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Abstract

The present paper describes an algorithm of the parallelization of Iterative Dynamic Programming
by the ‘Parallel Virtual Machine’ (PVM) language. It will be demonstrated that the parallelization
can lead to a considerable reduction in computing time.
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1. Introduction

Parallel processing is a fast growing technology that influences many areas of en-
gineering. Reviews about chemical engineering applications of parallel processing
have been written by e.g. LEMENTI et al. (1989), 4JA (1992), McRAE (1990)

and WILSON (1995). It comprises algorithms, computer architecture, programming
and performance analysis. There is a strong interaction among these aspects.

Dynamic Programming (DP) has an inherent parallel structure that makes
this algorithm especially suitable for parallelization. Therefore, some authors have
suggested parallel algorithms of the conventional DP scheme (EB&SBKAS
and TSITSIKLIS (1989), SITH (1993), CHEN (1986), EDbMONDS et al. (1993),
RYTTER (1988)). Parallelism has become necessary because single-processor com-
puters are not powerful enough to solve the so-called Grand-Challenge problems of
science and engineering, for example, the optimization of entire chemical plants.
The availability of public domain programs like ‘Parallel Virtual Machine’ (PVM)
(GElsT et al. (1993)) or ‘Message-Passing Interface’ (MPIR@®Pet al. (1994))
enables every programmer to develop his own parallel programs, and any personal
computer or work station may be connected with the aid of low-cost network inter-
face cards. In this paper Iterative Dynamic Programming (IDP) will be parallelized
by PVM.
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2. Parall€elization of Iterative Dynamic Programming

Iterative Dynamic Programming (IDP) will be used for the optimization of sequen-
tial processes withP stages as shown Fig. 1.
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Fig. 1. State vectorg, control vectorsi and objective functiom of each stage

In each stagk the state vectox(k) is a functionG of the state vectax(k — 1)
and the control vectan(k)

x(K) = G(x(K — 1), u(k)). (1)

The state vectox(0) at the entrance of the staged process is defined by the initial
state vectoxy:
X(0) = Xo. (2)

The objective valug(k) of each stagk is a functionp of the state vectaox(k — 1)
and the control vectan(k)

p(k) = pe(x(k — 1), u(k)). 3

The objective valud= of the complete staged process is equal to the sum of the
objective valueg(k) and the value of the objective functiap which depends on
the state vectox(P) at the exit of the staged process

P
F=Y pxk—1),uk)+gx(P)). 4)
k:l

The objective function is to be minimized by choosing optimal control vectors
between the boundariea (k) < u(k) < B (k). Application of the dynamic
programming computational procedure to high-dimensional nonlinear problems,
defined byEgs. (1) — (4), with continuous state and control vectors leads to the
following difficulties:

1. Sufficiently fine grids are necessary for an accurate solution.
2. The computational procedure of dynamic programming calculates the fol-
lowing optimization problems

Fox(P - 1) = [}?ipf;[pP(X(P =D, u(P)) +gx(P)], 5)
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Fx(k—1)) = mll(f; [Pc(x(k = 1), u(k) + Fira(x(k))],

k=P—1,..,1 (6)

For each poinklil(k) of the state grick (seeFig. 2) the computational pro-
cedure stores the values Bf, 1, but for the optimization of the problems
(6) the computational procedure needs also valugg gffor state vectors
which are between the state grid points. These values can be calculated by
an interpolation method, which has to be very accurate for not missing the
global optimum.

3. If each state or control vector hadevels and the vector is-dimensional,
then a grid has" grid points. For high-dimensional problemss high and
therefore dynamic programming needs a very high number of grid points and
along calculationtime as well as a large computer storage for the optimization
of those problems.

Luus (1989, 1990) has developed an algorithm named Iterative Dynamic
Programming (IDP) which is based on dynamic programming and avoids these
difficulties. The flow diagram of the basic IDP algorithm is giverFig. 2. The
grids of the control and state vectors are showFiga3. An example of the detailed
FORTRAN program is given by bus (1989), and KARTIG and KeIL (1993a). The
algorithm has been successfully applied to many global optimization problems of
control theory and chemical reactionyus and ROSEN(1991), Luusand GALLI
(1991), HARTIG and KEIL (1993b), Luus (1993a, 1993b), WRTIG et al. (1995)).

In order to overcome the difficulty of sufficiently fine gridsuus (1989)
picked up an idea by BLLMAN and DREYFUS (1962) who suggested calculation
of the problem again and again by reducing the size of the grids. First the problem
will be calculated by using coarse grids. Then the mid points of the state and control
grids are set equal to the preliminary optimal state and control vectors and the ranges
of the grids are reduced. The second difficulty can be avoided by using a special
procedure, developed byJus (1989) for calculatingr, for a state vectok (k)
between the state grid points. IDP stores the optimal control vec{fég(k) for

the state vectorgil(k — 1), (k = P, ..., 1). The algorithm searches for the nearest
state grid poini [ j*] (k) to x(k) and calculateg&gs. (1) and (3) of the next stage
by using the optimal control vector stored ol (k). This procedure is repeated
until the last stageP is calculated. The value df. 1 is equal to the sum of the
objective value(q),q =k + 1, ..., P andg(x(P)).

BoJkov and Luus (1992) have shown that the third difficulty can be over-
come by using a few randomly distributed control grid points. By using those
randomly distributed control grid points, dkov and Luus (1992) calculated
with IDP optimization problems with 100-dimensional state vectors.

The focus of this paper is the parallelization of IDP by using the parallel virtual
machine (PVM) message-passing environmentB®IAN (1994), INDERAM et
al. (1994), GisT et al. (1993, 1994)).
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Estimate the optimal control vectous (k) of all stagesk = 1, ..., P) and define the searc

Regionsu* (k) & r (k). Define the number of state grid poirits number of control grid points

R, reduction factoy and the number of iterations.

)

REPEAT

Generate control grids witR grid pointsu[”(k) i=1..., R) for k stagek =1, ..., P.
The control grid points are placed within the the regiorigk) + r (k) and satisfying the
boundary conditions (k) < ulll(k) < B(k).

Generate state grids witt grid pointsx[”(k), (j=1,...,N)foreachstage =1,..., P—
1 by calculating the staged process with the contbld(k), (j = 1,..., N). The initial
state vectox2 (0) is equal toxg.

Fork=Ptolstep—1

For j =1toN stepl

Frmin = 00

Fori =1toRstep1

x = G(xUl(k — 1), ulil(ky)
F = pexlilk = 1, ull o)

Forq=k+1toP step1

Searchj* that fulfils{j = 1, ..., N | minxtl(q — 1) — )2}
F = F + Pq(X. Uh( (0 — 1))

X := G(X, ugjpt](q -1

F=F+d(Xx

the_n F < Fmin
ullhto = ulil )

Fmin =

j*:l,F:O,X:XO

Fork=1to P stepl

r =k
X := G(X, uglpg(k))

F = F + p(x. ubh (k)

opt
then k<P ]
Searchj* that fulfils{j = 1,..., N | min(xU1(k) — x)?}
F=F+9®
UNTIL all iteration are executed
minimum value of the objective functiorE optimal controls.u*(k), (k=1, ..., P)

Fig. 2. Flow diagram of iterative dynamic programming
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Fig. 3. State and control grids of iterative dynamic programming

The PVM software provides a unified framework within which parallel pro-
grams can be developed in an efficient manner using existing hardware. PVM
enables a collection of heterogeneous computers to be viewed as a single parallel
virtual machine. PVM transparently handles all message routing, data conversion,
and task scheduling across a network of incompatible computer architectures. The
user writes his application as a collection of cooperating tasks. Tasks access PVM
resources through a library of standard interface routines. These routines allow the
initiation and termination of tasks across the network, as well as communication
and synchronization between tasks. At any point in the excecution of a concurrent
application, any task in existence may start or stop other tasks or add or delete
computers from the virtual machine. Any process may communicate and/or syn-
chronize with any other. The PVM system is composed of two main parts. The first
part is a so-called daemon that resides on all the computers making up the virtual
machine. The second part of the system is a library of PVM interface routines. It
contains a functionally complete repertoire of primitives that are needed for coop-
eration between tasks of an application. This library contains user-callable routines
for message-passing, coordinating tasks, and modifying the virtual machine.

Because of its generality and its applicability to networks of workstations,
PVM is one of the most widely used of all message-passing environments.
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Flow diagram of the Paralld Iterative Dynamic Programming

Master Process

Slave Process

Load PVM subroutines and start the algorit

Start the slave processes

Define search regions' (k) £r (k), number

of state grid point&\N and control grid points
R, number of iterations, number of stages
P and reduction factoy

Load PVM subroutines and start the algorithm

Send the variablebl, P and R to all slave
processes ]

do iteration= 1, number of iterations

Receive the variables

Send the variables® (k) andr (k) toall |
slave processes

Receive the variables and defin
the control grid points Gtk
G =12....,N, k =1...,P -1
for generating the state grids

D

do j = 1, number of slave processes

Start a non-calculating slave process
for the calculation of the state grid |
pointsxl1(k), k=1,..., P — 1)

Calculate the staged process for the con-
trols al}1 (k) and set the state vectoxgk)
equal to the state grid poins!1(k), (k =
1,...,P—1

UNTIL j < N or a slave is not calculating

Receive the state grid points -~

then j <N

Send the state grid pointd!1(k), (k =
1,..., P — 1) to the master process

Increase j by one and start
a non-calculating slave process

for the calculation of the state
grid points

Receivej and calculate the staged process
with 0l (k) and set the state vectoxsk)
equal to the state grid point 1(k), (k =
1,....P-1)

Send the state grid pointi1 (k) (j = —
1,...,N; k=1,...,P-1 toall
slave processes

Receive the values and define the contfol
grid pointsulll(k) (j = 1,..., R k =
1, ..., P) for the optimization

continued next page
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Master Process Slave Process

don=(P-1),1,step-1
do j = 1, number of slave processes

Start a slave process for the opti=1—>_Fmin = o0

mization of the stages + 1 to P Fori =1toRstepl

and the initial vectoxli1(n) x = G(xUI(n)y, ulll(n + 1))

F = pexU1n), ulil(n + 1))

Forg=n+2toPsep1l

Searchj* :={j =1,..., N | min(xtq—
-D-%?%
F = F + Pq(X. Uhg (0 — 1)

=G, ull @ - 1)

X opt
F=F+9(X
then F < Fmin
ukn+ 1 =ulln+ 1)
Fmin=F

UNTIL the stages + 1 to P are opti-
mized for all state grid points
xUlm),j=1,....N

Receive and store the optimal cor Send the values Q,fgjp]t(n +1
[jl

trols uopt(n + 1) and the state veEE to the master process
xli1(n) atthe entrance of stager 1

then j <N

Increasej by one and start the Fmin = o0

non-calculating slave process Fori =1toRstepl

for the optimization of stages x = Gk — 1), ulil(ky)
n+ 1 to P and the state vector i i
«L1(m) F = pexUk= 1), ulllk))

Forq=k+1toPstepl

Setj*:={j=1,..., N | minxti(q—
- -x?%

F = F + po(x. ubhy (@ — 1))

X := G, ul (g — 1)

F=F+9g(¥

then F < Fmin
ug‘p]t(k) = ulllk)
Fmin=F

continued next page
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Master Process Slave Process

Send the optimal controls ——— Receive the data
un+1. j=1....Ntoal
slave processes
Fmin = o0
Fori =1toRstepl
x = Gxo, ul'l(1)

F = prixo.ull@)
Forq=2to P step 1l
Setj* :={j =1,.... N minxUl(g—1) —x)?}
F = F + pq(X. Ugp (@~ 1)
X = G(x, U (q — 1)
F=F+9(X
then F < Fnmin
ulllo = ulll o

opt\t) —
Fmin=F
j*=1,F=0,x=xg
Fork=1to P step 1
ro =yr
x == G(x, ull o)
F=F + px. ubpl )

*
ut k) = u

then k<P
Setj*:={j=1,..., N | min(xU1 (k) — x2)}
F=F+d(Xx

minimal value of the objective funtiorf,
optimal controls.u*(k), (k =1, ..., P)

Fig. 4. Flow diagram of the Parallel Iterative Dynamic Programming

The flow diagram of the parallel IDP algorithm is giverfiry. 4. This diagram
is directly related to the algorithm Fig. 2. The algorithm employs a master/slave
scheme to distribute the tasks. The master process mainly coordinates the work of
the slave processes which first generate in parallel the state grids and then the staged
processes are optimized in parallel for each state grid point. To generate the state
grids the staged process is calculated for different contrt, starting from the
initial statexy. N trajectories will be calculated by whid¥ grid points are generated
in each state grid. Each of the trajectories can be calculated independently of the
others in a slave process. After the generation of the state grid, the stages are to be
optimized starting from the last stag§e The subproblems presentedHgs. (4) and
(5) are calculated one after the other. Each of the subprobikermasP, ..., 2) is to
be optimized for different state vectots! (k) of the state grikk. The optimization
of a subproblem for each vector of the state grid can be done independently of
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the optimization of the subproblem of another state grid vector. Therefore, the
optimization calculations can be distributed amongst the slaves. Each slave process
calculates an optimal control which is transferred to the master process at the end
of the calculation. Each of the slave processes is realized on a separate processor,
for example, several personal computers that are connected by means of network
interface cards. The more processors are available the more slave processes can be
operated in parallel, and the more computing time can be saved, although there is
some loss owing to data exchange and manipulation.

3. Example

In the present work the parallel IDP algorithm was used for the optimization of a
problem given by Wus (1993a). The algorithm was executed on a cluster of up to
four HEWLETT PACKARD 735 workstations and on a PARSYTEC GC/PP 128
Parallel Computer where up to eleven PPC 601 processors were used. One master
process running on one processor spawns a number of slave processes on each of
the other processors.

The parallelization of the algorithm was measured by three commonly em-
ployed parameters defined as follows:

» The maximal speedug: is the ratio of the calculation tirg of the fastest se-
guential algorithm and the calculation tirgeof the fastest parallel algorithm
executed orC processors

ts

S = (7)
tc

« The algorithm speedug- is the ratio of the calculation timgof the parallel

algorithm executed on one processor and the calculatiorttioi¢he parallel

algorithm executed o€ processors

=2 (®)

» The efficiencyEc is the ratio of the algorithm speedup and the number
of processor€

Ec = 100%. 9)
The calculation time of the sequential algorithm was 6360 [s] on a HP 735
workstation und 10019 [s] on a single PPC 601 processor.Tabhes 1 and 2
the computation timeg of the parallel algorithm, the maximal speed&p the
algorithm speedugy: and the efficiencyEc are presented for up to 11 parallel
processors.
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Table1. HP Workstation - Cluster: Calculation tintec), maximal speedupSc), algo-
rithm speedupgSc) and efficiency(Ec) as a function of the number of processors
(C), sequential time is 6360 [s] (N=7 state grid points and M=7 control grid points)

cltcls]| & | & | Ecl) |
16749 0.94| 1.00| 100
2| 3807 | 1.67| 1.77 88.5
3| 3118] 2.04| 2.16 72.0
4 | 2520 | 2.52| 2.69 67.0

Table2. Parsytec GC/PP 128: Calculation tirtte), maximal speedupSc), algorithm
speeduSc) and efficiency Ec) as a function of the number of process@rs,
sequential time is 10019 [s] (N=11 state grid points and M=11 control grid points)

| tcfs] | s | S | Ecl] |
10507 | 0.95| 1.00| 100.0
5933 | 1.69| 1.77 88.5
4286 | 2.34| 2.45 81.7
3442 | 2.91| 3.05 76.3
3249 | 3.08| 3.23 64.6
2647 | 3.79| 3.97 66.2
2582 | 3.88| 4.07 58.1
2538 | 3.95| 4.14 51.8
2510 | 3.99]| 4.19 46.6
2483 | 4.04 | 4.23 42 .3
1966 | 5.10| 5.34 48.5

el
Rl 5| ©| 0ol N o 1l & w| N || O

The maximal speedufi: for one processor@ = 1) was 0.94 on the HP-
Clusterand 0.95 on the Parsytec ($aldes 1, 2). Therefore 5—6% of the calculation
time of the parallel algorithm is needed for the communication of slave and master
process. If the slave processes are optimally synchronized the speedup increases
linearly with the number of processors which is showikiigs 5 and®6.

The difference in the communication overhead is based on the different data
transport layers (sefbles 1, 2, EC). The HP-Cluster runs on a Fiber Distributed
Data Interface (FDDI). FDDI is a 100-MBit/sec token-passing ring that uses optical
fiber for transmission between stations and has dual counter-rotating rings to provide
redundant data paths for reliability. The Parsytec GC/PP 128 uses a 2D grid of
separate communication processors each connected with two PPC 601 processors.
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This strategy allows a very high network bandwidth and by far faster data exchange
than the FDDI network which is limited to 100 MBit/sec.

Another important point is the latency time which represents the time to create
amessage. On network based PVM implementations this time is very long because
of the administrative work of the operating system. The Parsytec GC/PP 128 uses
the special operating system PARIX which reduces the latency time. The Parsytec
implementation of PVM is based on these PARIX calls so that the spawning of
messages is very fast.

Because of the simple implementation the synchronisation, and therefore the
efficiency Ec, depend on the ratio of the number of grid points and the number of
processesTables 1, 2). If the number of grid points is a multiple of the number of
processors and the calculation time of the staged process is always the same, the
generation of the state grid points, and the optimization are finished at the same time
by all slave processes and, consequently, no slave process is waiting and reducing
the efficiency of the parallelization. In this work IDP was executed Wth= 7
state grid points andM = 7 control grid points. If the algorithm runs with 2
processors, the first 6 sets of state grid points are generated in parallel. The seventh
set is generated by only one slave process while the second slave process is waiting.
For three processors, the efficiency is even more reduced, since at the end two slave
processors are waiting. Therefore, the number of state grid points and the number
of control grid points should be a multiple of the number of processors in order to
get a high efficiency of the parallelization.



X(K)
XU (k)

a (K)
B (k)
Y

ITERATIVE DYNAMIC PROGRAMMING 15

Nomenclature

number of parallel slave processes

efficiency of the parallel algorithm

objective function of the staged process

function defined byegs (5) and (6)

function for the state vector

objective function of the state vecta(P)

number of stages

number of grid points in each state grid

value of the objective function of stade

objective function of stagk

number of grid points in each control grid

radius of the search region of controlk)

maximal speedup

algorithm speedup

calculation time of the sequential algorithm [s]

calculation time of the parallel algorithm with processors [s]
control vector of stagk

midpoint of the search region of contna{k)

j-th point of control gridk

j-th point of control grick for calculating the state grid poist! (k)
optimal control vector for the-th point of state grick

initial state vector of the process

state vector at the exit of staggeand at the entrance of stager 1
j-th point of state grik

Greek Symbols

lower boundary of contrali(k)
upper boundary of contral(k)
reduction factor
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