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Summary 

The exponential energy distribution is a general feature of many particles and does not 
necessitate the assumption of quantized energies or the case of the most probable distribution. 

The average energy is equal to ~ kT if it is a quadratic function of a variable over which the 

integration average is calculated and if it is distributed among three components. The 
expressions of entropy, distribution numbers belonging to the most probable state for solids and 
gases and Boltzmann's constant k can be interpreted solely on the basis of non-quantized 
energies. An application: Transmission coefficient occurring in the theory of absolute reaction 
rates can be calculated from the deduced formulae supposing that all normal vibrations of the 
activated complex can share the energy with equal probability. 

Introduction 

The classical approach to statistical theory preceded its treatment taking 
quantized energies into consideration. It is generally said that "using the 
principle that an ensemble is described by the condition of maximum 
probability, it is possible to show that probability depends on energy u as the 
familiar exponential e -ujkT" [la]. On the other hand the average kinetic energy 
of a gas molecule can be determined using Liouville's Theorem which is based 
on Cartesian coordinates and conjugate momenta. Coordinates and momenta 
build the phase space suitable for the description of dynamical problems. The 
present paper approaches the problem of the exponential distribution of energy 
and energy averaging from a different angle. 

Energy distribution among particles 

Non-quantized energy can be distributed among particles in infinitely 
many different ways so that the concept of the number of energy distributions 
has no meaning. One may however introduce, an arbitrarily small energy (eo) 
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and the energy is taken to be the integral multiple of this quantity: V = vc:o. (The 
total energy V and the energies of particles should be expressed by the energy 
unit u multiplied by a rational number given with an accuracy of n arbitrary 
great number of decimals. In this case C:o = lO-nu, and if V = ku where k is the 
rational number characterizing the total energy, v = lOnk.) Let us take an 
example: energy is distributed among three particles so that the energy of the 
first particle would be 5c:o, that of the second 3c:o and the third would possess 2c:o 
energy. v = 10. This distribution can be schematically denoted as fDHows: 

N C:oC:oC:oC:oC:oN C:oC:oC:oN C:oC:o. The total number of distributions would be 1~~~! . 

(The scheme has to be initiated by a particle i.e. by the letter N whose position is 
therefore fixed.) In a general formula: 

Q= (v+N -l)! 
v!(N-l)! 

(1) 

As v is an arbitrary great number, irrespective of the number of particles, 
v ~ N, hence approximately: 

"N-1 VN-1 
Q= ' 1-1\ 

'(N_1)!=C:o ' (N-l)! (2) 

Let us examine what is the probability that the energy of the i-th particle 
falls between C: i and C: i + C:o. In this case V - C: i is shared among the other particles 
and the number of distributions is: 

Q _ 2 N (V - c:;)'V - 2 
i-C:O (N -2)! (3) 

The probability is the ratio of Eq. (3) and the number of all distributions i.e. Eq. 
(2): 

1 Qi = ~ d Ni =(N -1) (1-c:jVt-
2 

C:o Q N d V V 
(4) 

If N is large that is V~C:i:(1-C:jV)N-2::::;exp[ -(N-2)~ }:::;;exp ( -~) 
where e is the auerage energy. Thus: 

1 d N· .­
N d V' =(l/f)e -C'I" (5) 

This mean energy is an auerage obtained by iritegrating over the energies: 
x 

f e c,cd C: i == e. As it is seen the energy distribution has an exponential character 
o 
and nothing was stated about the most probable distribution. 
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Energy distribution among systems (Gibbs-statistics) [2J 

Let us regard many uniform systems containing equal numbers of 
particles. What is the probability that the energy ofthej-th system falls between 
V j and V j + d V. The energy V j of a system is built from the energies cij of 
particles and the probability is the product of those belonging to single 
particles: 

1 dn, "'-" ,.­
~. d J =(I/fSj)e- 7 £ij/f.=(1/f"j)e vpf. (6) 

Systems have, however, a structure, i.e. they consist of particles among 
which the energy can be distrijJuted in different ways [3aJ so that Eq. (6) has to 
be mUltiplied by the numbers of distributions within the systems (Eq. (2)): 

1 dn. Vi~rl. , _ 
_ ._J =A J (l/fNj)e-lj!f. 
n d V (Nj-I)! 

where A is a normalizing factor. As the sum of probabilities equals 1: 

'X.. 

S Vj'i j 1 e Uj/i" d Vj=f'ij(Nj-I)! so that: 
o 

A=I 

Hence the probability of a system having energy Vj is: 

1 d n. VNj 1 • , _ 
_ • __ J = J (l/fi\j)e-Up£ 
n d V (N j -I)! 

'X.. 

(7) 

(8) 

(9) 

(10) 

f (~~~-11)! e-Uj!<d Vj=iVj thus in the case of energy distribution among 

o 
systems the partitionfunction integrated over the energy is given by fN. Attention 
is called to the fact that partition functions in Eq. (5) and (10) are not 
dimensionless. On the other hand partition function of systems is just the N -th 
power of that of particles. 

Energy distribution among gaseous systems 

Eq. (10) refers to systems in which the particles are distinguish­
able. E.g. the distribution N 80 80 8080 8 0N 80 8 0 80N 8080 is distinct from 
N CoC0808080N 8080N C08080. All distribution 5-3-2 were taken into con-

2 Periodica Polytechnica Ch. 29/3 
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sideration 3! times which can not be done if the particles are indistinguishable. 
Therefore the number of distributions of gaseous systems has to be divided by 
N!: 

(11) 

In the case of gaseous systems N! appears in the denominator of Eq. (7) so 
that the normalizing factor is instead of Eq. (9): 

(12) 

and instead of (10): 

1 d 

n d U 
(13) 

f (Nj_l~!lN) e- Uj
!£ d Uj=[Sj/N) from which is follows that the partition 

o 
fimction of gaseous systems is the N-th power of the partitionjimction belonging 
to particles, divided by N.'. Let us denote the partition function of particles by q 
and that of systems by Q, then the corresponding expressions are: 

(14) 

Energy fluctuation of systems 

If, by means of a fixed temperature, the overall energy of very many 
systems is determined, the energy of an individual system may be different 
according to Eq. (10) and (13). Let us examine now the most probable 
distribution by differentiating Eqs (10) or (13). We obtain for the most probable 
energy: 

Umax =(N -1)[ (15) 

that is if N is sufficiently high it is N times greater than the average energy. 
The second derivative provides information about the width of the 

maximum curve. Hence the energy values at the inflexion points of the curve 
are equal to: 

Uinfl=[(N -1 ±~) (16) 
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and the uncertainty of energy as measured by the distance between the 
inflexion points is: 

I1V=2f IN -1 ( 17) 

Figure 1 shows the energy distribution of a system in the case of different 
number of particles. If the quantity of the substance is one mole, the most 
probable energy amounts to 6· 1023 f. its uncertainty to 1.5· 1012 f. whose 
relative value is then 2.5' 10 12. It is impossible to measure temperature with 
such an accuracy. 

An example: The probability of breaking up a chemical bond or that of a 
transition of a libration into internal rotation. If a molecule contains the 
dissociation energy necessary to break one of its bonds the event requires also 
that this energy should be concentrated in the degree offreedom of a stretching 
vibration of the corresponding bond. For the sake of simplicity let us assume 
that all normal vibrations could share this energy with equal probability. 
(Generally higher and lower normal frequencies equally occur in the molecule 
so that this assumption does not cause a significant error.) 

In the present case energy is distributed not among particles but among 
normal vibrations. The probability of the presence of dissociation energy D can 
be calculated by integrating Eq. (10) from D to x; and dividing it by the same 
integral from 0 to x: 

x 
S Vs-le Ui:d V 
D PI = -x------

S U' le u'd V 
o 

(18) 

where s is the number of normal vibrations. The denominator equals ?(s - I)! 
The numerator: 

D 

(D/f)S- 2 ] 
+ + ... +D/f+ 1 . 

(s - 2)! 

Upon substitution into Eq. (18): 

P = e Dj£ 0) + /0) + ... + D/f + 1 . 
_[ (D/ifls - I (DiflS - 2 ] 

I (s-l)! (s-2)! 
( 19) 

(If the number of normal vibrations is very high e.g. in a crystal, the distribution 
curve is very sharp according to Eq. (16) and then, if D < f the expression in 
brackets tends to eD!' thus P I to 1. The result is trivial: if the dissociation energy 

7* 
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is smaller than the a verage energy of a normal vibration it is certainly possessed 
by the crystal. Figure 1 shows that the whole probability area which equals J, 
lies at higher energies than D indicated by an arrow if the crystal possesses at 
least 1000 normal vibrations.) 

Fig. 1. Energy distribution of systems containing different number of panicles. Ordinate values 
are arbitrary_ ;: is the average energy of very many identical systems. For D. see text later 

If the energy of one normal vibration falls between D and D + eo the other 
normal vibrations have to share the energy U D. The ratio of the distribution 
numbers (see Eq. (2) and (3)): 

J Q; (U-D)' 2 

=(s-J) -·'1'- f-
Go Q u 

The condition of concentrating the dissociation energy is fulfilled, however, if 
the selected normal vibration has more than the dissociation energy and the 
other ones have correspondingly less. So that: 

U· U 

P = Q. d G' = . (U - D)' 2 d I' = --1 f s - J f ( U - D)S 1 

2 GoQ !. Us 'u (20) 

D D 

(If D ~ U, P 2 = e - (s - 1 )D/U = e - Dji: that is if there are very many normal 
vibrations the probability P 2 becomes independent of the distributions among 
the other normal vibrations.) 

If we are not talking about the breaking of a bond but about the 
transition ofa libration into internal rotation the height of the potential barrier 
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has to be inserted into the formulae instead of dissociation energy. The overall 
probability is then: 

K pp _ -DIE\, I") 
(

U-D )5-1 ,_5-1 (Dlfli 
1 2- --- e .L. -.-,-

U 1=0 l. 
(21 ) 

(K can be interpreted as the transmission coefficient in the theory of absolute 
reaction rates. [3c] Figure 2 denotes the dependence of K on different DjU 
ratios for different numbers of normal vibrations. 

l< 
1.01'"""=:--_ 

0.5 

0.Q1 0.Q2 0.05 0.1 0.2 0,5 08 DIU 

Fig. 2. Probability of bond breaking or of transition from libration into internal rotation. D is the 
energy of bond breaking or the height of the potential barrier. U is the energy of the molecule or 

crystal. Different curves refer to different numbers of normal vibrations 

Average kinetic energy of gaseous molecules 

As it was formerly mentioned e is a mean energy integrated over energy. 
According to Liouville's Theorem [1 b], however, kinetic energy of gas 
molecules has to be averaged by momenta. Kinetic energy: T = p2 j(2m) where 
the momentum p of every molecule has three components and the kinetic 
energy can be distributed among these components. Using quantum theory, T 
=n2h2j(8ma2) [3d] for one component. Applying a uniform treatment, the 
kinetic energy is a quadratic function ofa variable and is distributed among three 
components. Let us denote this variable by r, then: 

T=br2. (22) 
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The number of distributions among the three components according to 
Eq. (2) is: 

1 r-
Q=IXrT (23) 

(1Xr stands for eo 1) and the probability of particles belonging to variable r: 

(24) 

where A is again a normalizing factor. (If r is the velocity c and b equals m12, 
then following the determination of the normalizing factor one obtains the well 
known Maxwell velocity distribution where kTstands for e [3c].) The average 
energy integrated over the variable r: 

x 
b J r4e- br1

/i" d r 
er = -x-

o----­
J r 2e- br2 /i"dr 
o 

, x 
The numerator equals (3e/2) J r 2e br2ji" d r, hence: 

o 

(25) 

(26) 

This expression holds not only for the translational kinetic energy of molecules 
but also for the rotational energy which is equally a quadratic function of a 
variable (quantum number). Maxwell's classical theory yields the same average 
kinetic energy expression as the later quantum theory because the momenta of 
the phase space are linear functions of the quantum number. 

Entropy 

In the case of many particles N - 1 In the expreSSIOn of Q can be 
substituted by N: 

(27) 

In logarithmic form: 

In Q = - N In {eo} + N In { U} - N In N + N (28) 
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If the energy of the system is increased by d U: 

din Q N --1 
--=-=8 
dU U 

(29) 

Hence the differential of the entropy: 

dU 
dS= T =(e/T)dlnQ (30) 

We may suppose that the average energy integrated over energy is 
proportional to the temperature: 
e=kTand: 

d S=k d In Q (31 ) 

Let us integrate this equation from T = O. At 0 K there is no thermal 
energy so that Eq. (2) does not hold. Instead of this one can use Eq. (1) taking v 
as equal to O. It means that at 0 K, Q= 1. The thermal entropy: 

Sth=klnQ (32) 

Let us write now the partition function of systems defined by the integral 
following Eq. (10) but supposing very many particles when the distribution 
curve (Fig. 1) is very sharp and the sum of states can be substituted by only one 
term belonging to the maximum: 

(33) 

where U m is by far the most probable energy and Qm is its distribution number. 
From Eq. (32): 

(34) 

where A is the free energy, J1 the chemical potential of a particle,;. is the absolute 
activity of a homogeneous system. [5J 

state: 
From Eq. (33) the distribution number belonging to the most probable 

U 
In Q=ln Q+ kT (35) 

Introducing the partition function of particles, according to Eq. (14) for 
solids: 

U U 
InQ=Nlnq+ kT and Sth=Nklnq+ T (36) 
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and for gases: 

In Q = N In q - N In N + N + k~ = N (In ~ + 1) + k~ 

and Sth=Nk(ln ~ +1)+ ~ (37) 

The same expressions can be derived starting from quantized energies and 
using the Maxwell-Boltzmann and Bose-Einstein statistics, respectively, 
similarly supposing the most probable state. [6J 

What is the meaning of eo and k? If only energies which are mUltiples of eo can 
occur in a system the partition function may be composed as a sum: 

x 

q= I e-ito/kT = l/(l-e-to!kT)~kT/eo (38) 
i=O 

For a gas system: Q = (kT/eof'/N!. According to Eq. (34) the free energy: 

At constant temperature: 

kT 
A= -NkTln- - In N! 

eo 

d AT = - P d V = N k T d In eo and 

p -NkT( a In eo) av T 

(39) 

(40) 

(41) 

If eo is an arbitrarily chosen small energy Eq. (41) cannot have any sense. 
In this case, namely, not only eo is an arbitrary quantity but also partition 
function q. If, however, q can be fixed by a physical model, for example by the 
molecular partition function of a perfect gas, belonging to physically quantized 
energies, eo would be arbitrary neither. In this case: 

kT 
( 

2rcmkT )3/2 
h2 V, hence: (42) 

(43) 

The system where all energies occur which are multiples of eo is still a 
mathematical model. But if its partition function is equal to the expression in 
Eq. (42) eo is inversely proportional to the volume. 



SIMPLE INTRODUCTION 163 

In this case dIn 80 = -d In Vand substituting it into Eq. (41): 

NkT N kT p= __ =n_A _ 

V V 
(44) 

Comparing Eq. (44) to the law of perfect gases (p=nRTjV) we obtain that 
k=.=RjN A • 
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