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Summary 

Mathematical foundations for the numerical solution of the equations describing a 
continuous chromatographic column are discussed. The method developed is applicable to 
other sets of ordinary non-linear differential equations with non-linear boundary conditions. A 
complete storage and retrieval system has been created to save intermediate and final results. 
Methods to obtain first approximations are given. 

Introduction 

In previous parts of this series [1, 2J the differential equations and 
boundary conditions have been given for different types of continuous 
chromatography. In this section the mathematical problems and methods of 
numerical solution are discussed. 

Since neither the equations nor the boundary conditions are linear, 
analytical solutions are out of the question; not even a direct numerical 
integration (e.g. Runge-Kutta) can be applied. Some iterative method must be 
chosen and, in our case, the choice was limited by a rather small operative 
memory. A method proposed by Bakhvalov [3J has been chosen and adapted, 
and it proved to be so useful that it has been kept even when memory problems 
had been solved. 

When writing algorithms, generality, versatility and adaptability were 
kept in view. A modular program system has been built up, with separate 
modules for the equations and the boundary conditions. Any modification, 
improvement in them entails only the correction of the appropriate module. 
Completely different problems can also be solved if one replaces these modules 
by new ones relating to the new problem. 
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Principle of the method (3] 

Let be given a set of equations 

y' = F(x, y) (1) 

where y, y' and F are vectors of m dimensions, x E [0, 1] is the independent 
variable, and let be given an approximation to y, Yn • The next approximation 
Y n + 1 is calculated from the linear set of equations 

(2) 
where 

(Newton's method). y must satisfy the boundary conditions, temporarily taken 
for linear ones: 

B· Y (O)=b 
C'y(1)=c 

Band C are matrices, band c are vectors. 

(3) 
(4) 

To compute Yn + 1 from Eq. (2) one needs the values of Yn for a great 
number of x values, and this necessitates a large space of storage. In order to 
save memory, Y n is stored only at a limited number of Xi values, not necessarily 
equidistant: 

and Yn is substituted for a function Yn' calculated - if necessary - at the 
intervals [Xk - 1 , x k) by numerical integration of Eq. (1) with initial conditions 
Y n (Xk d. (k = 1, 2, ... , 1- 1, f). So y n is defined on the whole interval [0, 1]. It 
may have discontinuities at the points X k : 

D(xk )= Yn(xd-Yn(xk-O) (5) 

but D approaches zero when Yn approaches the true solution y. 
It is suitable to introduce the function 

(6) 

Then, istead of Eq. (2) 

(7) 

is obtained which is true for every x E [0, 1] except for 
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At these points the function is discontinuous, the jumps being equal to those of 
Y n but with an opposite sign. 

Eq. (7) can directly be integrated in the interval [0, Xl) with initial values 
of Z(O) = 0, then, in the interval [x l' X 2) with initial values 

Z(X1 +0)=Z(X1 -0)-D(X1) 

and so on, up to X = 1. Thus, in fact, the equation 

/-1 

Z~=F'(x,Yn)·ZO- I D(x)b(x-Xj) 
j=l 

has to be solved, where () is the Dirac-b. 

(8) 

(9) 

Yn + 1 is readily obtained from Z by Eq. (6). It satisfies automatically the 
boundary conditions given by Eq. (3), if Yn satisfies them, but may not satisfy 
Eq. (4). To satisfy this latter condition, the following procedure may be applied. 

One obtains a full orthogonal solution system 111' 112, ... , 11r of the 
homogeneous equation 

(10) 

where B is the same matrix as in Eq. (3) and r is the degeneracy ofB. Solving Eq. 
(7) with the initial values 111' TIz, ... , 11r the solutions Zl' Z2' ... , Zr are 
obtained. It is obvious that any linear combination of the type 

r 

Z=Zo+ I djZ j 
j= 1 

(11 ) 

satisfies Eq. (9), and the vector 

y(O) = Z(O) + Y n(O) 

satisfies Eq. (3). The values dj must be chosen so that Eq. (4) be satisfied as well 
by the vector 

The substitution of Eq. (11) into Eq. (6) gives an expression for Y n + 1 

and the substitution of Y n + 1 (1) into Eq. (4) results in a set oflinear equations 
which readily gives the values of the coefficients dj • 

If the first approximation is sufficiently good, the function Z, as well as the 
coefficients di approach zero and Y approaches the true solution. Since Z is 
only a correction approaching zero, Eqs (7) and (9) need not be solved with very 
high accuracy, approximative solutions can be applied. Especially, the matrix 
F' can be calculated numerically, which spares much tiresome coding work. 
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On the other hand, there is a real danger that some of the solution vectors 
Z;(x) tend to be quasi parallel as x grows, so that the coefficients d; - and the 
final solution - cannot be obtained with acceptable accuracy. This difficulty 
can be overcome making use of a method proposed by Godunov [4]. 

The essence of this method is the following. Since any linear combination 
of the functions Z; (i = 1, 2, ... , r) is a solution ofEq. (7), they can be combined 
at the points Xj U= 1,2, ... , I 1) to give r orthogonal vectors Zi"(xj ) so that 

\ Z[(Xj) \ =1, 

and integration can be continued in the intervals [Xj' Xj + d with initial values 
Zi"(x j ). If the intervals are chosen properly, the solution system can be kept 
quasi orthogonal in the whole range of integration. The algorithms of 
transformation and re-transformation are given by Godunov [4]. 

Non-linear boundary conditions 

In our case the boundary conditions are neither linear nor separable. This 
latter means that quantities relating to both boundaries occur in the same 
equation. 

Let us first examine the simpler case of non-equilibrium chromatography. 
Here at least some of the boundary conditions are linear and separated [2J: 

e;(I)=O (12) 

~;(1) 0 

or, for two components and in the form of Eq. (4) 

0 0 0 0 0 0 0 v (1) 0, 
I 

0 0 0 0 0 0 0 Yl (1) I 0 
0 0 0 0 0 0 0 Y2 (1) 0 

C·y= 0 0 0 1 0 0 0 e 1 (1) 0 (13) 

0 0 0 0 1 0 0 e 2 (1) 0 

0 0 0 0 0 1 0 dydd( (1) 0 

'0 0 0 0 0 0 1 \ dY2/d( (1}1 '0 ' 

where the degeneracy of C is r = 3. In order to remain conform to our earlier 
notation, the definition 
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V 

Y1 

Y2 

Y= e 1 

e 2 

dytld, 

·dY2/d, 

will be employed, so the boundary conditions take the form 

Y4(1)=0 

Ys(1)=O 

Y6(1)=0 

Y7(1)=0 

107 

(14) 

(15) 

Since the linear conditions occur at the upper boundary, the integration 
will be accomplished backwards, from 1 to 0, but this fact does not restrict the 
generality of the subsequent treatment. 

A full orthogonal system of solutions of the homogeneous equation 

C·1I1=0 
IS 

111=(1 0 0 0 0 0 O)T 

112 = (0 0 0 0 0 Of 
1113=(0 0 0 0 0 O)T (16) 

(superscript T means the transpose of a matrix). Solving Eq. (7) with these initial 
conditions one obtains the functions Z1' Z2' Z3' while the solution of Eq. (9) 
with the initial condition 

110=0 

gives the function Zo. The function 

r 

Yn+l =Yn+ZO+ I djZj 
j= 1 

3 Periodica Pglytechnica Chemical Eng. 28i2 

(17) 
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satisfies the equation 

Y~+ 1 = F(x, Yn)+ F'(x, Yn)(Yn+ 1 -Yn) (18) 

on the whole interval [0, 1J and the boundary conditions given by Eg. (15) for 
any set of di • 

The remaining boundary conditions [2J, using the notation defined by 
Eq. (14) are 

Yl (0)=0 

C2 
Y2(1)' [1 +Yl(1)]+ C4' Y4(0)-C3' yT=O 

C2 
h(1)' [1 + Yl (1)] + C4 . /5(0)- C3· Yi =0 

By a proper choice of the vector 

these latter conditions can be satisfied, too. 

(19) 

A self-evident method to obtain this vector is to substitute Eq. (17) into 
Eqs (19) and to solve the resulting equations for d l' d2 , d3 • These equations are 
not linear, their solution is rather complicated even in this simple case, so that 
iterative methods seem to be more useful. 

The "other side" values of yd1), Y2(1) and h(1) can be considered 
temporarily as constants and then Eqs (19) turn into linear ones: 

where 

Yl(1)=O 
CI.' Y4(0)=/31 
CI.' Y5(0)= /32 

C2 
CI.= C4 

/31 C3'yT-Y4(1)[1+Yl(1)J 
/32=C3' Yi-Y5(1)[1 +Yl(l)] 

Eqs (20) may be written in the matrix form 

B'Y b 

(20) 

(21) 
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or 
0 0 0 0 0 0 )'1 (0), .0 

0 0 0 0 0 0 0 Y2 (0) 0 

0 0 0 0 0 0 0 Y3 (0) 0 

0 0 0 (X 0 0 0 Y4 (0) fil (22) 

0 0 0 0 (X 0 0 Ys (0) fi2 

0 0 0 0 0 0 0 Y6 (0) 0 

0 0 0 0 0 0 0 Y7 (0) '0 

Let 
yO _ 

n+l-Yn (at x=O, Xl' ... , xl-d 

be the O-th approximation to Y n + I and the first one, y~ + 1 be given by Eq. (17). 
Eq. (22) then may be written 

B·Y~+I(O)=bo 

or, substituting Eq. (17) 

B ·l:d;Z;(O) = bO 
- B . [Y~ + 1 (0) + Zo(O)] . 

If one defines the matrix 

Z=(ZI Z2 Z3) 

then Eq. (23) may be written in the compact form 

BZd=bi_B(Y~+1 +Zo), 

(23) 

(24) 

where i = O,the matrix BZ and the vector on the right hand side are known, so d 
can be determined. 

Substituting d into Eq. (17) one obtains y~ + 1 which satisfies on the 
boundaries the conditions given by Eqs (13) and (22), but may not satisfy Eg. 
(19), since 

y~+ 1(1) =f y~+ 1(1) 

With y~+ 1(1) Eq. (21) gives new values for fil and fi2 or rather one obtains 
the vector b l

. Solving Eq. (24) with i = 1 the next approximation can be 
obtained Y;+I. The procedure may be repeated until 

IY~:;: i - Y~+ 11 <eps 

where eps is a pre-determined small positive value. 
The method can be improved by the following modification. 

3* 
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The procedure described above can be treated as an operator transform
ing the vector yi(1) into y i+ 1 (1). If the approximation Yn is sufficiently good, 
this operator can be approximated by a linear one 

y i+ 1 =L· yi+V, (25) 

where L is a matrix, v is a vector. Such an Y vector must be found which by Eq. 
(25) transforms into itself. 

In order to solve this problem, L and v have to be obtained at first. If the 
dimension ofY is r, this means the determination of r . (r + 1) quantities. Eq. (25) 
represents r equations, so r + 1 such systems of equations have to be solved: 

yl=L·Yo+v 
y 2 =L· yI +v 

yr + 1 = L . yr + V 

To reduce the number of equations and the truncation errors, this system can 
be transformed into 

Introducing 

and 

y2 _ VI L(yl_ Vo) 

V3- yI =L(V2- Vo) 

vr+ 1_ VI =(LY' _ YO) 

the set of Eqs (26) can be written 

The equation determining y, 

can be transformed into 

L·o 1 =A I 

L· °2 =.1.2 

Y=L·Y+v 

Y _ Vi = L(Y _ yo) 
or 

(26) 

(27) 

(28) 

(29) 

(30) 
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where 
o=y-yO 

The set of Eqs (29) has a great number of zero elements: 

b11 lr1 +b 12 Ir2 +··· +b 1r lrr =Ll1r 

= Ll21 

It is evident from this way of writing that Eq. (31) is equivalent to 

(i=1,2, ... ,r) 
where 

611 612 

J" ) 
D= 

b21 622 b2r 

br1 br2 brr l 

and 
Ai = (lil li2 ... lir f 
Ai=(Ll u Ll 2i ··· Llrif 

III 

(32) 

(33) 

(34) 

In other words, the same equation must be solved with different right-hand
side values. 

It is very important to remark that the vectors bi are linear combinations 
ofthe r independent vectors Zl (1), Z2(1), ... , Zr(1): the subtraction in Eq. (27) 
eliminates Y nand Zo occurring in Eq. (17). This means that the rank of matrix D 
is r (except the trivial case when some yi is the true solution and the whole 
procedure becomes aimless), while the original dimension ofY is m. In order to 
prevent D to become singular, the dimensions of Y - and of D - must be 
reduced by omitting elements which ('~n be calculated. It is evident from Eq. 
(15) that in our case the last four elements - and only these - may be omitted. 
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Once having determined L, Eq. (30) gives () i.e. Y(l), or rather a subset of 
Y(l) which may be completed by Eq. (15). If the linear approximation Eq. 
(25) - is good, then Y (1) is the correct initial condition. If not, then Y~ + 1 can be 
set Y and the whole procedure can be repeated. This type of iteration - even 
when repeated many times - does not take much time since only the boundary 
conditions are iterated: the time-consuming numerical integrations have not to 
be repeated. 

The complete solution Yn + 1 can be obtained by numerical integration of 
Eq. (2) - or rather Eqs (7) and (6) with initial conditions Y(l). This solution 
must satisfy the boundary conditions given by Eqs (15) and (19). If there is any 

~ discrepancy all the same, it is due to numerical errors. In this case the 
orthogonalization method of Godunov [4J may improve the results. 

This method [4J is generally used by us not only in order to reduce 
numerical errors but also to reduce space and/or time requirement. From the 
retained values of Zo, Zl' ... , Zr at the points xo, Xl' ... , Xl the function Y n + 1 

can be obtained at these points by simple linear combinations, using Eq. (17). 

Initial approximation 

In order to apply the method described above an appropriate initial 
approximation must have been found. This first approximation has been 
obtained essentially by three different ways: 

1. linearization of the equations, 
2. utilization of a known solution with similar parameters, 
3. combination of two solutions. 
Re 1. Linearization is the most commonly practicable method to obtain a 

first approximation. There are no general rules, much depends on the 
inventiveness of the user and on the type of the equations. 

In our case the non-linearity is caused by the dependence of the gas 
velocity on sorption/desorption. If one assumes an arbitrary velocity profile 
v = v((), the set of differential equations - and also the boundary conditions -
turn into linear ones. For only one adsorbing (partitioning) component [2]: 

where 

d
2
y [ dy ( dV) ] -2 =Cl (1+v)-+ C2+- y-C2·y*-C3·ym· w =0 

d, d, d, 

de d, + C4(y y*)=O 

y*= CS. e 
K 

(35) 
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The function V(O has been assumed to be zero in the lower part of the column 
(( < 0.5) and C3 in the higher part, with continous transition in the feeding zone. 
With this modification Eq. (35) can be solved by standard methods for linear 
equations e.g. the method proposed by Godunov [4]. Although the real 
velocity profile may differ very much from the assumed one, this first 
approximation proved to be sufficiently good for a convergent iteration. 

Re 2. Once having a solution for a set of parameters, it can be used -
eventually after some modifications as a first approximation for another, not 
very different set of parameters. If one applies this method several times 
successively, the parameters can be varied practically without limitations. 

Re 3. This method has been used to obtain first approximations for 
systems with two partitioning components. Solutions for components A and B 
(3 functions each) have been combined in such a way that the concentration 
profiles remained unchanged while the velocities - or rather the excess 
velocities v A and VB - have been added to give a new excess velocity v. Thus the 
new set has 5 functions. 

Storage of the solutions 

Since computation of a solution needs considerable time, the con
servation of final and intermediate results has a great importance. And, since 
final results are also used as first approximations, both final and intermediate 
results must be stored in a readily retrievable form. It is desirable to store the 
actual parameters along with the solutions, and to have the possibility of 
reorganization and classification. 

All these requirements can be fulfilled by an indexed sequential data set. A 
56-digit key has been constructed comprising all the parameters. The structure 
of a key is the following: 

o 210 01.· .. ·· 

A complete solution is placed into several keyed items. The first three 
digits represent a serial number, common for all keys belonging to a given 
solution. The fourth and fifth digits are showing the type of the keyed item (e.g. 
"00" indicates the independent variables, "01" the values of the first function
Y 1 - and so on). The remaining digits common for the related items -
comprise the parameters. So the keys for the parts of a given solution are 
differing only in the fourth and fifth digits. 

On giving the serial number the program reconstructs the parameters 
and the solution functions in the points xo, Xl' ... , Xl' Adversely, the keys 
including the serial number - are automatically constructed when a new 
solution is added to the data set. 
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A special directory has been made to show the serial numbers and the 
parameters belonging to them. The directory indicates whether the solution is 
an intermediate or a final one, and is automatically updated when updating the 
data set. 

Results 

The results obtained are always reasonable that is the computed 
concentration functions are never negative and the orders of magnitude are 
realistic. Some features of the solutions for one partitioning component have 
been given earlier [2]. Since then, a great number of parameter sets have been 
tested for both one and two partitioning components. A detailed discussion of 
the results will be given separately, but it is worthy to be mentioned here that 
earlier experiences have been confirmed: there is a significant accumulation of 
the partitioning components inside the column, especially when /( is close to 
unity. With /(}> 1 or /( ~ 1, this effect is less pronounced but still exists. The 
accumulation effect has been observed experimentally on moving polimer 
columns as well [5]. 

Fig. 1 and Fig. 2 present two sets of computed concentration profiles. The 
partition coefficients are identical: /( A = 0.8 and /(B = 1.2. The difference is in the 
flow rate of the sample to be separated. 

21.. 
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Fig. 1. Calculated concentration profiles of two partitioning components (C3 = 0.005). 
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Fig. 2. Calculated concentration profiles of two partitioning components (C3 = 0.1). 
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Fig. 1 shows a system where the flow rate of the sample is only 0.5 per cent 
of the carrier flow rate (C3 =0.005). The separation is good, component A 
migrates upwards, component B downwards, as can be expected from the 
values ofKA and K B . The components are accumulated in the central part of the 
column - the flow rate is increased by 2.4 per cent, instead of 0.5 - but this 
does not affect significantly the separation. 

In case of Fig. 2 the sample flow rate is 10 per cent of the carrier flow rate 
(C3 = 0.1). The maximum gas flow rate is increased by about 40 per cent due to 
the accumulation effect, and consequently both components are migrating 
upwards. The separation is very poor: the components cannot be separated, 
except a little portion of A. 

It is important to emphasize that this "overloading" is not caused by 
saturation - the sorption isoterms have been assumed linear - but by the 
increased flow rate. 
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