1508 
0.8 0.5004 1.3863 -0.7213 6.25 0.3075 
0.9 '0.3251 -2.1972 -0.4551 11.11 0.4345 

1 0 -co 0 co 0 

-u -S -liT -T 
__ C1S) 

iJU1 -Cv 
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(A) 0 < X 2 < 0.08: a relatively weakly excited system. It does not differ 
strongly from those systems where the levels are not limited to two. If there 
were other states, they would be populated only very scarcely. 

Data from Table 1 falling into this region are shown in Fig. 1. 
The thermodynamic properties calculated show the general behavior of 

thermodynamic systems: 

Entropy: 
- it is always positive, 
- its curvature as a function of internal energy is negative, 
- it increases monotonically with internal energy (see Fig. 1/a), 

The first derivative, the reciprocal temperature: 
- is always positive, 
- it decreases monotonically with increasing internal energy (i.e. the 

temperature increases monotonically) (Fig. lib). 

s 

u 

T 

.rr 
'0 u' 

I c, 

i 

u T 

Fig. 1. Calculated quantities with a two-state model. 
The entropy (a), the reciprocal temperature (b) and i]2SjaU 2 (c) as functions of the internal 
energy. The entropy (d), the internal energy (e) and the heat capacity (f) as functions of the 

temperature 
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Fig. 2. Calculated quantities with a "limited energy assumption". 
The entropy (a), the reciprocal temperature (b) and iPSjaU2 (c) as functions of the internal 

energy. The entropy (d), the internal energy (e) and the heat capacity (I) as funtions of the 
temperature 

The second derivative: 
- its value is always negative (stability), 
- at U = 0 its value is infinite and it increases monotonically up to 0 with 

increasing energy, its curvature as a function of U is negative (convex) 
(Fig. lie). 

This behavior is characteristic for every stable thermodynamic system. In 
Figs lld, e and f, S, U, and Cv are plotted in their better known form of 
temperature dependence. It should be noted that every curve start with zero 
slope at the temperature of the absolute Zero. 

(B) 0.1 <x2 < 1, region of "limited energy". In this case, due to higher 
excitation, the effect of the constraint that no higher levels are allowed, is 
noticeable. The internal energy of such a system is constrained from above: 

OsUsE 
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If to such a system energy is transferred, a state is achieved in which the 
population of the ground and excited levels is identical. In this state, the 
reciprocal temperature is zero, which means 

T=x 

If the number of excited particles is increased by further energy transfer, 
inverse population is created, which, according to our definition of the 
temperature, means a negative temperature (Fig. 2jb): 

T<O 

Such systems exist also in nature: in lasers, inverse population is created 
during pumping, i.e. the temperature of this degree of freedom is negative. The 
situation is similar for particles of Ij2 spin in a magnetic field. Here, two 
different states are possible (parallel or antiparallel to the direction of the 
magnetic field), these represent different energies. In this case an inverse 
population can also be created. 

The beha vior of basic thermal properties in several cases are the same in 
the positive and negative temperature regions, but there are also differences. 
Entropy: 

- is always positive, 
- its curvature as a function of V is always negative (convex) but 
- it does not increase monotonically with the internal energy, it 

decreases in the negative temperature region, and reaches zero again 
at the limiting energy. 

Reciprocal temperature: 
- it decreases mono tonically with increasing V also in this case, but its 

domain is 
+ x> 1jT>-et:., 

Consequently, 1jTpasses continuously from the positive to the negative 
temperature region (Fig. 2jb). 

Accordingly, the temperature increases from V =0, T=O, it reaches 
infinity at a finite V 

U=0.5 E T=oo, 

then it increases from T= - 00, and at V = E T= ° (Fig. 2je). 
Thus, negative temperatures can be realized by passing the infinite 

temperature and not by passing T= 0. The absolute zero cannot be either 
reached or crossed. 

The second derivative containing the constant-volume heat capacity is 
always negative, (stability criterion) but it does not increase monotonically 
(Fig.2jc) 

U=O, T=O. 
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i.e. it starts from - x ("limiting stability"), then passes through a maximum at 
T= x ("minimum stability"), and decreases again (negative temperature), after 
that nearing - Cf:J again, and reaches it at U = E. 

The constant-volume heat capacity, Ct" shows a characteristic shape as 
the function of temperature (Fig. 2/f). 

A system with only two states is an oversimplified model: the energy 
determines the distribution unambiguously. As a consequence, the relationship 
between Sand U is always unequivocal. Their derivative, the temperature, 
could always be defined unambiguously, the system always "had a temper
ature". Accordingly, here we could not deal with the distribution, entropy and 
temperature of the equilibrium and non-equilibrium states. 

These problems can be discussed in a somewhat more generai, but not yet 
too complicated model system. 

Model system with three states 

This model makes possible to study such systems, in which, under 
complete isolation, more internal configurations coexist. The canonical 
distribution reached at the end, can be characterized in many ways. The usual 
procedure described in text-books is: to select the most probable distribution 
from all possible (or, what is equivalent to this, the one with the highest 
entropy). This is essentially variational calculus, and understanding is made 
difficult by the fact that students are not familiar with it (it is true mainly for 
chemistry students). Equilibrium can also be characterized by the equalizing of 
certain intensity parameters: in the case of thermal equilibrium by equalizing 
temperature. 

However, this method cannot be used as it is not clear what temperature 
or temperatures exist in a non-relaxed body. The phenomenological interpre
tation of temperature can only be applied for relaxed systems. 

In our model we use the third, most descriptive kinetic method. We will 
examine what energy exchange processes, manifesting themselves in the 
variation of the distribution, are possible, what their rates are, what the 
direction of spontaneous changes in the distribution are, and at what 
distribution does the rate decrease to zero, reaching thereby the steady state. At 
the same time, it is also proved that this steady state is the state of maximum 
entropy. The conclusion concerning the temperature is the most interesting: it 
is demonstrated that in a non-relaxed system more temperatures exist 
simultaneously. These temperatures approach each other during the relaxation 
process, and at equilibrium, the partial temperatures become identical. This is 
the state in which the system has a single, definite temperature. 

Our model system with three states is a closed system, which means that 
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1) The energy levels are fixed: 
El =0 

Ez E, and 

E3=2E 

(This assumption of fixed energy levels generally means a fixed volume.) 
2) The total number of particles is fixed: 

3) The total energy is fixed: 

U=n 1 ·0+nz ·E+113 ·2E=36E 

61 

On using these assumptions, the possible distributions can be ordered in a 
linear series, as is shown in Table 2, the initial distribution being 297/36/0, and 
the last (limiting) one 315/0/18. 

Table 2 

Distribution W/kIl2= SjR= Xl x, 1 Xl , 
= - LXilnXi 

0.434· In- 0.434· In--= . 0.434 'In-
III 112 113 

=.'(1.'(3- X 2 X2 X3 2 X3 

297 36 0 -0.01169 0.3425 0.9164 +0:; +cx; 
298 34 I -0.00773 0.3498 0.9427 1.5315 1.2371 
299 32 2 -0.00384 0.3525 0.9705 1.2041 1.0873 

300 30 3 0.0 0.3553 1.0 1.0 1.0 

301 28 4 +0.00379 0.3526 1.0314 0.8451 0.9382 
302 26 5 +0.00752 0.3507 1.0650 0.7160 0.8905 
303 24 6 +0.01120 0.3478 1.1012 0.6020 0.8516 
304 22 7 +0.01482 0.3439 1.1404 0.4973 0.8188 

308 14 11 +0.31806 0.3181 1.3617 0.1047 0.7236 
309 12 12 +0.03214 0.3089 1.4108 0.0 0.7054 
310 10 13 +0.03544 0.2985 1.4914 -0.1139 0.6888 

315 0 18 +0.05113 0.2103 +cx; -Cf) 0.6215 

The stoichiometric and rate equations of energy exchange (relaxation) 
can be formulated similarly to those of chemical reactions: 

(9) 

(10) 
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Fig. 3. Equilibrium and non-equilibrium 
a) Rate of equilibration process at various configurations. 

b) Entropy values at various configurations. 
c) Equalization of the three internal temperatures 

The principle of microscopic reversibility valid in general for microscopic 
processes provides the following relationship for such energy exchanges: 

k=k=k (11) 
thus 

(12) 

Let us first calculate the product difference in brackets, then the rate for 
all possible distributions. These quantities are shown in column 2 of Table 2, 
and in Fig. 3/a plotted as functions of n3 . 
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Note the direction of the spontaneous process: if lY is negative, n1 and n3 
decrease. (arrow down) if lY is positive, n1 and n3 increase (arrow up). This 
means that the distribution approaches spontaneously a favored distribution, 
which is the steady state corresponding to w = 0 (and, as the system is closed, at 
the same time it is the equilibrium distribution, as well). It is apparent that in this 
case, the number of particles shows an exponential distribution. 

Thus 
n, 1O- E;/E 

I 

Xi = - = I 10 E;/E 
Ini 

(13) 

i 

The value of the denominator is: 

Z=,[10-E;/E=100 +1O- 1 +10 2=1.11 

(This quantity will be discussed later)* 
The change of entropy is discussed on the basis of the above. From the 

definition of entropy it is clear that to every distribution a definite entropy 
value can be assigned, though this relation is not reversible: the same entropy 

can belong to more distributions. The quantities - I Xi In Xi proportional to 
.j 

entropy are seen in column 3 of Table 2, and illustrated in Fig. 3jb as a function 
of n3 . It is obvious that where w = 0, i.e. at equilibrium, entropy is a maximum 
relative to entropies belonging to the same energy, mass and volume but in 
non-equilibrium states. (See: second law of thermodynamics, entropy max
imum in closed systems.) 

The study that follows concerns the idea of temperature. Columns 4 and 5 
in Table 2 contain the quantities 19 Xl 19 X 2 and 19 X 2 -lg X 3 , column 6 shows 

19 Xl; 19 x 3 . These quantities are plotted as functions of n3 in Fig. 3jc. At 

equilibrium, they neither have zero values, nor extrema but, they equalize. 
Thus, they should be thermal "potentials" being equalized at equilibrium, 
which is the temperature. 

The thermodynamic temperature has already been interpreted, (it could 
always be given unambiguously.) In our present modul it is apparent that 
temperature can only be assigned to a pair of energy levels, and defined as 
follows: 

* This equilibrium state is not only steady (w=O), but also stable: the arrows represent 
that upon perturbing the equilibrium distribution in either direction, relaxation processes occur, 
regenerating again the original equilibrium. In this, a significant role is played by the fact that the 
entropy has a negative curvature, as we shall see later. 
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_1 = -R In xi-In 
7ik Ei-Ek 

(14) 

where tik is the temperature assigned to the i-th and k-th levels. Thus, for three 
states, three temperatures can be defined, having a correlation between them: 

(15) 

which means that only two of them are independent. At equilibrium, the three 
temperatures are identical 

T~~ = T2~ = T~~ = T 

In this case, the system is characterized by a single temperature. 
A non-relaxed system has no unambiguous temperature, or more 

precisely, it has more temperatures simultaneously. 
Far from equilibrium, negative partial temperatures can also exist 

(inverse population), e.g. for n3:2: 13 T23 <0 (see Fig. 4). 

In Xi - Ei plots. Equilibrium thermodynamic averages 

In Fig. 4, the In Xi values characteristic for the population of individual 
energy levels are plotted against Ei values based on the data of columns 4,5 and 
6 in Table 2. 

According to eq. (6), the reciprocal temperature is proportional to the 
(negative) slope of straight lines connecting two points. Till equilibrium is 
reached, to one distribution belong three straight lines with different slopes, as 
the three points do not fall on a straight line. During relaxation the three points 
approach a straight line, the slope of the lines approach each other and finally, 
at equilibrium, the three points lie on a single straight line, the three 
temperatures are identical. 

fO 300 

I '\ 
I \ 
, \'" 

\'-' \ \"\: '?qu!lIbnum line 

\\'\ 
\\'\ \" \ \ \1 30 

\ \ " 
\ \"' \ :-t~ 
\-

-E, 

13 

Fig. 4. Plot of the In Xi values of the energy levels against Ei values 



TWO THERMODYNAMIC MODELS 65 

Table 3 

Ei ni Xi 

1 O.E 300 x 10' 1.11- 1 X 10' 
2 LE 300 x 101 1.11- 1 X 101 

3 2.E 300 x 102 1.11- 1 X 102 

By this equilibrium straight line several thermodynamic quantities can be 
visualized, which correspond to different averages. 

The equation of this equilibrium straight line is: 

where 

E· 
lnx·= -inZ-~' , RT (16) 

Z = L e-E;/RT (17) 

is the "partition function" 
On multiplying (16) by -Xi and summation with respct to 1., and 

mUltiplying finally by RT, the following equation is obtained: 

-RTI: Xi In xi=RTln Z + I: XiEi (18) , , 

IS -A + U (19) 

where in (19) the appropriate basic thermodynamic quantities are substituted. 

In obtaining (18), In Z was facto red out, and it was considered that LXi = 1. 
i 

In eq. (19) there is a quantity not mentioned so far, this is the "free 
energy", A. 

According to our interpretation, certain averages have been used: 

Entropy: 

S =R l: Xi in Xi' average of In XcS. , 
Internal energy: 

U = I: XiEi , average of Ei-S. , 
Free energy: 

A = RTln Z, which is a result of a special averaging: 

A = [D- 1 B-1CBD] (Ei) 

where C, Band D symbolize different operations applied for energies Ei in the 
following sequence: 

5 Periodica Polytechnica Ch. 30/1-2 
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D: division by - R T. 
B: construction of an exponential function. 
C: summation. 
B 1: inverse operation of B (construction of a logarithmic function) 
D - 1 : inverse operation of D (multiplication by - R T) 

The operator for total averaging is an operation "similar" to operation C. 
These averages are shown in Fig. 5 by the application of the straight line 

Inxi-Ei · 
Based on the above. the effect of temperature can also be deduced: 

if the temperature increases: 
the slope of the In Xi - Ei line decreases, the intersection is shifted downwards. 
As a consequence of this: the internal energy (U) increases, entropy (S) 
increases. free energy (A) increases. 

Summing up the above: we demonstrated by calculation on two 
thermodynamic model systems that already in such simple cases, the most 
important thermal properties can be interpreted. They behave similarly to real 
systems in their basic properties. It could be shown what negative temperature 
means and what the entropy and heat capacity of such systems are. On 
considering three possible states, equilibrium and non-equilibrium states could 
be compared. We have shown, by a kinetic method, how equilibrium is reached. 
why entropy is a maximum at equilibrium, and why it does increase if there is 
no equilibrium. By this method we could demonstrate the simplest elemental 
system which can have a temperature, and show why a non-equilibrium system 
did not have a definite temperature. and how it did transform into an 
equilibrium one with a uniform temperature. Finally. it has been shown how 
the different averages (entropy, internal energy. free energy) can be visualized 
by In Xi - plots. 

u 

A 
Ri 

5 
R 

Fig. 5. Interpretation of the thermodynamical quantities U, S, and A on a In xi-El diagram 
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