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Introduction and Preliminaries

It is often asserted that the linear theory [3—10] of irreversible thermo-
dynamics, the foundations of which were laid by ONsAGER [1] and CasiMIr [2],
does not adequately represent irreversible phenomena in systems far from
equilibrium. Such assertions are correct if we consider the linear flux-force
constitutive equations of the original Onsager theory, i.e., equations

I
L=3L%X, with LY=L (i,k=1,2.....f) 1)
k=1

where LY = L); are the Onsager reciprocal relations (ORR) and L}, are con-
stant coefficients. However,if we make allowance for the so-called quasilinear
generalisation of the theory proposed by GyarmaTtr [11—15] (for further
references see [15]) according to which the conductivity coefficients Ly may

depend, for example, on the intensive thermostatic state variables I'}, ..., Iy,
then the constitutive equations
f
L= 3Lyl .. .. I)X, (@)
k=1

with the ORR-s in the form Lj([l'y, . . ., I'f) = Ly(I'y, . . ., I¥) and with the

Gyarmati supplementary reciprocal relations
Lyl ... 1) _ oLy (I, ..., 1Y)
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warrants good approximation for example in the case of transport processes.
On the other hand, there are only very rare cases of transport processes where
currents I; nonlinearly depend on forces X, i.e.,

L=f{ly....T Xy .... Xp, X}, .00, XE .0 0) (4)
Forillustration, heat conduction in anisotropic solids should be mentioned.
Since over a century we have known that Fourier’s law for anisotropic solids, i.e.
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which is a special case of equation (1), is no good approximation in the case
of some materials, even if temperature gradient VT is equal to a few degrees
per cm. In equation (5) (I), is the «th component of the heat current density
and ;~£ﬁ are the elements of heat conductivity tensor. On the other hand, the
constitutive equations of the quasilinear theory, i.e.,

(L)e = —22:5(T)(VT)s (¢ =1,2,3) (6)

with the Onsager reciprocal relations A,4(T) = 25.(T) and the Gyarmati
supplementary reciprocal relations

Oy _ V.

o BT (e f=1,2,3) (7

warrant practically exact description even in the case of the highest values of
the temperature gradient. The exactness of description depends on how the
2.(T) functions are known experimentally. In any case, we do not know heat
conduction phenomena where the description necessarily involved strictly
nonlinear constitutive equations of the form [12, 13]:

I,= —[MT) + L(T)(VT)® +...]VT = A(T, VI)VT (8)

Here for the sake of simplicity, isotropic material was considered, and il =
= A(T) + L(T)(VT)? is the heat conductivity coefficient depending on both
T and VT.

Without going into details, we would mention here that some two
decades ago Gyarmati [16, 17] and Li [18, 19] laid the foundations of a non-
Linear theory, which was completed later by several authors (Gyarmati [12],
Verhas [14], Edelen [20, 21] and recently Keller [22]). Thus, recently we have
at our disposal a nonlinear theory of thermodynamics, which is mathematically
complete, as e.g., the linear theory or its quasilinear form. This old nonlinear
theory is based on the generalized reciprocity relations (GRR)

o, oI, .
oX, X, iE=1,....f) 9
formulated independently by Gyarmati and Li. However, up to this day we
do not know of any acceptable derivation or immediate experimental proof
of these relations. It should be noted that distinction must be made between
the GRRs (9) consituting the foundations of the strictly nonlinear theory and
the supplementary reciprocal relations of form (3), or inthe special case of aniso-
tropic heat conduction of form (7). The validity of latter is beyond question.
It should also be emphasized that in the case of transport processes, terms of
higher than linear degree are only very seldom required in the polynomie
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type constitutive equations
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(10)

proposed by Gyarmati and Li as a direct generalization of the Onsager theory-
It should be remarked here that from the aspect of physics, all modern”
nonlinear theories lack seriousness in which the authors propose the use of
constitutive functionals. As a matter of fact, whatever constitutive function-
als — meeting rational arguments and postulates — are proposed for a
nonlinear theory, introduction of these functionals into a physical theory is
equivalent to the implicit resignation to prove the theory experimentally.
Theories based on constitutive functionals have the advantage today that
they cannot be experimentally disproven and will have the disadvantage
tomorrow that they cannot be experimentally proven.

Returning to the physical reality, we mention here that though the ORR-s
are in many cases experimentally proven and their validity is beyond doubt,
in certain cases their verification involves elaborate techniques and is very
difficult. The brilliant papers of MiLLER [23, 24] should be referred to in this
context. Taking his work into account, we may see thatin the case of anisotrop-
ic heat conduction it is not sufficient to prove experimentally the ORR-s

Ay = Py Iz = s Dy = Ay (11)

between the coefficients of the constitutive equation (6). This had already
been performed by SoreT [25, 26] and VoieT [27] around the turn of the cen-
tury. In addition, according to the GRR (9), one has to prove also the sym-
metries

Lxxxy = Lyxx.\" Lxxxz = Lz):xx’ nyxy = Lyxyx= ete. (12)

of the fourth order conductivity tensor L,;,s. Those who are familiar with
the experimental difficulties involved may be sure that the experimental
verification of relations (12), which in this special case represent the Gyarmati—
-Li GRR, is a lost case. Moreover, even the experimental existence of the
tensor L gs(T) is doubtful.

It is clear from the foregoing that in the case of transport processes we
can hardly expect the experimental verification of the relatively simple non-
linear thermodynamic theory proposed at the end of the fifties [16, 18].
This seems to be so, in spite of the fact that this theory is a dircct generaliza-
tion of the experimentally proven linear Onsager theory. Nevertheless,
chemical reactions are irreversible processes where the rate functions of the
Guldberg—Waage form [28 —30] may enable us to prove the reality of the
above mentioned nonlinear thermodynamic theory. We hope that the con-
sistency of this theory with the Guldberg—Waage kinetics will be shown

5 Periodica Polytechnica CH. 25/1
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some day, which generalizes the experience on thousands of reactions, and
think that this will much contribute to the acceptance of the Gyarmati—Li
theory.

This consistency is both theoretically and practically important also
from the aspect of reaction kinetics. If we can show this consistency, then the
whole phenomenological theory of chemical reactions will become a special
but organic branch of non-equilibrium thermodynamics in the same way as
the theory of chemical equilibria has become a special chapter of thermo-
statics as a result of Gibbs’ work. From the practical point of view, on the
other hand, the description in non-equilibrium thermodynamics not only
offers an alternative description of chemical reactions but can complete the
Guldberg—Waage theory. We think that reaction kinetics describes only the
concentrations as a function of time but the reaction heats involved in the
reaction, i.e., the energetics are not included in the description. In non-
equilibrium thermodynamics this inclusion is quite natural, moreover, if the
equivalency of hoth theories can be assumed, then stationary states, stability
and evolution of open kinetic systems may become objects of exact studies by
means of adequate principles and theorems of non-equilibrium thermodynamics
[8, 12]. Since the above problems and their solutions are both theoretically and
practically of greatest importance in chemical kinetics as well as in their bio-
chemiecal and biological application, we think that the consistency of nonlinear
thermodynamics and chemical kinetics is a problem of primary importance
in modern science.

Before turning to the question of the consistency of nonlinear thermo-
dynamics and reaction kinetics, we would mention that even the relation of
the linear Onsager theory to the linearized form of the Guldberg— Waage
theory is not entirely clarified. This is surprising, all the more, as it was a
reaction kinetical example — the monomolecular triangle reaction — used
by Onsacer [1] to illustrate the ORR-s as early as 1931. In spite of this, it
can be seen from monographs on non-equilibrium thermodynamics [3—10]
and other works {31] that the thermodynamical evolution of reaction kinetics
has not been completed; not even in the linear domain. Adequate and up to
now the most complete treatments were presented by OL{H [32] and ScHUBERT
[33], which — although not widely known in the international literature —
show the insufficiencies of the theory. We have the following insufficiencies
in mind. a) The theory is not systematically elaborated and a wide application
to chemical kinetics is lacking. b) The theory is not much more than linear
transformation between fluxes and forces (see e.g. [7]). Occasionally, misinter-
pretations of the transformation occur, wich are due to inadmissible generali-
zation and not sufficiently careful application [34] of the well established
Meixner transformation theorems (see e.g. [7]). ¢) The equations of motion for
thermodynamic forces (i.e., affinities in reaction representation) found already
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in 1957 [16, 17] have not been applied, though they could be used to describe
the evolution of the affinities (or reaction heats) in the course of time. This is
a priori impossible in pure reaction kinetics. These facts justifie the elaboration
of a complete thermodynamic theory of reaction kinetics in its linear and
nonlinear forms.

Unfortunately, it is generally believed that linear thermodynamics is
not a good approximation in the description of chemical reactions with the
exception of the immediate vicinity of equilibrium. Considering the above
outlined points, however, the elaboration of a complete linear theory and its
application to chemical reactions is thought to be not as useless as generally
believed. There are two facts to be pointed out here. In relaxation kineties estab-
lished in the sixties by E1GEN and coworkers [35], up to this date, almost exclu-
sively linear approximation has been applied with much success [36]. Since,
however, it was not possible for authors working in relaxation kinetics to apply
a linear thermodynamic theory to chemical kinetics, they had no other choice
but to find theorems and equations, often in an incomplete form, which could
have been found automatically and in complete form in the linear thermo-
dynamic theory of reaction kinetics.

There are further practical reasons for the elaboration and application
of a complete form of the linear thermodynamic theory of reactions. The
study of complex reactions shows that although it is simple to find the simul-
taneous system of the corresponding Guldberg— Waage equations, which are
generally nonlinear differential equations, their solutions cannot be found
in analytical form. Those treating such problems either resort to methods of
mathematical approximation [37] or use more or less reasonable simplifications
of the initial system of equations. Among these, the principle of quasista-
tionarity (Bodenstein) and the hypothesis of quasiequilibrium should be
mentioned here, by which linearization or at least significant simplification
can be managed. Such principles of reduction and their effect is always of ad
hoe character. Moreover, in some cases such reductions of the original nonlinear
equations are so drastic that the solution is a misinterpretation of the kinetics
studied. Often a truer picture of the kinetics could be obtained by direct use
of the linear thermodynamical theory of reaction kinetics and by exact solu-
tion of the linear equations than by the ad hoc and drastic methods used in
the solution of certain reduced forms of nonlinear kinetic equations.

To illustrate the situation, let us assume that we could show the consis-
tency of nonlinear thermodynamics and nonlinear theory of chemical kinetics.
In this case, instead of the Guldberg— Waage form of the kinetic equations
the consistent differential equations of the nonlinear thermodynamic theory
have to be solved. Those underestimating the linear theory of thermodynamics
do not benefit by the nonlinear theory, even if it is assumed to be consistent
with nonlinear reaction kinetics, since it is equally difficult to solve nonlinear

5*
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differential equations, irrespective of the kinetic or thermodynamic content
of these equations.

Let us now turn to the question of consistency of nonlinear thermodynam-
ics and nonlinear chemical kinetics. Since 1963 confusion has prevailed in
this domain. Therefore, first the following three questions must be clarified:

By whom was the GRR proposed in the form (9)? When was this pro-
posed? In what sense was it proposed ? These questions are important because
without deeper knowledge of the literature some authors us- relations (9) in
different senses and various forms. It was perhaps Denbigh who in 1951 first
used relations (9) (see [4] page 30), although he used these relations only as
alternative forms of the ORR of the linear theory. No mention was made,
however, according to which he would have postulated the validity of equa-
tions (9) beyond the linear domain.

Starting with the obscure expression

dS = 3 X,dx; (13)

of non-equilibrium entropy change, GIBERT [38] in 1953 derived equations
(9) using certain mathematical manipulations. For the moment it is not
important to show the incorrectness of this derivation, since there is up to
now no perfectly correct derivation. We wish to point out here that Gibert’s only
aim was to derive the ORR-s from macroscopic thermodynamic principles
i.e., without assuming any microscopic principle or hypothesis. No reference
has been made in his paper to the assumption that relations (9) might be valid
for nonlinear constitutive equations. Hence, Gibert did not propose any non-
linear constitutive equation and has not elaborated any nonlinear theory.
The GRR-s are also assigned to PExErLoux [39] and DopE [40]. Dodé
seems to have set as his aim the specialization of Gibert’s results to chemical
reactions. In this very qualitative paper we find only two equations

o) _ (o 4
0 k! aFt

’ Ai
dS =‘?Fd§,-=;‘F,»d§,- and

where dS’ is the entropy created by the chemical reactions, 4; and & are
affinity and degree of advancement of reaction i. He regarded the second
equation (14) as Gibert’s reciprocitiy relation, although it is a Maxwellian.
Consequently, Dodé’s paper cannot be regarded as publication of a nonlinear
thermodynamic theory. Pénéloux (1954) in the special case of chemical reac-
tions derived the ORR-s in the form RL; = RL;; (R is the gas constant) by
questionable manipulations. In his second paper (1957) he publishes the
relation

811‘ — 81-}\'

04, 04,

(15)
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for chemical reactions. Here I;, I, are reaction rates and A;, A, affinities.
However, he does not propose any nonlinear theory and cannot be regarded
as a pioneer in nonlinear thermodynamics, not even in the special case of reac-
tion kineties.

In 1962 RYSSELBERGHE [41, 42] became aware of the fact that validity
of the Pénéloux reciprocity relations (15) may be considered as independent
of the linear domain of reaction kinetics. He postulated their validity in the
case of the following nonlinear equations

11: LnA1 +L12A2 +LmA§ +L112A1A2 +L122A§
Iy =Ly A4y 4+ Loy Ay 4 Loy A7 + Lojp A3 Ay + Ly, A3 (16)

Combination of equations (15) and (16) leads to the ORR L,, = L,; and, in
addition, to the reciprocal relations of higher order of the form

L112 = 9L2ua Lzm = 2L122 (17)

Here some observations have to be made.

We may establish that it was Rysselberghe who first proposed non-
linear constitutive equations between reaction rates and affinities and he was
the first to regard relations (15) as valid for the nonlinear domain of chemical
kinetics. Therefore, it is justified to call equation (15) the Rysselberghe gener-
alized reciprocity relation” (RGRR).

The theory proposed by Gyarmati and Li (1957—1962) was more general
and more carefully elaborated than the Rysselberghe theory, and the former
was known to the author of the second. Therefore, the quastion could be raised:
is the second theory an a posteriori specialization of the first ? However, this
is not the case. In the Gyarmati—Li theory there is no restriction postulating
that in its application to reaction kinetics the affinities should be regarded as
thermodynamic forces in the nonlinear constitutive equations. Consequently,
the Rysselberghe theory cannot be regarded as a special reaction kinetic form
of the older and more general Gyarmati—Li theory. In other words, we must
not regard constitutive equations (10) and GRR(9) in the special case of chemi-
cal kinetics as relations from which, with substitution of X; = 4; we arrive
at the theory of Rysselberghe. In spite of its similarity in form, the Rysselberghe
theory differs from the Gyarmati—Li theory and is narrower than the latter
not only because it is proposed only for chemical reactions but rather because
it is based on the assumption that affinities are the real thermodynamic forces
also in the nonlinear domain!

RysseLBERGHE [42] applied his theory to triangle reactions and derived,
in addition to the Wegscheider equation, further three relationships as a
result of the symmetries (17). In 1965—1966 WEI and ZABNER pointed out
[43] that Rysselberghe’s derivation of equation (15) is incorrect and, the
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RGRR is in contiradiction to experimental facts. For example, experiments
show that in most monomolecular systems the reaction paths are curved,
while from the existence of RGRR it would follow that all reaction paths are
straight lines. Olah arrived at similar conclusions according to which the afore-
-mentioned three relationships together with Wegscheider’s equation represent
four relationships between six rate constants, which is a restriction contra-
dictory to experiment [32].

Analyses by Wei and Zahner as well as Olah clarified in some parti-
cular cases that the Rysselberghe form of nonlinear thermodynamics is in-
consistent with chemical kinetics. The Rysselberghe theory in its original and
rough form could not be widely applied and proven. Therefore, BATAILLE,
EpELEN and KESTIN's analysis [44] published in 1978, in which the authors
treat the question of the comsistency of chemical kinetics with nonlinear
thermodynamics quite generally, is of fundamental importance. Their results
may be summarized as follows.

1. The Marcelin—De Donder constitutive equations of chemical kinetics,
which are equivalent to the Guldberg—Waage equations, satisfy the second
law of thermodynamics.

2. The constitutive equations of chemical kinetics are, in linear approxi-
mation, consistent with the linear Onsager theory in the sense that in chemical
kinetics the ORR-s are trivially satisfied.

3. In nonlinear approximation, in general, there is no consistency between
the two theories. The RGRR-s are trivially satisfied in the case of some kinetic
systems but they are not satisfied in other cases. However, we feel that the
excellent analysis of Bataille, Edelen and Kestin is not a final conclusion
concerning the question of consistency of nonlinear thermodynamics with
chemical kinetics. Let us comment on the results of these authors.

Ad 1. According to Bataille, Edelen and Kestin, in linear approximation
the ORR-s are trivially satisfied or, in other words, the matrix {L;} of the
chemical drag coefficients is in all cases diagonal. Evidently, this cannot be
true, since Onsager in 1931 showed an example where the ORR is really
satisfied. The real validity of the ORR is equivalent to the Wegscheider equa-
tion and the experimental verification of latter is a proof for the real satis-
faction of the ORR [24].

Ad 2. In the first example of their paper, BATA1LLE, EDELEN and KESTIN
[44] considered n — 1 unimolecular reactions between n isomers in a closed
system. However, in such systems kinetical coupling of reactions is a priori
impossible both in the linear domain and in higher approximations.
Therefore, this systems is no real example for the trivial satisfaction of the
RGRR-s in the nonlinear domain.

In their second example the authors again considered monomolecular
reactions among isomers but with a mechanism of the two reactions among
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four species specified by
[My] +2[M,] = [Ms] +2[M,]
[My] + 2[Ms] + [M,] = 4[M:] (18)

They show that the RGRR-s are not satisfied in the nonlinear domain. Though
this result is correct, we think the conclusion that nonlinear thermodynamics
is inconsistent with chemical kinetics cannot be drawn from this, because the
kinetic system (18) is not a system of elementary steps.

In conclusion our views on the problem are expressed as follows.

1. Detailed elaboration of the linear Onsager theory is much more
important for chemical kinetics than is usually asserted. The conditions for
trivial and those for real satisfaction of the ORR-s have to be clarified in
general.

2. According to the analyses of WEI and ZABNER, of OLAH as well as of
Bararuie, EpELEN and KESTIN, nonlinear thermodynamics based on the
Rysselberghe reciprocity relations (15) in terms of reaction rates and affinities
as fluxes and forces seem to be inconsistent with reaction kinetics. However,
these analyses are either rather qualitative and restricted to special cases
(Wei—Zahner, Olah) or — although quantitative — the examples are not
represeatative from the chemical point of view (Bataille—Edelen—Kestin).

This present paper has two aims: first, to present a final and general
clarification of the conditions for trivial and real satisfaction of the Onsager
relations in reaction kinetics; second, to analyze and illustrate the validity or
invalidity of the RGRR by several real examples of chemical kinetic systems,

1. Reactions in a closed homogeneous system

Let us consider a closed homogeneous system of the K components
M, ..., Mgwhich participate in the R reversible reactions
DverMy = Zver My, (r=1,...,R) (L.1)
<

K

These equations represent the network and the chemism of reactions in the
system. Here v, > 0 denotes the stoichiometric coefficient of reactant My,
in reaction r and %y, > 0 denotes the stoichiometric ceofficient of product
M- in the same reaction. In the following, and in general, superscripts ’ and
" will refer to reactants and products, respectively. The same component may
or may not participate in two or more reactions. If component k does not
participate in reaction r, then v, = 0. In equation (1.1) summation has to be
extended over all reactants of reaction r on the left- hand side, and over all
products of that reaction on the right-hand side. It is also usual to write equa-
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tion (1.1) as

K
) — v < 0 for reactants
ka, Mk = 0 ‘Vlth 'V,‘.r = 'l’k:rr — 'V]‘»'r == kr

(1.2)
k=1 Ypr > 0 for products

where the stoichiometric matrix {#} is introduced.
Now, according to De Donder, the rate I, of reaction r is defined as

IL="r== 50 (=1, ,R) (1.3)

where ny is the mole number of component k, d; ny is its change due to advance-
ment of reaction r during time dt. The reaction rate is a measure of the speed
of the reaction and plays the role of a generalized flux in the sense of the
Onsager theory. The variable £, is the degree of advancement or the extent
of the reaction. Evidently the change of the mole number of component &
due to advancement of all reactions is

R R
dn, = >d.n,= Fv,d§, (k=1,...,K), (1.4)
r=1 r=1
i.e., the relations between the component velocities and reaction rates are

I,=

R
%’%Tzwk,fﬂ (k=1,... ,K) (1.5)
r=1

which are important relations because only component velocities I are directly
measurable quantities.

2. Basic equations of the thermodynamics of closed systems

The first law of thermodynamics for a closed system in case of a simple
external force is
dU=dQ — pdV (2.1)
where dU is the change of internal energy of the system, d(Q is the heat trans-
ferred to the system, and —pdV is the work performed on the system by exter-
nal pressure. If no irreversible processes take place in the system, then

dU = TdS — pdV (2.2)

where T is the absolute temperature of the system and dS is its reversible
entropy change. If, however, irreversible processes take place in the system
then

dU =TdS — pdV — Td;S (2.3)
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where d;S > 0 is the entropy change due to irreversible processes. Under the
conditions S, ¥V = constant,

(dU)sy = —Td;S<0 (2.4)

is the internal energy dissipation in the system due to the irreversible processes.
Similarly, if we use the definition of the free energy F, enthalpy H and Gibbs’
potential G, we have

dF = —SdT — pdV — Td;S, (2.5)
dH = TdS + Vdp — Td,S, (2.6)
dG = —SdT + Vdp — Td,S. (2.7)

Consequently, the expressions for various kinds of energy dissipation under
given conditions of external constraint are:

(dF)ry = (dH)s , = (dG)r , = —Td;S <0 (2.8)
In closed systems at constant temperature and pressure the free enthalpy
G = G(T,p,n,, ... ng)is a function of the mole numbers only and conse-
quently,
oG
(d6)y,, = zmmhﬂp{ , k=1...,K) (29
\On) 7, p

where gy is the chemical potential of component k. Now, combining equations

(1.4), (2.8) and (2.4), we obtain

1 K K
- 5’.,’ 2 M dnk == ZXI: dnk
k=1 k=1

4;S = (2.10)

k=1 r=|

1 X R 1 R
S S = 34,8,

T T r=1
where two equivalent representations of the irreversible entropy variation

are introduced, by which two different but equivalent descriptions of the phe-
nomena are possible with the forces

«
X;{E——-— (k=1,....K); 4,=— S, r=1,...,R). (2.1])
T k=1

1t 1s well known that the X forces belong to the so-called ”component rep-

resentation”, while if we prefer to select affinities 4, as thermodynamic forces,

”reaction representation’ is used. In the forthcoming, “reaction representa-

“tion”” will be used, which is preferable for the analysis of principal questions.
By definition,

. K R
gEL:_L(QG_) :21kxk=%21,A,20 (2.12)
T '
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is the entropy production per unit time in the total closed system being non-
negative due to the second law.

Equation (2.12) is generally valid, irrespective of the linear or non-
linear character of the counstitutive equations between I and Xy, or I; and 4,
Tespectively.

Equation (2.12) can be used for calculations only if the constitutive (or
material) equations (for selection in "reaction representation’)

I, =f(Ady....,4g); (r=1,...,R) (2.13)

are known. In reaction kinetics they are called rate functions. They are homo-
geneous functions, i.e., they all vanish if all affinities vanish. In other words,
there are no fluxes in the absence of forces.

In linear non-equilibrium thermodynamiecs linear constitutive equations
R

I, =3Ls4; (r=1...,R) (2.14)
s=1

are assumed together with Onsager reciprocal relations
Ls=Lg (r,s=1,...,R) (2.15)

The coefficients L;s (r,s = 1,...,R) are called chemical drag coefficients.

In the case of R stoichiometrically independent reactions the number of
Ousager relations is R(R — 1)/2.

3. General forms of reaction rate functions

Let any of reactions (1.1) be a single reaction in the sense thatits advan-
cement can be described by a single parameter &.. The reaction may be a single
step if it proceeds at the molecular level as written. In this case the reaction
rate function is of the form first suggested by GULDBERG and WAAGE, i.e.,
the rates of the reaction from the left to the right of equations (1.1) are

L=k ]]

e\ = 3.1
n‘) (r=1,...,R), (3.1)

while the rates in the reverse direction are

=k {"’f’)”"" (r=1,...,R) (3.2)

G n

where k, and k, denote forward and backward rate constants, respectively,
and n is the sum of mole numbers of all components. The net reaction rates are

IL=I—I'=k]JJ {ﬂ.)" — KT (”’f’) . (3.3)
K n P4

n
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In equilibrium, we assume the validity of the principle of detailed balance,
according to which

It=0, ie. I*=1I* (r=1,...,R) (3.4)
separately for all r-s. (Superscript e stands for equilibrium.) Hence,
£ \VYirp "\ ¥pnp
I [ =k g [ =1 (35)
I3 n I’ n
is the explicit form of the principle of detailed balance, consequently
H (ni, Vi
71‘3:_"1-_’:_*—..—_&; (r=1,...,R) (3.6)
r ny T
dn

whereK, is the thermodynamic equilibrium constantif the systemis anideal one.
Equations (3.4) and (3.5) express that at equilibrium in the sense of the
principle of detailed balance, all elementary steps proceed at the same rate
as their reverse.

4. Stoichiometrically dependent kinetic systems

A kinetic system is called stoichiometrically dependent if some of the
reaction equations can be derived from others by means of linear combination.
Evidently, if the stoichiometric matrix {v,} (k=1,...,K; r=1,...,R)
has the rank p <7 R, then only o equations are linearly independent.

Let these p independent reactions be represented by

K
DM, =0; (=1, ...,0) (4.1)
Ka=1
and the R — p dependent reactions by the equations
K
S My=0; ("=o+1,...,R) (42
k=1

The equations of the dependent reactions can be derived from independent
ones by their linear combinations as

[ K K
> b S M= v M ("=e+1,... » R) (4.3)
k=1

r'=1 k=1

where fBr,-20 (usually integers) are the coefficients of linear combination.
From equation (4.3) it follows that

e
Ve = > Brrvirs (M=e+1,...,R;k=1,...,K). (4.4)
r=1
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The affinities of the dependext reactions can be derived from those of the
independent ones by the use of (2.11) and (4.4) as follows

K
Ar”:"—zvkr"iu’k - Szﬁrr"vhrlulx Zﬂrr &) (T”:Q-}-—].,..‘,R)
k=1

=17r=1 r'=1
(4.5)
Evidently, from (4.5) an important formula follows, namely
A 6 A
oﬂ,..—..eRT—e":‘” =[S ("=0+1,...,R). (4.6)

r'=1

Here A, (r=1,...,p) are the independent affinities and A-(r"=p +-1,..
.+« R) the dependent ones and, similarly, the of,. are the independent while
the ofl;-s are the dependent exponentials of the adequate set of affinities.

The relations between the dependent reaction rates and independent
thermodynamic fluxes can be derived from the postulate of the invariance
of entropy production. Indeed, from the relation

T<‘5’_[2IA = \' IxA, (4.7)
== r ——=1

where the If-s denote independent thermodynamic fluxes and 4,~s are, as
known, independent affinities. Combining equations (4.5) and (4.7), we obtain

R o
a_ZI,A - 21 e 2 Iede= S I:4,+
P

r=1 rle]
R 4 ¢ R
+ S L 3fedi= 3+ 3 b4 @)
=0+l =1 r'=1 re=p+1
and, consequently,
r’ = 2 ﬂr'r"Ir"; (T' =1,..., Q) (4‘9)
r' =041

are the transformationsbetween independent thermodynamic fluxes and depend-
ent reaction rates, correspondingly,

R
&l = d&, + > Bomdées (F=1,...,p) (4.10)
r=g+1
are the adequate transformations between the reaction variables. It is very
easy to express the variations of the dng-s in terms of the stoichiometrically
independent reaction variables, since

4
'Vkr déf = 2 Vir df + 2 Vir' 2 ﬂr'r' dé. = 2 Vir dé:r -+
r'=1 =1 r=g+1 r=1 (4 11)

2‘ r'r Ve d§~——21’k, dS + 2 vkr’dgr"_zvkrdé —dnk

r'=1 r"=g+1

uM:u HMQ
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In this derivation equations (4.10), (4.4) and (1.4) have been involved and the
result is

dn;, = 211,\, £, 2”,45 (k=1,...,K). (412)
r'=1 r=1

Thus, the dny-s are, of course, invariant quantities with respect to the reduction
of the stoichiometrically dependent reaction system to a stoichiometrically
equivalent but independent set of reactions.

-

5. Nonlinear constitutive equations for independent systems

In this section we shall derive the non-linear phenomenological equations
expressing the reaction rates I (r = 1, ..., R) as functions of the affinities
A, ..., Ag. For the sake of simplicity, the derivation is restricted to ideal
systems where

u,\_m«-RTln"’* k=1,...,K). (5.1)

In such systems the affinity of reaction r is

K Vie
—— me — — Sv,ui—RTh FJ{ { . (5.2)
p p- L

Since in equilibrium A4; = 0, the first term on the right can be expressed as

nk,

K ) L nz” Vgor }
— 3w, ut =RTl I (—n—-] ~RTl JJ (5.3)
k=1 1

where superscript e refers to equilibrium.
The second term on the right-hand side of equation (5.2) can be, in

general, similarly separated into terms for reactants and products; and for the
affinity we obtain

. F2d

—RTI 1:[( J”"'LRTl T

nh.J . (5.4)

ng.

The instantaneous state of the system at constant pressure and temper-
ature can be characterized by the values

dn,=mn, —nf; (kE=1,...,K) (5.5)
in component representation, while in reaction representation by the deviations

A&y, ..., AEp from equilibrium by

An,‘ 21’/‘,— Sre (k = 1, PR K) (5-6)

r=1
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Substituting equations (5.5) and (5.4)

Ar Ank, Vger Ank, Yery
= In 14— —In 1= , 5.7
e e R 60
i.e.,
oo+ 2™
A(dny, .. ., dn)= = A"’f’ , (r=1,...,R. (58
v | ¥R
7+ 2
'3 n~
Here, as well as already in equation (4.6) the new quantities
Ar
A, =e’T; (r=1,...,R) (5.9)

have been introduced and expressed in component representation, which can
appropriately be called as "absolute affinities”, since these are closely related
k 3
(A = J ] Ai¥) to the “absolute activities” Ay = ¢RT defined and widely used
k=1

by GuecceEnmEIM [45].
Substitution of relations (5.6) into equations (5.8) can express the abso-
lute affinities”” in reaction representation as

R
Z vk'rAEr Y
II [1_:_r=l ]

R (A Atg) = & i . (r=1....R). (5.10
(At ..., Atg) = - . (r=1,...,R. (5.10)
.Z' 1Jk"rAgr =
1l [1 + = )

P’ ni”

This is a system of R algebraic equations in which the R values 4%, ...,
Afp may be considered as unknowns. In principle, this set of equations can
be solved for 4¢,, ..., 4&r and the solution results the functions

At = f(AR, . ..,Ag) or 4¢, =@ (A, ..., AR); r=1,...,R). (5.11)

It should be noted that in the system (5.8) the number of unknown dn-s is,
at least in general, higher than the number of equations. Thus, the set of
equations (5.8) cannot be unambiguously solved, i.e., the component repre-
sentation is, in general, not useful for our purposes.

For systems where the Guldberg— Waage form (3.3) of the rate function
holds, it is easy to transform the rate functions in which the reaction rates

. . n ny o, . .
are functions of mole fractions —,...,— into relations where the reaction
n n

rates are functions of the reaction variables 4£,, ..., 4éz. Indeed, equation
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(3.3) is equivalent to
e, Yy D\ PR e\ gy Proy
Ir=kiﬂ(3—"~)k H[—-"—‘f—]" —k}’H{""}k ﬂ[i‘ﬁ Y. (512)
7 n # | ng o n # \nt.

Considering the principle of detailed balance (3.5) and relations (5.5), we
obtain the reaction rates in component representation as

Ir — Iﬁ[ﬂ (1 + Ank:)'k'r.— H (1 +Ank'
g X

nf; nge

””']; r=1,...,R) (5.13)

or, by using (5.6) in reaction representation as:

R R
2 'pk'r‘d‘fr Ter 2 'Pher{:, e
I,:I;—’[U(l—}—iil——-———J _U(H_r:z____) }; (r=1,...,R).
e g e

K nk' ng~
(5.14)

Finally, if the functions (5.11) are substituted for 4d& (r=1,..., R) into the
last equation, the desired non-linear phenomenological equations are arrived at

I, = Itp(dy, ..., Ag); (r=1,...,R). (5.15)

Of course the practical success of this procedure depends on the possibility of
solving equation system (5.10). For kinetically first order reactions this is
a set of linear algebraic equations and the solution is very easily obtained.
Also a system of quadratic algebraic equations (kinetically second order reac-
tions) can he easily solved. However, a quadratic algebraic equation has two
roots and the solution having a physical meaning must be chosen. As condi-
tion for this selection, vanishing of all f-s at equilibrium can be used. Of
course, the solution of equations (5.10) for third or higher order reactions invol-
ves some difficulties. But such reactions (elementary steps) are very seldom,
therefore such equations are of not much importance.

Let us compare equations (5.10) and (5.14). The functions of the forward
and backward reaction rates

R
, 2 vk”rﬁgr ¥y
=IT (1 4= ) (5.16)

-4
K nk'

R
2 'pk’rdgr Sr
u=1J 14 = ) :ou)

n;

occur in both equations. Now, substituting equations (5.11) into (5.16) it can
be seen that both u] and u; are functions of the affinities, i.e.,

wr=1u(Ady, ..., Ag)s ul = uj(4d,, ..., Ap). (5.17)
Consequently, equations (5.10) and (5.14) may be transformed into the forms
u(dy, ..., Ag)  up

A, = — 5.18
" uf(4,, ..., Ag)  uj ( )
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and
I =Iiu(A4,, ..., Ag) —ui(Ad,. ..., Ag)] = If(u; — uj), (5.19)

respectively, Combining (5.18) and (5.19), we obtain general non-linear con-
stitutive equations between reaction rates and affinities in the form:

I =1IR, — ) ulAdy ..., 4z): (r=1,...,R). (5.20)

In these equations the rate function of reaction r is separated into three factors

(1) I} — which depends only on temperature, pressure and, on the equilibrium

compositions (see Egs. (3.5)) but does not depend on the affinities; (2) the
A

second factorefl, — 1 = ¢RT — 1 which depends only on one absolute affinity
or affinity, respectively (that of the same reaction); (3) the third factor u;
which depends on all affinities.

6. On the existence of Onsager’s relation

a) Stoichiometrically independent systems

In stoichiometrically independent kinetic systems equations (1.1) are
linearly independent, i.e., none of them can be derived by linear combination
of the others. Consequently, the variables 4, (r=1,..., R) and 4&(r =1,
..., R) are also linearly independent.

Rate functions (5.15) or (5.20) can be expanded in Taylor’s series around
equilibrium, and, if only first order terms are considered

R
I, = 3Ls4;: (r=1,...,R), (6.1)
s=1

since reaction rates vanish in equilibrium. The coefficients L,; are related to
the equilibrium values of the partial derivatives by means of

ol,
04,

Lrs:[ (r,s=1,...,R) (6.2)

‘where subscript e refers to equilibrium.
The Onsager reciprocal relations express that L,s = Lg(r,s = 1,.. ., R)
or alternatively,

' ] r.s=1,...,R). 6.3
84!, la4,). (r ’ ) (6:3)
In this section these relations will prove to be trivially satisfied in a stoichio-
metrically independent system wheze the alternative form (5.20) of the Guld-
berg—Waage rate function holds.
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The proof starts with equation (5.20). Its partial derivation with respect
to A, yields

8 ”
3y _ 9 pl g ur (o, — 1) 24 (6.4)
04, dd, | B0l
where 6,5 denotes the Kronecker symbol. In equilibrium we have
uj=1 and A, =1 (6.9)
together with
oA
exp —
[Ms) _( RT) ~L (6.6)
d4,). \ RT ). RT '
Therefore, the final result is
oI, It
—] = r,s=1,...,R). 6.7
br) =7t ¢ L 6D

Thus, the following theorem can be stated.

Theorem I: For every stoichiometrically independent network of chemical
reactions in the linear domain of constitutive equations, the Onsager reciprocity
relations are satisfied in o trivial manner, i.e.

).~ el -

In other words, in the linear approximation the matrix of the chemical con-
ductivity coefficients
IZ 0; 0...0

E]
_ 140 13 0...0
L= RT|: ¢ (6.9)
0 0 0 ...5%
is diagonal.
b) Stoichiometrically dependent systems
Let us consider now stoichiometrically dependent reaction systems. In
such systems the stoichiometrically independent and dependent reactions are
defined by equations (4.1) and (4.2), respectively. It is seen from equation
(4.12) that

R
Ay = S, dE = 3 v A8 (k=1,...,K);  (6.10)
r=1

r=1

here Any, A&, and A& are the deviations from equilibrium in component rep-
resentation, reaction representation and stoichiometrically equivalent independ-
ent reaction representation, respectively.

6 Periodica Polytechnica CH. 25/1
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Substituting these relations into the first p equations (5.8), the
independent set of absolute affinities are obtained as:

$ v dipyer
11(1 + = )
= ; (=1

ny

., p); (6.11)

I +=

K’

[ 2
( 2 Vi AEE e
R

ng

i.e., the absolute affinities are expressed now in terms of the stoichiometrically

equivalent independent set of A&, ..., AE%. This set of expressions contain

equations for the p unknowns: AL, ..., 46% of the independent reactions.
Solution of system (6.11) of algebraic equations results in functions

A =fHHAy, . )y (F'=1,...,0) (6.12)
and after substitution of the first p equations (5.9), the equations
A8 = FE(A4y, ..., 4); (f'=1,...,0) (6.13)

are obtained. Now, substituting equation (6.10) into the second equation (5.16),
we obtain the uf-s (r =1, ..., R) as functions of the independent variables
AEE, (r =1, ..., p) only. Furtheron, substituting equations (6.13) into these
functions, it can be seen that the us-s are functions only of the independent
affinities, i.e.,

wl = uldy,...,4); (t=1,...,R). (6.14)

Evidently, the number of these u;-s is R.
In consequence of equations (5.20) and (6.14) the constitutive equations
are gained

A
I =I(eRT — 1)ul(dy ..., 4); (r=1,...,R) (6.15)

which are analogues to equations (5.20) with the difference that in (6.15) the
functions u, do not depend on the eliminated dependent affinities Ayirse o
- Ag.

Combining equations (4.9) and (6.15) we obtain for the independent

fluxes
Agr
15— 1o (R Vul, + 2 BrwIe(eRT —1)ul; (' =1,...,0). (6.16)
ra=gp+1

Considering the relations (4.6), the following expressions

Apr

It = I (eRT——l) e 2 ,3,,.1,,( B””RT_l)u v (F'=1,...,0) (6.17)
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are obtained for the independent fluxes. Now, partial differentiation with
respect to A, leads to

A
oI* exP(E%) ou BrrB
—;zm{p[araur"f”(dn*—l) r]+ 2 rr sr’Ig Ua}lﬂ"' uy. 4+

6“43 RT s g1 s el
. ] ,
+ 3 bl (Uoﬂﬁ"-— )60’}‘{"}; "=1...,0. (6.18)
ampt1 )

Since we have the following equilibrium values

() = (ul)e = (oA, )e—( ﬁefc;zw)e:(exp (E:T)) —1 (619)

el

for all r’ and r'’, consequently, in equilibrium

(aIﬁJe RT {6'518 + 2 Brre .Bsr'Ir') (F,s=1,...,0). (6.20)

04, el

Clearly, the second term on the right is symmetric with respect to r and s
and, therefore, the final results

% ar*
az,,} =( I; J =0; (fhs=1,...,0) (6.21)
GAS e GA,' 3

are attained. Now, the following theorem can be stated.

Theorem II: In every stoichiometrically dependent network of chemical
reactions for the stoichiometrically equivalent independent set of linear constitutive
equations the Onsager reciprocity relations are satisfied in a real fashion.

Indeed, in the linear approximation, from (6.20) it can be concluded
that the matrix of the chemical conductivity coefficients

I + 2y It 2By Bor It ... Zﬂlr'ﬁgr' It
Ly=|*berbrle Bt 20 e I o “hurberl | (6.09)
Zﬁer'ﬁlr’ Iz Z.Ber'.Bzr" Iz If? + Zﬁgr' It

is a symmetric one.

In Theorem I and II it is summarized that the Onsager reciprocity
relations are satisfied in case of both independent and dependent chemical
kinetic systems, provided that all reactions are elementary reversible reactions.
In independent systems the Onsager reciprocity relations are satisfied trivially,
whereas, in dependent systems for the stoichiometrically equivalent independ-
ent set of linear constitutive equations in a non-trivial fashion.

6%
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7. Examples

a) The kinetic system M, & My; M, & M,
In this kinetic system there are two first order reactions:
—M; 4+ M, =0, —M; + M, =0. (7.1)

The components participating in the first reaction are inactive in the second
and, of course, vice versa. Correspondingly, the stoichiometric matrix

—1 0
1 0

Vi == 0 —1 (7.2)
0 1

has the rank 2: the two reactions are stoichiometrically independent, even
separated since any row of the matrix has only one single non zero element.
There are two equations of the type (5.8) and (5.10) each

a 1 + AZI A, 1+ él:é
oRT — o, — ;111 ; oRT—ofl, = ._____;3 (7.3)
1 _+_ ng 1 + Ny
ns ng
and
1 A§1 1 4_5_2_
n$ n§
1= —‘*——Zg“ 5 oAy A ; (7.4)
1422 14 =22
ng ng
The last two equations have the solution
A, Aq
— eRT 1 — oRT
A&, = ning ok A&, = nins " (7.5)

n; + nieRT

n§ + ng R

which vanish in equilibrium, where 4; = 4, = 0.
Substituting these into the rate equations of type (5.14), we obtain the

exact nonlinear equations in the form

Ay
r — eRT
11=I§L1~A—fl,-—(1 +4——fl]=——(ni+ns) Lo (7.6)
n 2
S : ng + ng eRT
Ay
- — @RT
12=151_-4-§z—[1+4—§2)]=-—<ns+nz) e (7.7)
A n§ ng &

n§ + ng kT
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The coefficients of the Onsageiian type linear theory can be obtained
as equilibrium values of the first partial derivatives with respect to 4, and 4,.
These are

Lo— Eﬁ) _ (_a_g_, _ L (7.8)
" l84,). RT * l64,] RT
and
8 a 3
le — [r Il = ) = ( I“] == Ligy
04,). 84,/

From this it can be seen that the Onsager reciprocal relations are trivially
satisfied in accordance to Theorem I.
In this particular case Rysselberghe’s, generalized reciprocal relations
oI, oI,
04, 04,

(1.9)

are also trivially satisfied, since I, does not depend on 4, and I, does not
depend on A,. Corresponding to equations (7.9} all higher order cross coeffi-
cients are zero, for instance: Ly;, = Ly = Loy = L5, = 0, since the higher
partial derivatives of one reaction rate with respect to the affinity of the other
reaction all vanish in equilibrium. Of course, this is an a priori trivial conse-
quence of the stoichiometrically separated character of the reaction system (7.1)

b) The consecutive reactions M, = M, 2 M,

In this system there are also two reactions but in contrast to the previous
system, it contains one component which partakes in both reactions. The
stoichiometric matrix

(1 0
Vi == 1 -1 (7-10)
0 1,

is of rank two. Therefore, the two reactions are stoichiometrically independent
and equations (5.6) read in this case as

Any = —AE; dn, = A& — AL,y dng = A&, (7.11)
thus, equations (5.10) after rearrangement read as

~—(-1—-:~°—)5]As1+@-14152=o&—1

ni n§ n§
7.12)
A, (
1 48 — {—1— -+ ——“J:A.Ez = ofl, — 1.
ng n;  nj
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Their solution is

n§ + ngofl, — (n§ + nfef, oA,
n§ + nfofly 4 nief o,

M +ns — nfofl, — n{of, A,

Aé,=n
n§ 4+ ngofly + njok, oA,

A&, = n§
(7.13)

Substituting this into the rate functions of type (5.14) we obtain the nonlinear
phenomenological equations as

A A
RT __ 1)eRT
e e
IL=1Iin ( )
A AtA,
n§+n§eRT+ nie RT
A, (7.14)
RT __ 1
e
I,= Iin
2 = A. AytA,

n§ + n§efT + nfe RT

where n is the sum of the equilibrium mole numbers of components 1, 2 and 3.
In this system, in contrast to the previous example, both reaction rates
depend on both affinities. In this sense the reactions are kinetically coupled.
If the equilibrium values of the partial derivatives of the rate functions
(7.14) are calculated, then

Ly =1Ly =0, (7.15)

i.e., the Onsager reciprocal relations are also trivially satisfied. This result is,
however, not an a priori trivial one, but is in full agreement with our first
general theorem, since consecutive reactions exhibit a very typical form of
the stoichiometrically independent network of reactions. We can express the
physical content of (7.15) as follows: in the linear domain of constitutive
equations of chemical kineties if the reaction system represents a stoichiometri-
cally independent network of the given mechanism, there is no Onsager coupl-
ing between the independent reactions.

However, it is very easy to show that in the case of higher order approxi-
mation the kinetically uncoupled character of a stoichiometrically independent
(but not separated !) reaction network is destroyed, at least in the Rysselberghe
theory, when the validity of the following approximation is accepted:

1 1
I = %‘Lrsf-‘»s + E%LrstAsAt + = SLgwAsdidg+ ... (1.16)

EAAY
(rosst,v=1,2,...)
Indeed, by calculating the values

8 oI
L= |—2r d Ly, —|—0or 7.17
rt [aAsaA,]e an ste (8A36A,8A,L (T.17)
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we have for the higher order coefficients,

I§ H
Ly, =——(1—2x); L= Ly = xg; =0
1m (RT)2( 1) 112 121 n(RT)? 3 122
e -4
Ly, =0; Lyo=DLyy = ——-2—xf; Lyyy=——(228—1
211 212 291 n(RT)? 1 299 (RT)Z( 3 )
Ly, = A (1 — 6x5 + 6x5%); Lppyp = i (—3x5 -+ + x8)
1111 (RT)* 1 - 5 dane (RTY 1 3
Ie
1128 = Zﬁ‘%‘)g’“g(*xi — 2§+ %5)5  Lygpp = Ly =0
Logs — —2—a(xf — 26 — 28);  Lyjpg — —2— af(af + x4 — 3x2)
2112 (RT)? 51651 2 )3 2129 (RT)? 167 3
(4
Lyysp = (R;")s (1 — 6xfx§ — 6xf«f)

(where x% is the equilibrium mole fraction). It can be seen that in higher order
approximations the RGRR-s are not satisfied. In other words, consecutive
reactions exhibit a stoichiometrically independent but not separated network
of elementary steps. Consequently, this set of reactions in linear approximation
is considered only as a kinetically uncoupled one, due to the trivial validity of
Onsager’s relation. However, in higher order approximations they are governed
by kinetically coupled constitutive equations but for higher order coupling
coefficients the RGRR-s are no longer valid.

¢) The Ekinetic system 2M, =& M, & M,

For illustration of our general method to obtain exact and explicit
expressions for nonlinear reaction rate-affinity type constitutive equations, let
us consider a somewhat more complicated type of reaction. In this example

the first reaction is of second order and the second reaction is of first orders
The stoichiometric matrix

-2 0
Yir=— 1 -1 (7.19)
0 1

is of rank two. Thus, in the system we have also two stoichiometrically independ-
ent reactions. The deviation from equilibrium is characterized by

Anl = —2AE1; Anz - A§1 — A§2; Ans = A§2- (7.20)
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The (5.10) type equations are the following

Ry = e . - B T (1.21)
né né n§
which have the solutions
At = —T [P, Ry) — QoA oAy 7.22
1= SR [Py(efly, Ay) — Q(oy, oAy)] (7.22)
£, = ng Pyfefly, ofy) . 1 Q(fy, Ay) (7.23)
8R(efly) | R(Ry) R(oAy)

where

Pi(Ay, Ry) = 4n§ -+ dn§ofl, -+ nlol o,

Py, Ay) = 4nf§(n§ + 2n8) + 4n§(n§ +-2n8 — 2n§) oL, — 8ngol3 +- (nf)? ok, o,

Q(oRy, Ry) = VR R, [8(nf + 2n5 + 2nf) (nf + njoly) + (n§)2eR 0] (7.24)
R(cfly) = n§ + n5el,.

Notice, that the quadratic equation (7.21) has two solutions but one of these
can be excluded because it does not vanish in equilibrium. Now, the rate
functions read as

£12 I /
el 2

] (1.25)

o } (1.26)

or with the use of (7.21)

I, = IR, — 1) {1 p A8 45 (7.27)
ns n§

I, = I, — 1) (1 + 4—53) . (7.28)
n3

Substituting (7.22) and (7.23) we obtain the exact nonlinear constitutive equa-
tions expressed in terms of absolute affinities, i.e.,

I, = I§(ef, — 1) Py — nil,Q “8;‘;&20

I, = I, — 1) {1 (P, - ni@] (1.30)

(1.29)



STUDIES OF HOMOGENEQUS CHEMICAL KINETIC SYSTEMS 89

where
Py(ohy, ofly) = 4 [ninf +- ning + 2n§n§ + 2(nf§)*] o, +
+ 8ni(ng + nf) ofF + (nf)R, o3
and
ey A
oAy =eRT; ofl,=eRT,
By the partial differentiation of equation (7.29) with respect to 4, and

(7.30) with respect to 4,, and taking the equilibrium values of the derivatives,
it is seen that the Onsager relations are trivially satisfied, since in equilibrium

(A — 1)g = (Ay — 1), = 0. (7.31)

This result is also in full agreement with our general theorem I in a somewhat
more complicated example than given before. The two reactions of this sample
show no Onsager coupling but again, this does not mean that the rate of one
reaction is independent of the affinity of the other reaction. Equations (7.29)
and (7.30) show how the rate of reaction 1 depends on the affinity of reaction 2,
and vice versa. Of course, for higher order coefficients the RGRR-s are not
valid.

d) The triangle reaction scheme

Let us turn now to the anaiysis of triangle reactions which represent the
more simple stoichiometrically dependent network of reactions. In this case,
of the three reactions

1
—M, + M, =0 M, —//— M,
— Mg 4 M, =0 M,
only two are independent, since the rank of the matrix of the stoichiometric
coefficients
1 1 0
Vo == 0 -1 1 (7.33)
1 0 —1,

is equal to two.
Correspondingly, e.g., the equation of the third reaction can be obtained
by linear combination of the other two equations

Bra(—My + My) + fos(— M, 4 M) = —M; + M, (7.34)
with
Brs = B2 = —1.
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Affinity 4, of reaction 3 can be derived by the analogous linear com-
bination

Aa = 513A1 +I323A2 = “Al - Az (7-35)

where A4, and A, are the independent affinities. The independent thermo-
dynamic fluxes are the following

I = Il “‘{“.31313 = I — Iaa (7.36)
IZ=1I,+Boly=1I,— I (7.37)

It is emphasized, that I] and I represent Onsagerian fluxes only, but not re-
action rates. Theindependent reaction variables are obtained in a similar way

A&} = A& 4 B3 A5y = A5 — A&y (7.38)
A8 = Aky 4 By A5y = AL, — AEy (7.39)

which are related to the deviations of the mole numbers from equilibrium values
by the following equations

Any = vy, AEF + vy, A = — A - AE} (1.40)
Ang, = vy AEF + vy AES = — A} (7.41)
Ang = vy AEF 4 vy, AL = ALY (1.42)

Consequently, equations of type (5.10) have the following form

L | 4s
e
oA, = e . &
L 14 48
ng ng
or rearranged
1 1
~Loam s {—;+°’Zj Agg = oy — 1, (1.43)
ny ni g
A, 1 .
— — A& ———:AE; = fl,— 1. (7.44)
g ny

The solution of these equation system is in terms of the independently selected
absolute affinities:

AE* — ne nf + n§ — nfofl, — nfokofl,
»l = n3 e e - ’ (7-45)
n§ +niofly + nfofl; oy,
AES = ne n% — nifl, — n§ofl, + néofl oA,
n§ +nsefy, +niof oA,

(7.46)
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Finally, substituting equations (7.45) and (7.46) into the rate functions,
we have

I,=1I¢ 1+A’:1— 1+A'z2 ) (747)
ny ng
I,=1I¢1+ A’ZZ— 1+ A':“’ 15 (748)
L ny n3 |
=11+ 4% (1 44™ (7.49)
ng nf )

Now, considering equations (7.36), (7.37) and (7.40)—7.42) and (7.45), (7.46)
the nonlinear phenomenological equations between the independent fluxes
IF, I¥ and the independent affinities 4,, A4, are obtained in the form

A
—I§ — If exp 44—) + (I§ + If) exp (All____iz]
; RT RT
i=n ~ (1.50)
n§ + n§ exp _A_2_ + 7 exp (A1 +A2)
) RT RT
“E~E+Em%%+ﬁwﬂﬁ§é]
Ti=n ' (7.51)
né - néex [i?'_] - ntex (M}
3 T Ny €Xp RT - Nj eXp RT

where

n = n§ -+ n§ +ng.

All linear and higher order coefficients can be evaluated by taking the equilib-
rium values of partial derivatives (7.17) of our general constitutive equations
(7.50) and (7.51). For the Onsagerian coefficients
e 1. 7J¢ e 1 Je
L11:Il 11;';; L22212 uIB;
RT RT

I3
RT

12 = L?.l == (7-52)

which results are, of course, not new but represent only general forms. For the
coefficients of higher order approximations, we have

e i Ie 1‘5 i Ie )
Ly = _(11%)23(1 — 1af); Lgyy = W(zxs —1);
Lyso = —— 185§ + I8(x — a)];  Lypp = —2 (25 — 1); (1:53)
© (RTP * (RTP
I 1
%n=mggb~%m Loty = (o Ul — #0) — T
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and
I+ I§
1111 = (RT)33 [1 — 6xf 4 6(x1)?]
Lijgs = RT)3 ———[I$(1 — 5xf — x5 4 4(xf)? + 4xfx8) +
-+ §(1 — 648 — x§ -+ 6(x)* + 4x§x§)]
1 R .
Lyyss = RT)3[ i(l — 3x§ — 32§ - 2(x§)® + 4afxf 4 2(x2)2) -
4+ I5(1 — 6af — 3a% 4 6(xf)* + 8afaf +-2(x5)7)]  (7.54)
Ligos = I [1 — 6(x% — x8) x8]; Lagyy = Is [l — 6x4(1 — x5)]
1222 (RT)® 3 2111 (RT)®
1 ) ¥ o
Lope = RT) [I8:8(1 + 2x8) + I5(1 — 6§ — af + 6(x§)* + dafxs)]
1 -4 g 1/ € A€ 1 €
s120 = (RTY [T5(— 35 4 4§ a8 + 4(x5)) +
L I5(1 — 6% — 3af + 6(xf) - Bafaf - 2(x§)2)]
§+I% £ 1 .eY e 1 ..e\2
9999 = —(—1{—12—)-‘;—— [1 e 6(5&1 - 12) - 6(.\1 - ;\2)"]

where 7, denotes equilibrium mole fraction of component k. The above expres-
sions show that Onsager’s reciprocal relations are now really satisfied, but
only in the case of a stoichiometrically equivalent independent set of constitu-
tive equations. Hence, the example of triangular reactions gives the simplest
illustration of our general Theorem Ii., according to which, in a stoichiometri-
cally dependent network of reactions for the stoichiometrically equivalent
independent and reduced set of linear constitutive equations the ORR-s are
satisfied in a real fashion. This means, in an entirely general sense, that as it
is always possible to reduce a set of R-dependent chemical reactions into the
form of a stoichiometrically equivalent but independent network of mechanism,
it is possible to describe, at least in the linear theory, the kinetics of the original
stoichiometrically dependent mechanism by a kinetically uncoupled set of
linear rate equations if ORR-s are trivially satisfied or equivalently by a
reduced set of kinetically coupled constitutive equations where ORR-s are
satisfied in a real fashion.
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e) The reversible monomolecular reaction system of four components

In the most general form for a coupled set of first order reactions every
component is reacting to form every other component. This set is called a

reversible monomolecular reaction system [31]. For four components

—M,
—M,
—M,

l
=5

ok

a
=

M,=0
M, =
M,=0
M, =0
M,=20
M,=10

1

M, — M,
) §7
| //%
) )>\ | (7.55)
M, —— M,

are reactions and scheme of the system. The rank of the stoichiometric matrix

-1 0 0 1 —1 0
, 1 -1 0o 0 o0 1
=l 0o 1 -1 0o 1 o0
0o 0 1 —1 0 -1

is 3. Therefore, in the system there are three independent reactions. Let the

(1.56)

first three reactions (" = 1, 2, 3) be chosen as independent, the other three
(r'" = 4,5, 6) as dependent.

Reaction 4 can be obtained by linear combination of the first three
reactions with the use of the coefficients 5,y = f,; = f;, = —1. Reaction 5
is a linear combination of the first two reactions with the coefficients 3, =
= po5 = 1 and §,; == 0. Finally, reaction 6 is a linear combination of reactions

2 and 3 with the coefficients 85 = 0 and f,, = 5, = —1.
According to equation (4.9), the independent Onsagerian fluxes are the
following
8
I]_( = Il i 2 F’))L,-"Ir" = Il — I-l - I:'::
Pl
6 -
B=1,+ 3pylr=1,—1I, + I; — I (7.57)
=,
I; = I, + ZﬁSr"Ir" =1I;— I, — I.
e
For the deviation from equilibrium we obtain
Any = — A% Any = A% — A%
- . o 7.58
dny, = A& — A&, Any = A&, (7.58)

For the three affinities 4, 4,, A, selected as independent (more precisely,
Ay
for the absolute affinitiesofl; = eRT, etc.) we have the following equations of

type (5.10)
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BN\ P T =of; —1
ni n§ ny
—~_/1§>;-(~1-+—2 A§;+&AE§—OJ@—1
n$ ng ng ng
1
~AE — (_1_ Ay )453 = —1. (7.59)
ng§ ng ng

This linear equation system has the solutions

e e e
A&t — n1n4 + ngoly + nffl, oy — (nf + n§ + nf) A ool
ng + nffl, + nfofl,ol, + nfel oA, ofl,

At — néné -+ n§n§ -+ (néné -+ ngnf)el;— (n§n§ +ninf)efl o, — (nins -+ ning)el o 4ol 4
a9
ng + n§ofly - n§ofl,ofl; -+ ng ol jflofl,

(7.60)
Agx 0§ 4+ n§ + nf — nsofly, — niofl,efly — nfofljoflpefl,

3 = Ty
ng + nsoﬁa + n§flyofly + nfofl oo,

which characterize the deviation from equilibrium in independent reaction
representation. In component representation, according to equations (6.10)
An, = ng —nf§ — nffl; — n§f,ofl, + (n§ + n§ + nf) el of,ofl,
ni + nfcfly + ngo,of, nlcﬂ Ay,
T néfl, + (nf + ng + nf) cﬂgofés — nfef;ofl,ofl,
g = g
¢ + nfofly + nfofl,ol; 4+ nfefl,oll oA,
—n§ + (nf + n§ + n) A, — nfA,oly — nfofl R, 0,
3
né + n§ofl; + niof,ofly; + néofl ol o,
n§—nf, —n:‘}cﬁ&[—nicﬂoﬂof%
n§ + n§efl,; + ngofl,ofly + niof o, 0,

(1.61)

Substituting these into the six kinetic equations of the form (5.13), we obtain
the rates of all reactions

I =I|1+ Anl—(1+4”% =Iin — Ryl + o oA, of,
n§ n$ ng 4 ng oy + gl oy + nfol o0,
Io=I§1+A"2—{1+A”3}LIsn —ofly & ool
2 né ng | | " ng -+ ngofly + ngoll,ofl; + ngefl oA,
I':Ifl-'*Ana—[l—}—An‘l]-:Ign —1 4 ofly
3 Y ong ng /| n§ + nfoly + ngolofy + nfel e,

(7.62)
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1. —rel1 An, _ [y _LAnl I 1 — oAl el ol
4 4 —r e ' e 4 e 1 e i e I e
L n ng n§ + nofly + nsefl oy + nfef e,
=1l 2 An; 1 dngz\] Itn oAy — A ol
5775 ' e ! e e e peofl. L nloflaof, - ntofl. ol of
L ny ng Ny T 3@y T N3/l dly T N7 0,00,
r 4
. n dn 1 — A, A
— Je 4 2 i P
I, = I&j1 + e——l—:— e”-]ﬁne‘ . R A TR
ny ny Ny T Mgty T Na@lgoilg T RIIL L0,

e , e | e | _eg
where n = n; <4 ny -+ nz -+ n,.

(7.62)

Finally, the independent Onsagerian fluxes are obtained by combination

of equations (7.57) and (7.62)

A Aty At A4,
gyl LT —I5e RT 4+ (IE+ Ii+ I)e 7
' A AstAy ArtAs A,
né + n§eRT L nfe RT -+ npfe KT
A, AstAs AtAtA,
€
T — ()™ + (BT e ™ & (I Ige
2 As At A, At ActA,
ni +nielT +nfe RT L nfe KT
(7.63)
A, Ast A ArtAtA,
o —I I I) Iy T e KT 4 L BT
8 A A4, ArrAstAg )
ni+nfelT - nfe RT L nfe RT

These are the nonlinear phenomenological flux-force relations of the kinetic
system (7.55). By taking the equilibrium values of the partial derivatives with
respect to the independent affinities the matrix of Onsager’s coefficients is

obtained as:

 (H+H I+ If + It I
Le=gz| L+ L+I+L+5 I§ + I
I 1§ + 1§ I+ If + I

(7.64)

which is symmetric. Hence, the Onsager reciprocal relations are again really
satisfied for the stoichiometrically equivalent independent set of linear equa-

tions, in full agreement with our general Theorem II.

Higher order approximations of the constitutive equations are not

presented here, since at this stage Rysselberghe GRR-s are not valid

again.
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8. Facts and hopes

Relying on the results reported and recording some facts their fatal
consequences are intended to be pointed out. Finally, in conclusion of this
paper, comments are made on new possibilities and pathways for expounding
a nonlinear thermodynamiec theory of reaction kinetics.

Let us consider first the facts. It is surprising that a survey of the
literature over a half a century following the pioneering papers of Onsager
published in 1931 shows that only three basic results can be recorded pertaining
to the consistency of veaction kineties with thermodypamics. These results
are the following:

Theorem 1: For every stoichiometrically independent newwork of elementary
chemical reactions in the linear domain of constituiive equations the ORR-s are
satisfied in a trivial way .

Theorem II: In every stoichiometrically dependent network of elementary
chemical reactions for the stoichiometrically equivalent independent set of linear
constitutive equations the ORR-s are satisfied in a real fashion.

Theorem IIT: The Rysselberghe type nonlinear thermedynamic theory of
chemical reactions, i.e., the theory in which, through constitutive equations, the
reaction rates are expressed as nonlinear funciions of the affinities, is inconsistent
with the classical theory of chemical kinetics.

Theorem I and Theorem II have been discuszed and derived in Sections
6a) and 6b), respectively. As precursors to this derivation references [7], [44]
and [46] should be mentioned in whick — and also in other papers — some
details have aiready been mentioned. At any rate, having derived and clearly
and generally formulated Theorem I and Theorem I1, we think that consistency
of the linearized form of the Guldberg— Waage kinetics with the linear Onsa

theory is fully proven. It is emphasized that application of the linear theory
to chemical kinetics is of great importance in spite of views denying it.

The validity of Theorem III must be accepted, since WEI and ZAHNER's
and OLAH's particular remarks and the general studies of BaTarsiE, EDELEN
and KESTIN and our perhaps more general results illustrated through several
examples show that nonlinear thermodynamics in its present form is inconsis-
tent with the classical theory of reaction kinetics.

As to the validity of Theorem III., the following questions must be
raised.

(a) Has the Guldberg — Waage form of chemical kinetics to be essentially
modified ?

(b) Could the laws of thermodynamics or any of them be incorrect?
A

(¢) May be assumed that function (eRT — 1) in the Marcelin—De Donder
equation cannot he approximated by its Taylor series to higher than first
degree?
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Naturally, all these questions will receive a negative answer, since chemi-
cal kinetics and thermodynamics are both well established and experimentally
proven theories. Not to speak of Taylor’s series. The only conclusion we can
arrive at is that Theorem III is not valid. However, examples 7b) and 7d)
show that Theorem III is certainly valid. Consequently, the contradiction has
to be faced that chemical kinetics, i.e. the evolution of the concentrations of
chemical species in kinetic systems does not seem to be governed by the
general principles of physics (i.e., thermodynamics) with the exception of the
linear domain. This contradiction must be solved.

It is pointed out here that Theorem III is not a statement on the incon-
sistency of chemical kinetics with nonlinear thermodynamics in general, but
only with the Rysselberghe-type nounlinear theory. The inconsistency seems
to be eliminable by a proper choice of thermodynamic forces instead of the
affinities. A proper choice is always of fundamental importance and cannot
be substituted by formal mathematical manipulations. E.g., it was the
improper mathematical manipulations [34] which moved MEIXNER to re-
publish [48] his transformation theorems [6] thirty years after the first pub-
lication [47].

Concerning the question of consistency of chemical kinetics with non-
linear thermodynamics the situation is as follows. The theorv formulated inde-
pendently by Gyarmati and by Li has been neglected or misinterpreted in
later publications of other authors. The chaotic situation may be due to the
fact that Rysselberghe and later other authors — although they knew the
original papers [16 —19] — made no reference to them and elaborated theories
including only new errors. Misinterpretation of the old theory led — in the
case of chemical kinetics — from equations (9) and (10) to equations (15)
and (16) by assuming the identity X, = A,.

In the application to chemical kineties neither Li nor Gyarmati have
ever proposed the GRR-s (9) in the form (15) or the constitutive equations
(10) in the form (16). Neither of them have ever stated that affinities are real
thermodynamic forces in chemical kinetics in the nonlinear domain!

In conclusion it is to be stated that in the nonlinear domain affinities
are not the real forces of chemical reactions, and for this reason nonlinear
thermodynamic theories using reaction rate — affinity constitutive equations
maust be inconsistent with chemical kinetics. The Gyarmati—Li theory allows
other choices for thermodynamic forces which properly chosen must make
nonlinear thermodynamics consistent with reaction kinetics. Our current stu-
dies are aimed at finding this correct choice.

] Periodica Polytechnica CH, 25/1
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Summary

The authors intend to contribute to the solution of the problems posed by the inconsis-
tency of nonlinear thermodynamics with the classical theory of chemical kinetics. It was
necessary to subject old and new nonlinear thermodynamic theories to profound analysis.
A relatively long introduction was devoted to this analysis. Then thermodynamic basie
equations of homogeneous closed systems are presented and stoichiometric equations of
chemical reactions in such systems are discussed. Direct transformation of stoichiometrically
dependent reaction network into a stoichiometrically equivalent independent system is also
given. As a next step the authors calculated the nonlinear constitutive equations of reaction
kinetics for any stoichiometrically independent system and presented the transformation
between dependent and independent systems. In addition to affinities, they introduced the
concept of absolute affinities, which seems to have fundamental importance for the nonlinear
theory. A simple method is proposed to solve the algebraic equations between reaction coordi-
nates and absolute affinities. This method allows calculation of the reaction rates as nonlinear
functions of the affinities. Returning to the linear Onsager theory authors prove that in stoichio-
metrically independent systems the ORR-s are always trivially satisfied. A real satisfaction
of the ORR-s occurs only in case of such independent fluxes and affinities that equivalently
represent dependent systems. Finally, the general theory is applied to the examples of systems
of stoichiometrically separated reactions, of consecutive reactions and to triangle and quad-
rangle reaction schemes. The constitutive equations between reaction rates and affinities are
expanded in series to first, second and third degrees and the corresponding chemical drag
coefficients are calculated. It turned out that the RGRR-s are not satisfied in higher than
first degrees. This is equivalent to the fact that the Rysselberghe type nonlinear theories are
inconsistent with chemical kinetics. The reason for this critical situation is analyzed and the
authors express their view that the inconsistency of chemical kinetics with thermodynamics
cannot be accepted and, for the thermodynamic forces another choice should be made to
replace the affinities, which are not the true thermodynamic forces in the nonlinear realms.
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