
PERIODICA POLYTECHNICA SER. CHEM. ENG. VOL. 43, NO. 1, PP. 3–16 (1999)

PARALLELIZATION OF ITERATIVE DYNAMIC
PROGRAMMING (IDP)

Frank HARTIG, Klaus MANDEL and Frerich J. KEIL

Technical University of Hamburg-Harburg
Eissendorfer Strasse 38

D–21071 Hamburg, Germany
EMAIL: keil@tu-harburg.de

Received: April 6, 1999

Abstract

The present paper describes an algorithm of the parallelization of Iterative Dynamic Programming
by the ‘Parallel Virtual Machine’ (PVM) language. It will be demonstrated that the parallelization
can lead to a considerable reduction in computing time.

Keywords: Iterative Dynamic Programming (IDP), parallelization, Parallel Virtual Machine (PVM),
optimization.

1. Introduction

Parallel processing is a fast growing technology that influences many areas of en-
gineering. Reviews about chemical engineering applications of parallel processing
have been written by e.g. CLEMENTI et al. (1989), JAJA (1992), MCRAE (1990)
and WILSON (1995). It comprises algorithms, computer architecture, programming
and performance analysis. There is a strong interaction among these aspects.

Dynamic Programming (DP) has an inherent parallel structure that makes
this algorithm especially suitable for parallelization. Therefore, some authors have
suggested parallel algorithms of the conventional DP scheme (see BERTSEKAS
and TSITSIKLIS (1989), SMITH (1993), CHEN (1986), EDMONDS et al. (1993),
RYTTER (1988)). Parallelism has become necessary because single-processor com-
puters are not powerful enough to solve the so-called Grand-Challenge problems of
science and engineering, for example, the optimization of entire chemical plants.
The availability of public domain programs like ‘Parallel Virtual Machine’ (PVM)
(GEIST et al. (1993)) or ‘Message-Passing Interface’ (MPI) (GROPPet al. (1994))
enables every programmer to develop his own parallel programs, and any personal
computer or work station may be connected with the aid of low-cost network inter-
face cards. In this paper Iterative Dynamic Programming (IDP) will be parallelized
by PVM.

4 F. HARTIG et al.

2. Parallelization of Iterative Dynamic Programming

Iterative Dynamic Programming (IDP) will be used for the optimization of sequen-
tial processes withP stages as shown inFig. 1.

Fig. 1. State vectorsx, control vectorsu and objective functionp of each stage

In each stagek the state vectorx(k) is a functionG of the state vectorx(k −1)
and the control vectoru(k)

x(k) = G(x(k − 1), u(k)). (1)

The state vectorx(0) at the entrance of the staged process is defined by the initial
state vectorx0:

x(0) = x0. (2)

The objective valuep(k) of each stagek is a functionpk of the state vectorx(k −1)
and the control vectoru(k)

p(k) = pk(x(k − 1), u(k)). (3)

The objective valueF of the complete staged process is equal to the sum of the
objective valuesp(k) and the value of the objective functiong, which depends on
the state vectorx(P) at the exit of the staged process

F =
P∑

k=1

pk(x(k − 1), u(k)) + g(x(P)). (4)

The objective function is to be minimized by choosing optimal control vectors
between the boundariesα (k) ≤ u(k) ≤ β (k). Application of the dynamic
programming computational procedure to high-dimensional nonlinear problems,
defined byEqs. (1) – (4), with continuous state and control vectors leads to the
following difficulties:

1. Sufficiently fine grids are necessary for an accurate solution.
2. The computational procedure of dynamic programming calculates the fol-

lowing optimization problems

Fp(x(P − 1)) = min
u(P)

[pP(x(P − 1), u(P)) + g(x(P))] , (5)

ITERATIVE DYNAMIC PROGRAMMING 5

Fk(x(k − 1)) = min
u(k)

[
pk(x(k − 1), u(k)) + Fk+1(x(k))

]
,

k = P − 1, ..., 1. (6)

For each pointx[j](k) of the state gridk (seeFig. 2) the computational pro-
cedure stores the values ofFk+1, but for the optimization of the problems
(6) the computational procedure needs also values ofFk+1 for state vectors
which are between the state grid points. These values can be calculated by
an interpolation method, which has to be very accurate for not missing the
global optimum.

3. If each state or control vector hasr levels and the vector isn-dimensional,
then a grid hasrn grid points. For high-dimensional problemsn is high and
therefore dynamic programming needs a very high number of grid points and
a long calculation time as well as a large computer storage for the optimization
of those problems.

LUUS (1989, 1990) has developed an algorithm named Iterative Dynamic
Programming (IDP) which is based on dynamic programming and avoids these
difficulties. The flow diagram of the basic IDP algorithm is given inFig. 2. The
grids of the control and state vectors are shown inFig. 3. An example of the detailed
FORTRAN program is given by LUUS(1989), and HARTIG and KEIL (1993a). The
algorithm has been successfully applied to many global optimization problems of
control theory and chemical reaction (LUUS and ROSEN(1991), LUUS and GALLI
(1991), HARTIG and KEIL (1993b), LUUS (1993a, 1993b), HARTIG et al. (1995)).

In order to overcome the difficulty of sufficiently fine grids LUUS (1989)
picked up an idea by BELLMAN and DREYFUS (1962) who suggested calculation
of the problem again and again by reducing the size of the grids. First the problem
will be calculated by using coarse grids. Then the mid points of the state and control
grids are set equal to the preliminary optimal state and control vectors and the ranges
of the grids are reduced. The second difficulty can be avoided by using a special
procedure, developed by LUUS (1989) for calculatingFk+1 for a state vectorx(k)

between the state grid points. IDP stores the optimal control vectorsu[j]
opt(k) for

the state vectorsx[j](k − 1), (k = P, ..., 1). The algorithm searches for the nearest
state grid pointx [j∗] (k) to x(k) and calculatesEqs. (1) and (3) of the next stage
by using the optimal control vector stored forx[j∗](k). This procedure is repeated
until the last stageP is calculated. The value ofFk+1 is equal to the sum of the
objective valuesp(q), q = k + 1, ..., P andg(x(P)).

BOJKOV and LUUS (1992) have shown that the third difficulty can be over-
come by using a few randomly distributed control grid points. By using those
randomly distributed control grid points, BOJKOV and LUUS (1992) calculated
with IDP optimization problems with 100-dimensional state vectors.

The focus of this paper is the parallelization of IDP by using the parallel virtual
machine (PVM) message-passing environment (MCBRIAN (1994), SUNDERAM et
al. (1994), GEIST et al. (1993, 1994)).

6 F. HARTIG et al.

minimum value of the objective function:F optimal controls:u∗(k), (k = 1, . . . , P)

UNTIL all iteration are executed
F = F + g(x)

Searchj∗ that fulfils { j = 1, . . . , N | min(x[j](k) − x)2}
hhhhhhh

F = F + g(x)

k < Pthen

For k = 1 to P step 1
r(k) = γ r(k)

u∗(k) = u[j∗]
opt (k)

F = F + pk(x, u[j∗]
opt (k))

x := G(x, u[j∗]
opt (k))

For k = P to 1 step −1
For j = 1 to N step 1
Fmin = ∞

For i = 1 to R step 1

x = G(x[j](k − 1), u[i](k))

F = pk(x[j](k − 1), u[i](k))

X
X
X
XX

j∗ = 1, F = 0, x = x0

Fmin = F
u[j]

opt(k) = u[i](k)

then F < Fmin

For q = k + 1 to P step 1

Searchj∗ that fulfils { j = 1, . . . , N | min(x[j](q − 1) − x)2}
F = F + pq (x, u[j∗]

opt (q − 1))

x := G(x, u[j∗]
opt (q − 1)

Estimate the optimal control vectorsu∗(k) of all stages(k = 1, . . . , P) and define the search
Regionsu∗(k) ± r(k). Define the number of state grid pointsN , number of control grid points
R, reduction factorγ and the number of iterations.

REPEAT
Generate control grids withR grid pointsu[i](k) (i = 1, . . . , R) for k stagesk = 1, . . . , P.
The control grid points are placed within the the regionsu∗(k) ± r(k) and satisfying the
boundary conditionsα(k) ≤ u[j](k) ≤ β(k).

Generate state grids withN grid pointsx[j](k), (j = 1, . . . , N) for each stagek = 1, . . . , P−
1 by calculating the staged process with the controlsu[j](k), (j = 1, . . . , N). The initial
state vectorx[1](0) is equal tox0.

Fig. 2. Flow diagram of iterative dynamic programming

ITERATIVE DYNAMIC PROGRAMMING 7

Fig. 3. State and control grids of iterative dynamic programming

The PVM software provides a unified framework within which parallel pro-
grams can be developed in an efficient manner using existing hardware. PVM
enables a collection of heterogeneous computers to be viewed as a single parallel
virtual machine. PVM transparently handles all message routing, data conversion,
and task scheduling across a network of incompatible computer architectures. The
user writes his application as a collection of cooperating tasks. Tasks access PVM
resources through a library of standard interface routines. These routines allow the
initiation and termination of tasks across the network, as well as communication
and synchronization between tasks. At any point in the excecution of a concurrent
application, any task in existence may start or stop other tasks or add or delete
computers from the virtual machine. Any process may communicate and/or syn-
chronize with any other. The PVM system is composed of two main parts. The first
part is a so-called daemon that resides on all the computers making up the virtual
machine. The second part of the system is a library of PVM interface routines. It
contains a functionally complete repertoire of primitives that are needed for coop-
eration between tasks of an application. This library contains user-callable routines
for message-passing, coordinating tasks, and modifying the virtual machine.

Because of its generality and its applicability to networks of workstations,
PVM is one of the most widely used of all message-passing environments.

8 F. HARTIG et al.

Flow diagram of the Parallel Iterative Dynamic Programming

X
X
X
XX

Send the state grid pointsx[j](k) (j =
1, . . . , N; k = 1, . . . , P − 1) to all
slave processes

Receive the values and define the control
grid pointsu[j](k) (j = 1, . . . , R; k =
1, . . . , P) for the optimization

Receive the state grid points
UNTIL j < N or a slave is not calculating

then j < N

Increase j by one and start
a non-calculating slave process
for the calculation of the state
grid points

Receivej and calculate the staged process
with û[j](k) and set the state vectorsx(k)

equal to the state grid pointsx[j](k), (k =
1, . . . , P − 1)

-

-

do j = 1, number of slave processes

Start a non-calculating slave process
for the calculation of the state grid
pointsx[j](k), (k = 1, . . . , P − 1)

Calculate the staged process for the con-
trols û[j](k) and set the state vectorsx(k)

equal to the state grid pointsx[j](k), (k =
1, . . . , P − 1)

-

� Send the state grid pointsx[j](k), (k =
1, . . . , P − 1) to the master process

Send the variablesu∗(k) andr(k) to all
slave processes

Receive the variables and define
the control grid points û[j](k)

(j = 1, . . . , N; k = 1, . . . , P − 1)

for generating the state grids

-

Master Process Slave Process
Load PVM subroutines and start the algorithm
Start the slave processes Load PVM subroutines and start the algorithm

do iteration= 1, number of iterations

Send the variablesN, P and R to all slave
processes

Receive the variables
-

Define search regionsu∗(k)±r(k), number
of state grid pointsN and control grid points
R, number of iterations, number of stages
P and reduction factorγ

continued next page

ITERATIVE DYNAMIC PROGRAMMING 9

Master Process Slave Process
do n = (P − 1), 1, step−1

do j = 1, number of slave processes

Start a slave process for the opti-
mization of the stagesn + 1 to P
and the initial vectorx[j](n)

For q = n + 2 to P step 1

- Fmin = ∞
For i = 1 to R step 1

x = G(x[j](n), u[i](n + 1))

F = pk(x[j](n), u[i](n + 1))

Searchj∗ := { j = 1, . . . , N | min(x[j](q−
−1) − x)2}

F = F + pq (x, u[j∗]
opt (q − 1)

x := G(x, u[j∗]
opt (q − 1))

F = F + g(x)
X
X
X
XX

X
X
X
XX

X
X
X
XX

then

then

then F < Fmin

F < Fmin

j ≤ N
Increasej by one and start the
non-calculating slave process
for the optimization of stages
n + 1 to P and the state vector
x[j](n)

-

�
Send the values ofu[j]

opt(n + 1)

to the master process

Fmin = ∞
For i = 1 to R step 1

u[j]
opt(n + 1) = u[i](n + 1)

Fmin = F
UNTIL the stagesn + 1 to P are opti-

mized for all state grid points

x[j](n), j = 1, . . . , N

Receive and store the optimal con-

trolsu[j]
opt(n +1) and the state vector

x[j](n) at the entrance of stagen +1

x = G(x[j](k − 1), u[i](k))

F = pk(x[j](k − 1), u[i](k))

For q = k + 1 to P step 1
Set j∗ := { j = 1, . . . , N | min(x[j](q−

−1) − x)2}

x := G(x, u[j∗]
opt (q − 1))

F = F + pq (x, u[j∗]
opt (q − 1))

u[j]
opt(k) = u[1](k)

Fmin = F

F = F + g(x)

continued next page

10 F. HARTIG et al.

minimal value of the objective funtion:F,
optimal controls:u∗(k), (k = 1, . . . , P)

F = F + g(x)

Set j∗ := { j = 1, . . . , N | min(x[j](k) − x2)}
then k < P
u∗(k) = u[j∗]

opt (k)

F = F + pk (x, u[j∗]
opt (k))

x := G(x, u[j∗](k))

r(k) = γ r(k)

Master Process Slave Process

Send the optimal controls

u[j]
opt(n + 1), j = 1, . . . , N to all

slave processes

For k = 1 to P step 1
j∗ = 1, F = 0, x = x0

Fmin = F
u[j]

opt(k) = u[i](k)

then
X
X
X
XX

F < Fmin

F = F + g(x)

x := G(x, u[j∗]
opt (q − 1))

F = F + pq (x, u[j∗]
opt (q − 1))

Set j∗ := { j = 1, . . . , N | min(x[j](q − 1) − x)2}
For q = 2 to P step 1

F = pk(x0, u[i](1)

x = G(x0, u[i](1)

For i = 1 to R step 1
Fmin = ∞

- Receive the data

Fig. 4. Flow diagram of the Parallel Iterative Dynamic Programming

The flow diagram of the parallel IDP algorithm is given inFig. 4. This diagram
is directly related to the algorithm inFig. 2. The algorithm employs a master/slave
scheme to distribute the tasks. The master process mainly coordinates the work of
the slave processes which first generate in parallel the state grids and then the staged
processes are optimized in parallel for each state grid point. To generate the state
grids the staged process is calculated for different controlsu(k), starting from the
initial statex0. N trajectories will be calculated by whichN grid points are generated
in each state grid. Each of the trajectories can be calculated independently of the
others in a slave process. After the generation of the state grid, the stages are to be
optimized starting from the last stageP. The subproblems presented inEqs. (4) and
(5) are calculated one after the other. Each of the subproblems(k = P, ..., 2) is to
be optimized for different state vectorsx[j](k) of the state gridk. The optimization
of a subproblem for each vector of the state grid can be done independently of

ITERATIVE DYNAMIC PROGRAMMING 11

the optimization of the subproblem of another state grid vector. Therefore, the
optimization calculations can be distributed amongst the slaves. Each slave process
calculates an optimal control which is transferred to the master process at the end
of the calculation. Each of the slave processes is realized on a separate processor,
for example, several personal computers that are connected by means of network
interface cards. The more processors are available the more slave processes can be
operated in parallel, and the more computing time can be saved, although there is
some loss owing to data exchange and manipulation.

3. Example

In the present work the parallel IDP algorithm was used for the optimization of a
problem given by LUUS (1993a). The algorithm was executed on a cluster of up to
four HEWLETT PACKARD 735 workstations and on a PARSYTEC GC/PP 128
Parallel Computer where up to eleven PPC 601 processors were used. One master
process running on one processor spawns a number of slave processes on each of
the other processors.

The parallelization of the algorithm was measured by three commonly em-
ployed parameters defined as follows:

• The maximal speedupSC is the ratio of the calculation timetS of the fastest se-
quential algorithm and the calculation timetC of the fastest parallel algorithm
executed onC processors

SC = tS

tC
. (7)

• The algorithm speedupSC is the ratio of the calculation timet1 of the parallel
algorithm executed on one processor and the calculation timetC of the parallel
algorithm executed onC processors

SC = t1
tC

. (8)

• The efficiencyEC is the ratio of the algorithm speedupSC and the number
of processorsC

EC = 100
Sc

C
. (9)

The calculation time of the sequential algorithm was 6360 [s] on a HP 735
workstation und 10019 [s] on a single PPC 601 processor. InTables 1 and 2
the computation timestC of the parallel algorithm, the maximal speedupSC , the
algorithm speedupSC and the efficiencyEC are presented for up to 11 parallel
processors.

12 F. HARTIG et al.

Table 1. HP Workstation - Cluster: Calculation time(tC), maximal speedup(SC), algo-
rithm speedup(SC) and efficiency(EC) as a function of the number of processors
(C), sequential time is 6360 [s] (N=7 state grid points and M=7 control grid points)

C tC [s] SC SC EC [%]
1 6749 0.94 1.00 100
2 3807 1.67 1.77 88.5
3 3118 2.04 2.16 72.0
4 2520 2.52 2.69 67.0

Table 2. Parsytec GC/PP 128: Calculation time(tC), maximal speedup(SC), algorithm
speedup(SC) and efficiency(EC) as a function of the number of processors(C),
sequential time is 10019 [s] (N=11 state grid points and M=11 control grid points)

C tC [s] SC SC EC [%]
1 10507 0.95 1.00 100.0
2 5933 1.69 1.77 88.5
3 4286 2.34 2.45 81.7
4 3442 2.91 3.05 76.3
5 3249 3.08 3.23 64.6
6 2647 3.79 3.97 66.2
7 2582 3.88 4.07 58.1
8 2538 3.95 4.14 51.8
9 2510 3.99 4.19 46.6
10 2483 4.04 4.23 42.3
11 1966 5.10 5.34 48.5

The maximal speedupSC for one processor (C = 1) was 0.94 on the HP-
Cluster and 0.95 on the Parsytec (seeTables 1, 2). Therefore 5–6% of the calculation
time of the parallel algorithm is needed for the communication of slave and master
process. If the slave processes are optimally synchronized the speedup increases
linearly with the number of processors which is shown inFigs 5 and6.

The difference in the communication overhead is based on the different data
transport layers (seeTables 1, 2, EC). The HP-Cluster runs on a Fiber Distributed
Data Interface (FDDI). FDDI is a 100-MBit/sec token-passing ring that uses optical
fiber for transmission between stations and has dual counter-rotating rings to provide
redundant data paths for reliability. The Parsytec GC/PP 128 uses a 2D grid of
separate communication processors each connected with two PPC 601 processors.

ITERATIVE DYNAMIC PROGRAMMING 13

Fig. 5. Algorithm speedup as a function of the number of processorsC (HP Workstation –
Cluster)

Fig. 6. Algorithm speedup as a function of the number of processorsC (Parsytec GC/PP
128)

14 F. HARTIG et al.

This strategy allows a very high network bandwidth and by far faster data exchange
than the FDDI network which is limited to 100 MBit/sec.

Another important point is the latency time which represents the time to create
a message. On network based PVM implementations this time is very long because
of the administrative work of the operating system. The Parsytec GC/PP 128 uses
the special operating system PARIX which reduces the latency time. The Parsytec
implementation of PVM is based on these PARIX calls so that the spawning of
messages is very fast.

Because of the simple implementation the synchronisation, and therefore the
efficiencyEC , depend on the ratio of the number of grid points and the number of
processes (Tables 1, 2). If the number of grid points is a multiple of the number of
processors and the calculation time of the staged process is always the same, the
generation of the state grid points, and the optimization are finished at the same time
by all slave processes and, consequently, no slave process is waiting and reducing
the efficiency of the parallelization. In this work IDP was executed withN = 7
state grid points andM = 7 control grid points. If the algorithm runs with 2
processors, the first 6 sets of state grid points are generated in parallel. The seventh
set is generated by only one slave process while the second slave process is waiting.
For three processors, the efficiency is even more reduced, since at the end two slave
processors are waiting. Therefore, the number of state grid points and the number
of control grid points should be a multiple of the number of processors in order to
get a high efficiency of the parallelization.

ITERATIVE DYNAMIC PROGRAMMING 15

Nomenclature

C number of parallel slave processes
EC efficiency of the parallel algorithm
F objective function of the staged process
Fk function defined byEqs (5) and (6)
G function for the state vector
g objective function of the state vectorx(P)
P number of stages
N number of grid points in each state grid
p(k) value of the objective function of stagek
pk objective function of stagek
R number of grid points in each control grid
r(k) radius of the search region of controlu(k)
SC maximal speedup
SC algorithm speedup
tS calculation time of the sequential algorithm [s]
tC calculation time of the parallel algorithm withC processors [s]
u(k) control vector of stagek
u∗(k) midpoint of the search region of controlu(k)

u[j](k) j -th point of control gridk
û[j](k) j -th point of control gridk for calculating the state grid pointx[j](k)

u[j]
opt(k) optimal control vector for thej -th point of state gridk

x0 initial state vector of the process
x(k) state vector at the exit of stagek and at the entrance of stagek + 1
x[j](k) j -th point of state gridk

Greek Symbols

α (k) lower boundary of controlu(k)
β (k) upper boundary of controlu(k)
γ reduction factor

References

[1] BELLMAN , R. E. – DREYFUS, S. E. (1962): Applied Dynamic Programming, Princeton Uni-
versity Press, Princeton, NJ.

[2] BERTSEKAS, D. P. – TSITSIKLIS, J. N. (1989): Parallel and Distributed Computation, Nu-
merical Methods, Prentice Hall, Englewood Cliffs.

[3] BOJKOV, B. – LUUS, R. (1992): Use of Random Admissible Value for Control in Iterative
Dynamic Programming.Ind. Eng. Chem. Res., Vol. 31, p. 1308.

[4] CHEN, M. C. (1986): Design Methodology for Synthesizing Parallel Algorithms and Archi-
tectures,J. of Parallel and Distributed Computing, Vol. 3, p. 461.

16 F. HARTIG et al.

[5] CLEMENTI, E. – CHIN, S. – CORONGIU, G. – DETRICH, J. H. – DEPUIS, M. – FOLSOM, D.
– LIE, G. C. – LOGAN, D. – SOMAND, V. (1989): Supercomputing and Supercomputers for
Science and Engineering in General and for Chemistry and Biosciences in Particular,Int. J.
Quant. Chem., Vol. 35, p. 3.

[6] EDMONDS, P. – CHU, E. – GEORG, A. (1993): Dynamic Programming on Shared-Memory-
Multiprocessor Parallel Computing, Vol. 19, p. 9.

[7] GEIST, A. – BEGUELIN, A. – DONGARRA, J. – JIANG, W. – MANCHEK, R. – SUN-
DERAM, V. (1994): PVM: Parallel Virtual Machine A User’s Guide and Tutorial for Networked
Parallel Computing, MIT Press, Cambridge.

[8] GEIST, A. – BEGUELIN, A. – DONGARRA, J. – JIANG, W. – MANCHEK, R. – SUN-
DERAM, V. (1993): PVM 3.0 User’s Guide and Reference Manual, Engineering Physics and
Mathematics Division, Mathematical Sciences Section, Oak Ridge National Laboratory, Oak
Ridge, Tennessee.

[9] GROPP, W. – LUSK, E. – SKJELLUM, A. (1994): Using MPI – Portable Parallel Programming
with the Message-Passing Interface, The MIT Press, Cambridge, MA.

[10] HARTIG, F. – KEIL, F. J. – LUUS, R. (1995): Comparison of Optimization Methods for a
Fed-Batch Reactor,Hung. J. Ind. Chem., Vol. 23, p. 141.

[11] HARTIG, F. – KEIL, F. J. (1993a): A Modified Algorithm of Iterative Dynamic Programming,
Hung. J. Ind. Chem., Vol. 21, p. 101.

[12] HARTIG, F. – KEIL, F. J. (1993b): Large Scale Spherical Fixed Bed Reactors: Modeling and
Optimization,Ind. Eng. Chem. Res., Vol. 32, p. 424.

[13] JAJA, J. (1992): An Introduction to Parallel Algorithms; Addison Wesley, Reading, Mass.
[14] LUUS, R. (1999): Iterative Dynamic Programming, CRC Press (in preparation).
[15] LUUS, R. (1993a): Optimization of Fed-Batch Fermentors by Iterative Dynamic Programming,

Biotechnol. Bioeng., Vol. 41, p. 599.
[16] LUUS, R. (1993b): Application of Dynamic Programming to Differential-Algebraic Process

Systems,Computer Chem. Engng., Vol. 17, p. 373.
[17] LUUS, R. (1990): Application of Dynamic Programming to High-Dimensional Non-Linear

Optimal Control Problems,Int. J. Control, Vol. 52, p. 239.
[18] LUUS, R. (1989): Optimal Control by Dynamic Programming Using Accessible Grid Points

and Region Reduction,Hung. J. Ind. Chem., Vol. 17, p. 523.
[19] LUUS, R. – GALLI , M. (1991): Multiplicity of Solutions in Using Dynamic Programming for

Optimal Control,Hung. J. Ind. Chem., Vol. 19, p. 55.
[20] LUUS, R. – ROSEN, O. (1991): Application of Dynamic Programming of Final State Con-

strained Optimal Control Problems,Ind. Eng. Chem. Res., Vol. 30, p. 1525.
[21] MCBRIAN, O. A. (1994): An Overview of Message Passing Environments,Parallel Comput-

ing, Vol. 20, p.417.
[22] MCRAE, G. J. (1990): Chemical Process Modeling and Simulation Using Advanced Compu-

tational Architectures, In: Foundation of Computer-Aided Process Design; Siirola, J.J., Gross-
mann, I.E., Stephanopoulos, G. (Eds.), Elsevier, New York.

[23] RYTTER, W. (1988): On Efficient Parallel Computations for Some Dynamic Programming
Problems,Theoret. Comput. Sci., Vol. 58, p. 257.

[24] SMITH , J.; (1993): The Design and Analysis of Parallel Algorithms, Oxford University Press,
Oxford.

[25] SUNDERAM, V. S. – GEIST, G. A. – DONGARRA, J. – MANCHEK, R. (1994): The PVM Con-
current Computing System: Evolution, Experiences and Trends,Parallel Computing, Vol. 20,
pp. 531–545.

[26] WILSON, G. V. (1995): Practical Parallel Programming; MIT Press, Cambridge, MA.

	Introduction
	Parallelization of Iterative Dynamic Programming
	Example

