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Abstract

Caratheodory’s postulate system is regarded as a milestone in the history of foundation of thermo-
dynamics and as one of the most elegant constructions. Entropy is introduced via the adiabatic
inaccessibility postulate. The main statement is the existence of an integrating factor for the heat
element of the first law independently of the number of variables.

The early history is nearly forgotten. Ideas leading to Caratheodory’s principle have developed
slowly from the very moment that Clausius proved his famous integral formula. Gyula Farkas, a
Hungarian physicist has already in 1895 formulated a version of the adiabatic inaccessibility postulate.
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1. Introduction

Gyula Farkas (or as his name is used in his German publications according to the
contemporary fashion in a translated form: Julius Farkas), a Hungarian physicist
and mathematician (1847–1930), was the professor of theoretical physics in the
University of Kolozsvár. In 1886 he published a paper in which he opened the way
of mathematically rigorous introduction of entropy.

Farkas lemma: In reversible processes no body or system of bodies can go
adiabatically into a state to which it can go by means of pure heat exchange, i.e. by
changing only the temperature by supplying or abstracting heat.

That lemma is a consequence of Clausius postulate of Second Law.
Farkas theorem: In reversible processes the heat elements absorbed by the

bodies always have integrating divisors, and one of them is for each body an identical
function of the empirical temperature

dS = Q/T, (1)

that is there exist an absolute entropy and absolute temperature scale (up to a constant
multiplier).

The Farkas method is not only earlier than the Caratheodory approach to
integrating multiplier, but it is superior. The Lebesgue–Riesz theorem says that the
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Farkas lemma is sufficient to prove the global existence of the absolute temperature,
as integrating multiplier – compared to the local proof of Caratheodory.

2. Integrating Factor

Caratheodory’s postulate system is one of the most elegant constructions of thermo-
dynamics. It shows that the so called adiabatic inaccessibility postulate is sufficient
to ensure the existence of an integrating factor for the heat element of the first law
independently of the number of variables. It means that d′Q can always be written
in the form: d′Q = t ds, wheret ands are functions not yet specified. It suffices
to postulate the existence of thermal equilibrium and to introduce the concept of
empirical temperature to show, that one of the possiblet functions depends only on
the temperature.

Caratheodory’s postulate system is a so called deductive system (in its time it
was even thought to be a complete one), where a most general theorem is postulated
first, and its consequences can be directly tested. This most general theorem is
the adiabatic inaccessibility. To prove the existence of entropy it is sufficient to
postulate the adiabatic inaccessibility principle for quasi-static processes (that is:
in whatever small neighbourhood of a state there are states which are inaccessible
by quasi-static adiabatic processes). To show the increasing nature of entropy one
has to consider a stronger form of the postulate (that is there are states, which are
inaccessible even by non-static processes.)

One of the most fascinating aspects of Caratheodory’s construction is that he
always makes a very clear distinction between mathematical principles and pieces
of physical experience. Being acquainted with it makes easier to understand in
retrospect the earlier discussions and judging their merits.

2.1. A Reminder of the Mathematical Tools

A differential equation of the following form is called a Pfaffian expression:

d′w = A1(x1, x2, . . . , xn)dx1 + A2(x1, x2, . . . , xn)dx2 + · · ·
+An(x1 + x2 + . . . xn)dxn. (2)

If dw is a total differential then the integral of dw is independent of the path and
the Pfaffian equation has a solution:

η(x1 . . . xn) = c, (3)

wherec is a constant. If d′w is not a total differential, in certain cases aλ integrating
factor can be found, such that

λ dw = dη = λA1(x1 . . . xn)dx1 + λA2(x1 . . . xn)dx2 + · · ·
+λAn(x1 . . . xn)dxn, (4)
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where dη is a total differential.
Johann Friedrich Pfaff (1765–1825) proved that for two variables a Pfaffian

expression always has an integrating factor. In the case of three or more variables
certain conditions must be satisfied (given relationships between the second order
partial derivatives).

In thermodynamics heat is a Pfaffian. Caratheodory has shown that the con-
dition for the existence of an integrating factor for heat can be formulated topolog-
ically. A Pfaffian in three or more variables has an integrating factor if and only
if there exist points in the neighbourhood of a given point that cannot be reached
along curves representing solutions of the Pfaffian equation.

3. Beginnings

When Clausius formulated the integral form of the Second Law, he based his rea-
soning entirely on physical considerations. One of his mainly acknowledged merits
is that he has given the law a clear mathematical form. The result can be read so
that absolute temperature is an integrating factor of the heat [5].

dS = dQ/T. (5)

That inspired other physicists to start with heat as a Pfaffian expression. To look
for an integrating divisor to show this way the existence of a conserved entropy for
reversible processes, that the integrating divisor can be identified with the absolute
temperature. This endeavour was motivated partly by the fact that they felt that the
mathematically precise use of temperature requires a bit closer examination.

The idea – to introduce temperature as an integrating factor – came at first
from ZEUNER[4]. We know his priority from Clausius, since he discussed in detail
in his book every early reaction on his own work ([5] Abschnitt XIII.). Zeuner has
shown that when the state can be specified by two variables the existence of entropy
is the consequence of the First Law. Zeuner had two main aims:

1. To deduce both the First and Second Law from the principle of the equivalence
of heat and work without using any other principle.

2. Not to use the absolute temperature as a primary concept at the beginning,
rather to define it as a result.

“Clapeyron hat naemlich, wie auch Clausius, von Anfang an die GrösseS1

als eine Funktion der Temperatur allein dargestellt. Ich habe aber vorge-
zogen, zu zeigen, dass man bei der Entwickelung beider Hauptgleichungen
keine andern Grundsaetze aufzustellen braucht, als den der Aequivalenz von
Waerme und Arbeit, und halte es für zweckmaessig, den Begriff ‘Temperatur
eines Körpers’, der sich nur schwer mathematisch scharf definieren laesst, so

1Zeuner denoted byS the integrating divisor.
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lange als möglich den vorliegenden mathematischen Entwickelungen fern zu
halten.” ([4] p. 42).
‘ . . . ist dann. . . durch die mathematisch scharf gestellte Definition der Funk-
tionSzugleich eine klare Definition desTemperaturmaasses gegeben.’ (p. 74).

Zeuner’s argumentation however was not convincing enough for Clausius. He
objected that Zeuner used a hypothesis:

‘Es ergiebt sich hieraus, dass in den Betrachtungen, welche Zeuner in der
zweiten Auflage seines Buches zur Begründung des zweiten Hauptsatzes
anstellt, als wesentliche Grundlage nur die Analogie zwischen der Arbeitsleis-
tung durch die Schwerkraft und durch die Waerme dient, und im Uebrigen
dasjenige, was bewiesen werden müsste, teils stillschweigend vorausgesetzt,
teils ausdrücklich als Hypothese angenommen wird. . .’ ([ 5] p. 369).

At first glance he is right, since Zeuner has written:

‘Wir sind daher berechtigt, den weitern Untersuchungen dieHypothesezu
Grunde legen: dass die FunktionS das wahre Temperaturmaass darstellt.’
(p. 74).

Zeuner however continued the following way:

‘und mit dieser Hypothese ist dann,wenn alle weiteren auf ihr ruhenden
Schlüsse in Übereinstimmung mit den Erfahrungen stehen, durch die mathe-
matisch scharf gestellte Definition der FunktionS zugleich eine klare Defi-
nition des Temperaturmaasses gegeben.’

Zeuner claimed to build a deductive system where the consequences of a hypothesis
are to be justified by experience. Zeuner did not notice that his result was valid only
for the case of two variables, neither Clausius objected it in his criticism, they both
just discussed a given differential expression of two variables. So we do not know
whether Zeuner hoped to generalize it or not. (Pfaff’s results were already known
by the time). We can suppose that Clausius assigned Zeuner’s surprising result to
some lack of precision (or fault) in the discussion and not to the limited validity of
the statement.

A statement about the existence of entropy in the case of two variables though
limited in its scope is not without usefulness. It is interesting to note at this point
that the construction developed by PLANCK and HAUSEN (1934) actually uses in
its proof as a tool a system of bodies characterized with two variables [8], [9]. For
completing the proof they naturally had to use another principle (the nonexistence
of perpetual motion engines of the second kind).

4. Discussion of the n-Dimensional Case

W. VOIGT, professor of Göttingen, in his book ([3] Vol. I) examined the expression
of elementary heat in the case ofn variables. He realized that the existence of an



THERMODYNAMICS OF GYULA FARKAS 21

(not specified) integrating divisor for the heat is mathematically equivalent with the
existence ofn − 1 dimensional adiabatic surfaces (which are the geometrical place
of all those states that are adiabatically accessible from a given state).

‘Jede dieser Flaechen ist der geometrische Ort aller derjenigen Zustaende,
die man von einem auf ihr liegenden Anfangzustand ohne thermische, durch
alleinige mechanische Einwirkung erreichen kann; man nennt sie kalorische
oder adiabatische Flaechen.’ (p. 502).

The isothermic surfaces are introduced as well:

‘Wenn naemlich die Variabelna,b, c, . . . den Zustand eines homogenen Kör-
pers vollstaendig angeben,so müssen sie auch seine Temperatur eindeutig
bestimmen, und daraus folgt, dass durch konstantest ein geometrischer Ort,
eine Flaeche imn-dimensionalen Raume, eine Kurve in der Ebene, gegeben
ist. Wir können also auch t als eine der neu eingeführten Unabhaengigen
betrachten.’ (p. 503).

The Clausius principle, applied in a gedanken experiment identifies the orig-
inally unspecified integrating factor with the absolute temperature. However, in
Voigt’s approach, the existence of the adiabatic surfaces is only an assumption.
Originally he wanted to make it plausible by statistical mechanical considerations,
but he did not succeed. It was left out. Gyula Farkas, a Hungarian physicist, noticed
that deficiency.

He called the Pfaffian result, and further he gave the missing proof. Voigt
in the second volume of his book, which was published later, referred to Farkas’
article. (Ergaenzungen und Berichtigungen zum I. Band. p. 803.),

‘fehlt eine Überlegung, welche begründet, dass die Gleichung dE ′ = dA′
stets einen integrierenden Faktor hat. Es war ursprünglich meine Absicht,
dies als eine Annahme einzuführen, welche durch die Entwickelungen von
S. 89 plausibel gemacht werden kann; durch ein Versehen ist die Ausführung
dieser Absicht unterblieben. Die Herren Beltrami und Farkas haben mich auf
die so entstandene Lücke aufmerksam gemacht; der letztere hat auch einen
Weg zu dem Carnot-Clausius’schen Satze angegeben, der jene Hypothese
vermeidet.’ (p. 502).

5. Contribution of Gyula Farkas

Upon reading Voigt’s book, Gyula Farkas published a paper in which he outlined his
own construction [1], [2]. He showed that the Clausius postulate (and the equivalent
Kelvin postulate) requires that the adiabatic processes on are surfaces. The existence
of adiabatic surface implies the existence of an integrating factor. To develop it,
he first introduced a new impossibility principle (Farkas Lemma), namely that it is
impossible that in a reversible adiabatic process only the temperature changes.
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He considered a system undergoing reversible changes. The state of a sys-
tem is defined byn independent state variables, one of them being the empirical
temperature,ϑ :

ϑ,a,b, c, . . .

The heat expressed with these state variables is

d′Q = θ dϑ + Ada + B db + . . . , (6)

whereθ is the heat capacity at constanta, b, c. For this system he proved the
following special form of the inaccessibility principle:

Farkas Lemma

‘In reversible processes no body or system of bodies can go adiabatically into
a state to which it can go by means of pure heat exchange, i.e. by changing
only the temperature by supplying or abstracting heat.’

That is the following process

ϑ,a,b, c . . . → ϑ∗,a,b, c . . . (7)

must not be a reversible adiabatic process.

Proof If the lemma were not true, a cyclic process could be constructed, where the
result would be that heat is transferred from a source of lower temperature to a body
of higher temperature.

Farkas formulated the following corollary of his lemma:

Corollary 1 In a quasi-static adiabatic process the temperature is always entirely
defined by the momentary values of the other state variables and it is independent
of the path.

That corollary implies the existence of the integrating factor. In quasi-static
adiabatic processes one of the independently chosenn state variables (namely the
temperature) is completely defined by the othern − 1 variables. So for adiabatic
processes then dimensional space reduces to ann − 1 dimensional one. That is the
adiabatic process takes place on a surface.

In adiabatic changes the functional relationship of the variables is an equation
of a surface:

s(ϑ,a,b, . . .) = const. (8)

or for a system of bodies:

S(ϑ,a1,b1, . . . ,ai ,bi , . . .) = const. (9)
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That is equivalent with the statement that in adiabatic changes the Pfaffian equations:

θ dϑ + Ada + B db + . . . = 0, (10)∑
i

θi dϑ +
∑

(Ai dai + Bi dbi + . . .) = 0 (11)

are integrable and the integrated forms are as follows.

for a simple system
s(ϑ,a,b, . . .) = 0, (12)

for a composite system
S(ϑ,ai ,bi . . .) = const. (13)

In adiabatic changes both ds and d′ Q disappears. Since d′ Q is not a total differential,
it must be of the form:

dQ = ϕ ds; dQ = φ dS (14)

that is there exists an integrating factor, which is defined for a simple system in the
form:

ϕ = θ/(ds/ dϑ). (15)

That approach not only proves the existence of the integrating factor, but it also
constructs it. Nevertheless the integrating factor is not unique, as alls functions in
the forms∗ = f (s) can be used as an adiabatic constant, and the new integrating
factor will be

φ∗ = φ ds∗/ ds. (16)

6. Absolute Entropy and Temperature Scales

As the last step Farkas proved that the integrating factor can be identified with the
absolute temperature.

The theorem is proved simply by applying the former result upon a system
of two bodies. Similarly as later Caratheodory did it, he considered two bodies in
thermal equilibrium. Regarding the two bodies separately, for each of them the heat
can be written as

δQ1 = θ1 dϑ + A1 da1 + B1 db1 + . . . = ϕ1 ds1, (17)
δQ2 = θ2 dϑ + A2 da2 + B2 db2 + . . . = ϕ2 ds2, (18)

and for the united system the total heat flow is the sum of the individual flows:

δQ = δQ1 + δQ2 = ϕ1 ds1 + ϕ2 ds2 = �dS. (19)
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Substitutings1 ands2 for a1 anda2 and expanding dSaccording to the new variables,
we get:

dS = ∂S

∂s1
ds1 + ∂S

∂s2
ds2 + ∂S

∂ϑ
dϑ + ∂S

∂b1
db1 + ∂S

∂b2
db2 + . . . . (20)

Comparing the two expressions for dS and taking into consideration thats1, s2, ϑ ,
b1, b2 etc. are independent variables, we can see that:

∂S

∂ϑ
= 0; ∂S

∂b1
= 0; ∂S

∂b2
= 0. (21)

That means thatS depends only upons1 ands2, and on the other handϕ1 andϕ2
depend ons1 ands2, as well as onϑ .

ϕ1 = ϕ1(s1, ϑ,b1, c1 . . .), (22)
and

ϕ2 = ϕ2(s2, ϑ,b2, c2 . . .), (23)

Their quotient must be independent ofϑ , as

ϕ1 = φ
∂S

∂s1
; ϕ2 = φ

∂S

∂s2
(24)

so

ϕ1/ϕ2 = ∂S

∂ s1

/
∂S

∂s2
= g(s1, s2). (25)

It requires thatφ is a separable function ofϑ ands, namely:

ϕ1 = f (ϑ)�(s1), (26)
and

ϕ2 = f (ϑ)�(s2). (27)

Selecting now a newS, dS∗
1 = f1(s1)ds1 and dS∗

2 = f2(s2)ds2 the resulting (new)
integrating factor will be the same function of the empirical temperature for both
systems.

Selecting now a newS in the form

d	S1 = �1(s1)ds1 (28)
and

d	S2 = �2(s2)ds2. (29)

The new integrating factor will be a universal function of the empirical temperature
for both systems.

ϕ1 = ϕ2 = f (ϑ). (30)
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That is, there is a universal temperature scale defined for all systems with the
property

δQ = f (ϑ)dS. (31)

The final form of the Farkas theorem states:

‘In reversible processes the heat elements absorbed by the bodies always have
integrating divisors, and one of them is for each body an identical function of
the empirical temperature.’

Farkas’ construction seems to lead in the shortest way from Clausius’ postulate
or from Kelvin’s postulate to the exact proof of the existence of an integrating divisor
and its identification with the absolute temperature and to the definition of an entropy
function. After he proved his lemma from the Clausius principle everything else
is shown to be mere mathematical consequence. It is interesting to note that this
construction does not exclude the negative absolute temperature.

Farkas’ paper remained unnoticed because of its extraordinary terseness.

7. Later Developments

Caratheodory’s system was regarded at its time as a complete deductive system.
P.T LANDSBERGwrites about it [7]:

‘Caratheodory’s work is often referred to as furnishing a treatment which is
axiomatic in the rigorous sense of the mathematician. However, it is clear
that his discussion is no longer satisfying because the various forms of the
third law of thermodynamics were put forward after his paper was written.’

Landsberg gives a conceptual and also a mathematical extension of Carathe-
odory’s method. His more rigorous treatment provides tools for the discussion of
the states near the absolute zero of temperature. He did not attempt a complete
separation between mathematical and physical ideas and does not regard it possible
at the present stage. However, he suggests a possible path which might be followed
in order to accomplish this separation and to create a more rigorous axiomatization.

Caratheodory’s treatment offers an abstract mathematical model of which
thermodynamics is only one of the possible interpretations.

8. Example of an Ideal Gas

Here the entropy function of an ideal gas system is derived by the method of Farkas.
For an ideal gas system we change the notations of Farkas for the common nota-
tions in the present textbooks. The empirical temperatureϑ will be T (ideal gas
temperature), anda is V (volume),b is n (mole number).
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The Poisson formula of elementary heat theorem states

δQ = ncv dT + nRT

V
dV, (32)

where� = cV , it is the heat capacity, andR is the gas constant. In an adiabatic
processδQ = 0, that is

0 = ncv dT + nRT

V
dV. (33)

Assuming thatcV > 0, andn > 0

dT

dV
= − RT

cvV
. (34)

Dividing both sides byT (assumingT > 0)

dT

T dV
= − R

cvV
. (35)

Integration yields the equation of adiabatic curves

ln T = ln kV− R
Cv , (36)

or

T V
R
cv = T0V

R
cv

0 (37)

T0 is a constant on an adiabatic surface. (It characterizes the adiabatic surface, as it
gives the temperature on the surface belonging toN0 andV0.) In the following N0
andV0 are fixed parameters, so

T0 = T V
R
cv /V

R
cv

0 . (38)

The left hand side, that isT0 will be thes-function, then

∂s

∂T
= ∂T0

∂T
= (V/V0)

R
cv (39)

and
∂s

∂V
= ∂T0

∂V
= R

cv
T V

(
R
cv

−1
)
V

− R
cv

0 . (40)

Now the integrating factor is

ϕ = �

∂s

∂T

= ncv

V
R
cv

. (41)



THERMODYNAMICS OF GYULA FARKAS 27

Expressing it withs andT one gets

ϕ = ncv

V
R
cv

= T
ncv

T V
R
cv

= T
ncv
s
. (42)

Comparing it withEq. (22) the results show that the integrating factor is the ideal
gas temperature.

f (ϑ) = T (43)
and

ψ (s) = ncv
s
. (44)

That is dS = φ(s)ds.

The entropy function is

S =
∫
ψ ds = ncv ln s = ncv ln T V

R
cv + g (n) , (45)

whereg(n) is function ofn. The demand for homogeneous linearity ofS defines
the functional form ofg(n), and the final form of entropy is

S= ncv ln T V
R
cv − ncv ln n

R
cv = ncv ln T

(
V

n

) R
cv

. (46)
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