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Abstract

A quantitative measure of order, called extropy is introduced.
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1. Introduction

The entropy principle is the product of a long attempt to find an adequate quantitative
expression defining the directional properties of natural processes. Time arrow can
be formulated so that entropy within an isolated system never decreases. A great
success of the entropy approach is classical thermodynamics, a theory describing
systems in equilibrium or undergoing quasi-static processes. But the entropy de-
fined by the Clausius inequality is an abstract concept. Mainly its increasing nature
is used.

Classical thermodynamics introduces entropy via the concept of heat. The re-
sult is a unique absolute entropy function. Nevertheless there are other approaches,
namely statistical physics, or constructive thermodynamics (TISZA [1]; CALLEN
[2]), which allow for a broader class of functions expressing the unidirectionality
of processes. FOWLER [3] noticed that the statistical physical definition of entropy,
logically founded on its increasing property, is not unique. ‘The identification of
S andk log W is based on an analogy, correct enough so far as it goes, but insuffi-
ciently deep. For it is tacitly assumed that the entropy is the only function of the
state of the assembly which has this increasing property.’ Fowler showed that any
function defined by

P = k log W + K U, (1)

whereW is the thermodynamic probability,K is an arbitrary constant, andU is
the internal energy, has the same increasing property, and a maximum at the same
position, as statistical entropy. We have no a priori reason for preferring one value
of K to any other. He calledP ‘ekaentropy’, and concluded that one needs an
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additional postulate in statistical physics to arrive at the thermodynamic entropy.
This additional postulate can be in the form

dS = �Q

T
, (2)

that is, we have to demand in the statistical derivation of the entropy that ‘in a
quasi-static adiabatic process the entropy does not change’.

Fowler’s conclusion was: ‘the use of functions with the increasing property
can apparently never lead to precise results without an appeal toδQ. If this appeal
has to be made in any case, the method of approach by the increasing property loses
any possible advantage over the classical method.’

There are other techniques to eliminate the arbitrariness, that is to fix the
required value for constants. These constants define the position of absolute maxi-
mum for entropy [8]. A further postulate, which fixes the position of the absolute
maximum of entropy is sufficient. The statement in the form, that temperature
goes to infinity when the energy density tends to infinity, has the same effect as the
Clausius postulate. Instead of the Clausius postulate, it is sufficient to prescribe
that

lim
U/V→∞

∂S

∂ E
= 0.

The use of functions with the increasing property leads to precise results without
an appeal toδQ. The method of approach by the increasing property has some
advantage over the classical method. There is no need for the concept of quasi-
static process during the construction of the theory. Similarly, the concept of heat
is not needed as a basic quantity. Further, these free constants open a way to find
new functions to describe the irreversible nature of processes.

It will be shown below that there is another ‘physically sound’ set for the free
constants, which lead us to a new formulation of the Second Law, fitted for systems
in a uniform environment (reservoir). There is one function from the ‘ekaentropy’
family, called by us ‘extropy’, which on the one hand has the same mathematical
properties as the entropy, on the other hand, it has an important conceptual advan-
tage, namely it quantifies the colloquial notions of ‘close to equilibrium’ and ‘far
from equilibrium’. Time arrow can be formulated so that in a uniform environment
the extropy of any system never increases.

Extropy was introduced first for environmental investigations [4]; originally, it
was called ‘� – potential’. The name was changed later to extropy [5] to emphasize
the close relation to exergy. In the Appendix a short introduction to exergy concept
is presented.

2. Entropy

In classical thermodynamics entropy is introduced via the concept of heat. The
word entropy was introduced by CLAUSIUS [6]. Its root is the Greek wordτρoπη



EXTROPY – REFORMULATION OF THE ENTROPY PRINCIPLE 31

meaning ‘transformation’. Entropy change is defined as being equal to the reversible
flow of heat into the system, divided by the temperature of the system, i.e.,

�S =
∫

rev

δQ

T
, (3)

whereδQ is the heat transferred to the system at temperatureT in a reversible
process.

In natural processes the entropy increase is always higher than the thermal
term, i.e.,

�S ≥
∫

δQ

T
(4)

and the equality sign is valid only for reversible processes.
Entropy has the following properties:

i) As δQ = dU − p dV − ∑
i µi dNi from this we get

dS = 1

T
dU + p

T
dV +

∑
i

µi

T
dNi . (5)

It means that the entropy depends on extensive variables.S can be written as
a function of extensive variables:

S = S(U, V, N) = S(X1, . . . , Xn), (6)

whereXi are extensive variables, and

∂S

∂ Xi
= Yi , (7)

whereYi are the intensive variables.
ii) Entropy can be written as a sum of bilinear products of extensive and intensive

variables,

S = 1

T
U + p

T
V +

∑
i

µi

T
Ni . (8)

iii) The entropy of a system is the sum of entropies of its parts. In this respect
entropy is similar to mass, volume and energy. Entropy is an extensive
variable.

iv) In isolated systems entropy never decreases.

From properties iii and iv follows, that if systemsA andB are in equilibrium
then

Y A
i = Y B

i (9)



32 K. MARTINAS and M. FRANKOWICZ

that in equilibrium the intensive variables have the same value in all subsystems.
The stability of equilibrium state is defined by the positive definitivity of the entropy
matrix,

gik = − ∂2s

∂xi∂xk
, (10)

wheres = S/V andxi = Xi/V .
The above listed properties are almost sufficient to define the entropy function.

Herbert CALLEN in his book, first published in 1961 [2], gave a constructive ap-
proach to thermodynamics without the concept of heat and the concept of adiabatic
processes. His postulates are as follows:

Postulate I. There exist particular states (called equilibrium states) of simple sys-
tems that, macroscopically, are characterized completely by the internal en-
ergyU , the volumeV , and the mole numbersN1, N2, . . . , Nr of the chemical
components.

Postulate II. There exists a function (called the entropyS) of the extensive param-
eters of any composite system, defined for equilibrium states and having the
following property: The values assumed by the extensive parameters in the
absence of an internal constraint are those that maximize the entropy over the
manifold of constrained equilibrium states.

Postulate III. The entropy of a composite system is additive over the constituent
subsystems. The entropy is a continuous and differentiable function and is a
monotonically increasing function of the energy.

Postulate IV. The entropy of any system vanishes in the state for which

dU

dS
= 0. (11)

It is easy to show that the Clausius entropy fulfils the requirements of the postulates.
However, as it was shown [7, 8], these postulates are not sufficient to yield a unique
entropy function. They define only a family of functions, and one member of that
family is the entropy. We call the members of that function family ‘ekaentropies’
(like in statistical physical case treated by FOWLER [3]).

Properties of an ekaentropy function:

a. From Postulate I it follows thatP is a function of extensive variables:

P = P(U, V, N). (12)

b. the additivity property states thatP of a composite system is merely the sum
of the ekaentropiesPα of the constituent subsystems.

P =
∑

α

Pα. (13)
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The ekaentropy of each subsystem is a function of the extensive variables of that
subsystem alone. The additivity property requires the following property: The
ekaentropy of a simple system is a homogeneous first order function of extensive
parameters. That is, if all the extensive parameters of a system are multiplied by a
constantλ, the ekaentropy is multiplied by the same constant.

P(λU, λV, λN) = λP(U, V, N). (14)

The differentiability property implies that the differentials exist. Differentiating by
λ, and taking the value atλ = 1 we get.

P =
∑

i

∂ P

∂ Xi
Xi (15)

and

dP =
∑

i

∂ P

∂ Xi
dXi . (16)

The first partial derivatives are

∂ P

∂ Xi
= �i , (17)

where�i are ekaentropic intensive parameters. They are zero-th order functions of
the extensives. Postulates II and III demand that the ekaentropic intensive variables
for systemsA andB are equal if and only if they are in equilibrium.

In equilibrium stateP(A + B) = P(A) + P(B), that is

�A+B
i X A+B

i = �A
i X A

i + �B
i X B

i . (18)

In equilibrium state�A+B
i = �A

i = �B
i ; all the ekaentropic intensive parameters

are homogeneous. Ekaentropic intensive parameters must be strictly monotonous
functions of the entropic ones,Yi ,

�i = �i (Y1, Y2, . . . , Yn−1). (19)

Every strictly monotonous function of the entropic intensive parameters is an ‘em-
pirical intensive’ parameter, but not all of them are ekaentropic intensive variables.
�i is an ekaentropic intensive variable if it is the first derivative of ekaentropy, so
the second derivative matrix of ekaentropy must be a symmetric one.

Pik = ∂2P

∂ Xi∂ Xk
= ∂�i

∂ Xk
= Pki . (20)

Pik can be expressed by the help of the entropy matrix:

Pik =
∑

l

∂�i

∂Yl

∂Yl

∂ Xk
= −

∑
l

�il Slk, (21)
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where

Sik = − ∂2S

∂ Xi∂ Xk
(22)

is the entropy matrix, and

�il = ∂�i

∂Yl
(23)

is the transformation matrix. We get, that all the functions of the form

�i =
∫ ∑

k

�ik dYk + �i0 (24)

are ekaentropic intensive variables, if�ik satisfy the condition:
∑

l

�il Slk =
∑

l

�kl Sli . (25)

When one investigates only one type of systems, then there may be several solutions.
In case of an ideal gas the entropy matrix elements are:

S11 = − cv

T 2
,

S12 = s21 = 0,

S22 = − 1

R
(p/T )2.

Every�1 = �1(T ), where d�(x)/ dx < 0 and�2 = �2(p/T ), where d�(x)/ dx >
0 leads to a valid ekaentropy. Nevertheless, if we require it for any composite system,
then ∑

l

�il Sα
lk =

∑
l

�kl S
α
li (26)

for every subsystem (α = 1, . . . , r) r is the number of different subsystems. That
property, after a lengthy calculation [10], leads to a more restricted� function. If
r ≥ 3, then

�i = KYi + Ki , (27)

where constantK defines the unit of ekaentropy.Ki transforms the zero point of
intensive variables, ifKi �= 0, then the ekaentropy does not coincide with entropy.
Let us assume that onlyK1 �= 0, then

dP = dS + K1dU, (28)

that is in a quasistatic adiabatic process the ekaentropy will change, while the en-
tropy remains constant. To eliminate that discrepancy a further postulate is needed.
One of the possibilities, as it was proposed by GUGGENHEIM [7] is to add that ‘in
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a quasistatic adiabatic processP does not change’. There are two problems with
that addition.

First, that postulate assumes a clear distinction between heat and work. Nev-
ertheless, it is not always the case. As MALLINCKRODT and LEFF[11] have shown,
it can be difficult to make a clear distinction between heat transfer and mechanical
work at a surface.

On the other hand that addition destroys the logic of Callen’s system, refrain-
ing from the notion of heat as a primary concept.

Another possibility is to set the position of the maximum ofP to the same
values of extensive variables, as in case of entropy. Entropy as a function of energy
tends to maximum forU, T → ∞. The postulate, which givesK1 = 0, and is in
harmony with other Callen postulates is:

lim
U/V→∞

∂ P

∂U
= 0. (29)

It expresses the inaccessibility of infinite temperature for systems without upper
bound on energy density.

It is worthwhile to mention, that in case of upper bound, as for nuclear spin
systems, the above postulate allows the appearance of negative temperatures. In
postulate III Callen demanded the positivity of temperature, but that property was
not needed in the derivation. It can be eliminated from the postulate. The price of it
will be, that the entropy-energy function can be inverted separately in the positive
and in the negative temperature regime.

Entropy as a function of volume tends to maximum forV → ∞ and p → 0.
The postulate, which givesK2 = 0, and is in harmony with other Callen postulates
is as follows:

lim
V/U→∞

∂ P/∂V = 0. (30)

This postulate states the inaccessibility of zero pressure state for systems without
upper bound on volume. This postulate allows for the appearance of negative abso-
lute pressure states in systems with upper bound on volume. They were observed
in liquids and in the quark matter. (For the literature on systems with upper bound
on energy and volume see [12, 13]).

3. Extropy

Besides entropy, we can choose another function from the ekaentropy family with
great physical significance. As in physics equilibrium states are of special interest,
we may look for such ekaentropy, whose maximum corresponds to the equilibrium
state of the system. If we select

Ki = −Yio, (31)
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then
P =

∑
(Yi − Yio)Xi (32)

and
∂ P/∂ Xi = Yi − Yio. (33)

It will be zero, whenYi = Yio, that is extropy will take its extremum value in the
equilibrium state.

There are two classes of systems which can attain equilibrium:

• isolated systems,
• systems embedded in a reservoir with fixed values of intensive parameters.

In the first case, the initial values of state variables define the equilibrium
values of the intensive parameters

P = S − So, (34)

that is the difference of the initial and final (equilibrium) entropy.P is just
the negative of the Brillouin negentropy,N [16].

In case of systems in a reservoir, the equilibrium values of intensive variables
of the system will be equal to those of the reservoir,Yio. In that caseP can be
interpreted as the total entropy increase during the equilibration process. As the
reservoir’s entropy isSr = ∑

Yio Xir , P can be written as

P =
∑

Yi Xi +
∑

Yio Xir −
∑

Yio(Xi + Xir ). (35)

The first two terms give the initial entropy of the system and reservoir. The third term
is the final (equilibrium) entropy. The system and its reservoir together constitute
an isolated system, so ekaentropy never decreases, and in equilibrium it is zero.
The ekaentropy is negative. To avoid the problems arising from the handling of
negative quantities, we introduce extropy as the negative of ekaentropy,

� = −P, (36)

� =
∑

(Yio − Yi)Xi . (37)

Extropy has the following properties:

1. � ≥ 0, it is non-negative; it is zero in the equilibrium state.
2. Extropy depends on extensive variables

� = �(U, V, N) = �(X1, . . . , Xn), (38)

whereXi are extensive variables, and

∂�

∂ Xi
= (Yio − Yi), (39)

whereYio − Yi are the extropic intensive variables.



EXTROPY – REFORMULATION OF THE ENTROPY PRINCIPLE 37

3. Extropy can be written as a sum of bilinear products of extensive and intensive
variables,

� =
(

1

T0
− 1

T

)
U +

(
p0

T0
− p

T

)
V +

∑
i

(
µio

To
− µi

T

)
Ni . (40)

4. The extropy of a system is the sum of extropies of its parts. In this respect
extropy is similar to mass, volume and energy and entropy. Extropy is an
extensive variable. When systemsA and B are in the same reservoir, then
�A + �B ≤ �A+B .

5. In isolated systems and in systems embedded into a reservoir extropy never
increases.

6. Extropy is a measure of disorder. Peter LANDSBERG[18] proposed a measure
for the degree of disorder. This measure is defined only for isolated systems,

η = S0 − S

S0
, (41)

η = 0 in equilibrium systems. In a totally ordered state (S = 0) η = 1. In
isolated systems the relation of extropy and Landsberg’s measure is:

� = Soη

while η is an intensive characteristic of order,� is an extensive, additive
measure. A more important difference is, that Landsberg’s measure does not
reflect the order appearing in the difference from the equilibrium. A golden
ring hasη = 0, but it is not considered as a disordered system. Extropy
resolves that problem.

4. Appendix: Exergy

The name exergy (German: ‘Exergie’) arose first among German power station and
refrigeration plant engineers. A Slovenian engineer, Z. Rant proposed the word
‘Exergie’ in 1953 in LINDAU [19]. Exergy is widely used in the engineering practice
as a very useful tool for investigating the plants for efficiency [20]. Szargut gave
the following definition for exergy: ‘Exergy is the amount of work obtainable when
some matter is brought in a state of thermodynamic equilibrium with the common
components of the natural surroundings by means of reversible processes, involving
interactions only with the above mentioned components of nature.’ Exergy is the
theoretical maximum useful work that is obtainable from a well-defined quantity
of matter by bringing it to thermodynamic equilibrium with its surroundings. In
this definition, it is assumed that the surroundings are capable of supplying or
absorbing unlimited amounts of heat at temperatureT0 and of doing or receiving
unlimited amounts of expansion work at pressureP0. The maximum available work
is calculated by comparing the initial and final equilibrium states [21].
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5. Conclusions

The extropy decrease principle is equivalent to the entropy increase principle for-
mulation of the Second Law. In the definition of extropy we take into account
the reservoir variables; we lose universality (the environment appears in the char-
acterization of our system), but we can quantify colloquial notions of ‘close to
equilibrium’ and ‘far from equilibrium’. Therefore the extropic approach can be
viewed as an ‘operational’ tool to deal with real non-equilibrium natural systems.

Acknowledgement

The work was sponsored by OTKA T 029542.

References

[1] T ISZA, L., Generalized Thermodynamics, MIT Press, Cambridge, MA, 1966.
[2] CALLEN, H., Thermodynamics, Wiley and Sons, N.Y., 1960.
[3] FOWLEr, R.,Statistical Mechanics, 1936.
[4] AYRES, R. U. – MARTINAS, K., Waste Potential Entropy: The Ultimate Ecotoxic,Economie

Appliquée XLVIII 2, (1995), p. 95120.
[5] M ARTINAS, K.: Entropy and Information,World Futures, 50 (1997), p. 483.
[6] CLAUSIUS, R., Abhandlungen über die mechanische Wärmetheorie I., Vieweg und Sohn,

Braunschweig. 1864.
[7] GUGGENHEIM, E. A.,Proc. Phys. Soc. (B) 79 (1962), p. 1079.
[8] M ARTINAS, K., The Completion of the Callen’s Postulate System,Acta Phys. Hung., 50 (1981),

pp. 121–124.
[9] M ARTINAS, K., On the Callen’s Postulate System,Atti Accademia Peloritana dei Pericolanti,

Messina,60 (1992), pp. 169–182.
[10] LUKÁCS, B. – MARTINÁS, K., The Callen’s Postulates Define the Riemann Metric,Phys. Letts.,

114A (1986), p. 306.
[11] MALLINCKRODT, A. J. – LEFF, H., S., All about Work,Am. J. Phys., 60, pp. 356–365.
[12] LUKÁCS, B. – MARTINÁS, K., Acta Physica Polonica, B21 (1990), p. 177.
[13] IMRE, A. – Van HOOK, W. A., J. Polym. Sci. B, 32 (1994), p. 2283;
[14] HOLBROOK, N. M. – BURNS, M. J. – FILED, C. B.,Science, 270, p. 1193; SCHERER, G. W.

– SMITH , D. M., J. Non-Cryst. Solids, 189 (1995), p. 197; STEUDLE, E.,Nature, 378 (1995),
p. 663;

[15] IMRE, A. – Van HOOK, W. A., J. Pol. Sci. B, 37 (1997), p. 1251.
[16] BRILLOUIN, L., Science and Information Theory, Academic Press, New York, 1956.
[17] LEBON, G. – JOU, D. – CASAS-VAZQUEZ, J., Questions and Answers about a Thermodynamic

Theory of Third Type,Contemporary Physics, 33 (1992), pp. 41–51.
[18] LANDSBERG, P. T., Can Entropy and ‘Order’ Increase Together?,Phys. Lett., 102A (1984),

p. 171.
[19] SZARGUT, J. – MORRIS, D. R. – STEWARD, Frank R.,Exergy Analysis of Thermal, Chemical,

and Metallurgical Processes, Hemisphere Publishing Corporation, NY, 1988.
[20] MALASKA , P. – KAIVO -OJA, J., Science and Technology for Sustainable Development,Int.

Congress of Engineers and Scientists, Challenges of Sustainable Development, Amsterdam,
1996. 22-25 August.

[21] EVANS, R. B., A Proof that Essergy is the Only Consistent Measure of Potential Work, Ph.D.
Thesis, Dartmouth College. University Microfilms, Ann Arbor, Michigan.


	Introduction
	Entropy
	Extropy
	Appendix: Exergy
	Conclusions

