
MATHEMATICAL MODELLING OF DIFFUSE 
LIGHT SCATTERING. 

STEPNUMBER AND PATHLENGTH DISTRIBUTION 

Gy. MAJOR 

Spectroscopic Laboratory, Ministry of the Interior, 
Budapest 

Summary 

Modelling offers a good opportunity to study the mathematical relationships of the 
spectroscopy of diffuse light-scattering media. The modelling of stepnumber and path length 
distributions reveals the basic relations between remission and transmission spcctroscopy. The 
results show that the particle shape and size have a great influence on the pathlength distribution 
of light in diffuse media. 

The mathematical formulation of the spectroscopy of diffuse light­
scattering systems essentially differs from that of non-scattering media. The 
Bouguer-Lambert-Beer law (BLB law) (1) is not applicable directly in this case 
because its primary conditions: a non-scattering system, i.e. light passing 
strictly in straight lines, and a sample with two flat plane-parallel boundary 
surfaces, are not fulfilled. 

( 1 ) 

The basic feature of diffuse scattering media is that they contain inside 
scattering surfaces or centers and these surfaces are not plane-parallel. Thus. 
owing to multiple scattering, the route of light is neither parallel nor straight. 

To study the mathematical relationships of diffuse scattering systems 
computer modelling was carried out using the Monte-Carlo method [1,2]. The 
starting points of modelling were: the route of light inside the sample is 
zigzagged and photons may emerge after having travelled different pathlengths 
u. In the calculation of light loss due to absorption, however, the BLB law (2) 
can already be applied to calculate the attenuation dI for very small light beams 
dl o covering a given identical pathlength even if the routes are different. The 
total remittance or transmittance can be obtained by means of summing 
(integrating) the intensities pertaining to different pathlengths. 

(2) 

For the exact mathematical solution it is necessary to know the different 
pathlengths u covered by light and the proportion oflight covering the different 
pathlengths. In other words, we have to find the distribution of light according 
to path1cngth-or rather its density function f(u). 
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Fig. 1. Diagram of the model 

The computation was made on the basis of the following model: 
The "photons" fall onto a layer of thickness L at the point 0 (Fig. 1). Along 

the y, z axes the layer is infinite. The photons may make steps H. The steps are 
represented by a space diagonal calculated from three real random numbers 
uniformly distributed between - 1 and + 1. The computer program watched 
and stored the position of photon inside the layer and the sum of steplengths 
made by it. 

If in the course of wandering the photon emerges from the layer on the 
illuminated side (the side of incidence) it means remission, on the opposite side 
it means transmission. The summation of the pathlengths of a great number of 
photons gives the possibility to obtain (approach) the requested density 
function. 

The remittance or transmittance can already be calculated for samples of 
different absorptivity Z according to (3) by substituting the density function 
into (2). 

:f. 

R, T= 10 J j~. T(u)e -Zcu du (3) 
o 

Tabulated data obtained from modelling gave the possibility to establish 
graphical relations for the variation of layer thickness, particle size and 
absorptivity. These relations cannot be directly compared with measured data, 
but the curves correspond to them fully in character. 

Most of the theories describing diffuse light scattering (Continuum 
theories: Kubelka-M unk, Gurevitsch, Rozenberg [3, 4, 5, 6J; Discontinuum 
theories: Bodo, Johnson, Melamed. Fassler-Stodolski [7, 8,9, 10, 11, 12J) do 
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not consider the pathlength covered by light inside the sample or path length 
distribution. But the mathematical apparatus contains such considerations. 

The situation is the simplest with the discontinuum theory which assumes 
the sample to consist of thin layers. The mathematical deduction is based on the 
summation of geometric series. This corresponds to the one-dimensional 
binomial distribution describing the wandering of discrete (unit) steplengths 
over a one-dimensional route (Fig. 2). 

A more detailed examination points out that all the other theories 
practically contain the same distribution as they actually calculate with one 
dimension only and a discontinuous (possibly very small) layer thickness. 
Theories dealing with spherical or cube-shaped particles ultimately take an 
average steplength into account (Melamed). 

In reality light rays move in a three-dimensional space. If the wandering 
of the discontinuous steplength is not considered freely in space but along the 
three axes a different pathlength distribution with a maximum of the density 
function is obtained (Fig. 3). Reality can be approached better if we suppose 
that the steps are made in any direction of space and the steplength is 
continuous in a given interval. 

For a more detailed study of the mathematical relations the pathlength 
distribution can be divided into stepnumber and steplength distributions. First 
we investigated the stepnumber (11) distribution for varying layer thicknesses 
for remitted and transmitted light assuming continuous steplength. The 
modelling was performed on a CBM 3032 microcomputer using a machine 
language program. The number of incident photons was 100 000. The 
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Fiy. :l. Density function of the pathlength distribution of one dimensional discrete wandering 
(1I = pathlength, 1 = intensity) 
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steplength was taken from a random number generator glVlng uniformly 
distributed real numbers between -1 and + 1. In this modelling one step 
represents the projection of a step in the space to the x axis. As can be seen in the 
stepnumber distribution of remission increasing the layer thickness results in 
the increase of the intensity at greater stepnumbers and the plot approaches a 
limit value (Fig. 4). 
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Fifj. 3. Density function of the pathlength distribution of three dimensional discrete wandering 
(u = pathlength. I = intensity) 
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Fifj. 4. Density function of the stepnumber distribution of reflected light for several layer 
thicknesses (n = stepnumber. I = intensity) 
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The stepnumber distribution of transmitted light (Fig. 5) gives plots with 
maxima. The increase oflayer thickness shifts the maximum toward the longer 
stepnumber and significantly decreases the intensity. 

The path length distribution for emitted light is given by the sum 
(composition) of the stepnumber distribution and the pathlength distribution 
for one, two, etc. steps. This composition is permissible if we may suppose that 
the sample is symmetrical to the x axis and every step has the same distribution 
in every opposite direction. Taking steplength into account in such a way gives 
at the same time the total path length for the movement in three-dimensional 
space. 

For this purpose the one and two step pathlength distribution was 
calculated for steps represented by a space-diagonal calculated from three real 
numbers uniformly distributed between 0 and + 1 and modelled the 1 : 1 ratio 
composition of one and two steps. Figure 6 shows the density function of 
path1ength distribution for one and two steps. The maximum is near to the unit 
1 and 2 and the maximum steplength approaches 1.73 for one step and 3.46 for 
two steps (.)3 and 2 x .)3). 

Figure 7 shows that the composition of 1 and 2 steps definitely includes 
the two maxima. From this it follows obviously that the composition of more 
steps will also contain maxima. This means, further, that the density function of 
path length distribution for a one step function of other shape will certainly 
contain maxima and inflections. 

The composition of steplength for low stepnumbers will typically show 
the shape of the one step distribution function. For more steps this will be 
deformed. According to the Ljapunov theorem of mathematical statistics [13J 
the composition of any kind of distribution approaches the normal distribution 
for a high stepnumber. This is well demonstrated by the following example: 

Figure 8 shows the density functions of pathlength distribution of one­
dimensional wandering with continuous steplength uniformly distributed 
between 0 and + 1 for stepnumbers 1,2,3, ... etc. To visualize the situation the 
curves for the various stepnumbers are normalized to equal maximum 
pathlength values. The distribution of one step on the basis of the starting point 
is uniform. For the stepnumbers 2, 3, etc. the curves already show maxima and 
the value of half band width gradually decreases. The intensity of maximum 
density increases while the area under the curves, which means the number of 
photons, will of course stay constant. For one-step pathlength distribution of 
other shapes the multistep distribution varies similarly and a curve similar in 
marginal case (of Gaussian character) is obtained. 

Considering that for remission the probability of one step is the greatest, 
the shape of its distribution function is of decisive importance. This distribution 
depends on the structure of the sample, the particle size, the particle shape, the 
position of particles and on the refractive indices. In view of the fact that the 
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Fiy. 5. Density function of the stepnumber distribution of transmitted light for several layer 
thicknesses (11 = stepnumber, I intensity) 
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Fiy. 6. Density function of pathlength distribution for 1 and 2 steps for continuous steplength 
(11 = pathlength. I = intensity) 
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Fig. 7. Density function of path length distribution for 1 : 1 ratio composition of 1 and 2 steps for 
continuous steplength 
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FifJ. 8. Density functions of pathlength distribution for I- 5 steps for the uniform distribution of 
one steplength 

shape of particles and the buildup of samples is, in general, irregular, the 
pathlength distribution of one step cannot be determined by mathematical 
deduction. 

Nevertheless, modelling points out the main problems of mathematically 
formulating the spectroscopy of diffuse light-scattering media. 
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