MASSENSPEKTROSKOPISCHE UNTERSUCHUNG EINIGER SILATRANE

Von

T. MÜLLER,* P. HENCSEI** und L. BIHÁTSI**

* Institut für Allgemeine und Analytische Chemie ** Institut für Anorganische Chemie, Technische Universität, Budapest

Eingegangen am 4. November 1980

Vorgelegt von Prof. Dr. E. PUNGOR

Einleitung

Ein charakteristischer Typ der heterozyklischen Si-Verbindungen mit fünffacher Koordination und sp³d Hybridisierung sind die Silatrane (2,8,9-

-Trioxa-5-Aza-1-Silabizyklo-[3.3.3]-Undekan, $R-Si-(OCH_2CH_2)_3N$. Diese Verbindungen haben einen charakteristischen räumlichen Aufbau und eine besondere Elektronenverteilung [1]. Diese Besonderheiten bestimmen sowohl die physikalisch-chemischen, als auch die spektroskopischen Eigenschaften der Silatrane und spielen sicher eine Rolle in der biologischen Aktivität dieser Stoffgruppe.

Es sind bereits mehrere Veröffentlichungen über die massenspektroskopischen Untersuchungen an Silatranen erschienen [1-6, 8]. Ein Teil der in der Literatur angegebenen massenspektroskopischen Daten konnte hisher nicht reproduziert werden, oftmals werden nur die Untersuchungsbedingungen mitgeteilt. Um die massenspektrometrischen Eigenschaften der Silatrane studieren zu können, haben wir einige Silatran-Derivate untersucht. Dabei setzten wir voraus, daß die sp³d-Konfiguration auf die Massenspektren eine Wirkung ausübt, und man demzufolge auf die Bindungsstärke der Si-R-Bindung schließen kann.

Experimenteller Teil

Die Messungen wurden mit einem JEOL JMS-01SG-2 Massenspektrometer/graph durchgeführt. Der Druck in der Elektronenstoßionenquelle betrug: $1-3 \cdot 10^{-4}$ Pa, die Elektronenenergie: $V_e = 75$ eV, der Elektronenemitterstrom: $I_e = 200 \ \mu$ A, und die Ionenbeschleunigungsspannung: $V_{acc} = 10$ kV. Das Auflösungsvermögen lag bei den niederaufgelösten Messungen bei: R ≈ 1200 , bei den hochaufgelösten Messungen bei: R ≈ 8000 (peak matching) bzw. R $\approx 10\ 000$ (Photoplattendetektierung, ILFORD Q-2 Photoplatten). Die Temperatur der Ionenquelle war auf 380-410 K festgelegt. Die Proben wurden direkt eingeführt. Die niederaufgelösten Massenspektren werteten wir mit Hilfe des on-line-Datenverarbeitungssystems aus.

Ergebnisse und Diskussion

Wir untersuchten die in Tab. I angegebenen Silatran-Derivate (Verbindungen $N^{\circ}: 1-6$). Die Darstellung erfolgte nach dem von HENCSEI et al. [7] angegebenen Verfahren. In der Literatur sind über die von uns untersuchten Verbindungen (außer den Me- und Ph-Derivaten) keine massenspektroskopischen Daten angeführt. Bisher wurden die Verbindungen in denen die Substituenten über Sauerstoff an das Silizium gebunden sind, nicht untersucht.

Tabelle I Grunddaten der Verbindungen 1−6 ↓ (RSi(OCH₂CH₂)₂N)

Verbindung	Substituent	M÷·	Relative Intensität [%]		
N°	N° R—		I_{M^+} .	I ₁₇₄	
1	Me –	189	26,7	73,8	
2	Ph-	251	10,0	100,0	
3	EtO-	219	11,5	100,0	
4	PhO-	267	18,5	100,0	
5	$pClC_{6}H_{4}O -$	301^a	17,8	100,0	
6	$pO_2NC_6H_4O-$	312	13,4	100,0	

^a: berechnet auf ³⁵Cl

Die Fragmentierung der Silatrane verläuft in zwei Richtungen:

1. Spaltung der Si-R-Bindung,

2. Abbau des Silatranskelett unter Beibehaltung der Si-R-Bindung.

Die Intensität der Molekülpeaks liegt in den von uns untersuchten Fällen zwischen 10-26% (Tab. I und Abb. 1-6). Die Intensität des Molekülpeaks der Verbindung I beträgt 26%, was auf eine relativ starke C-Si-Bindung hindeutet, demgegenüber ist die Intensität des Molekülpeaks der Verbindung $2 \ 10\%$ was auf eine schwächere Bindung des aromatischen Kernes und des pentakoordinierten Siliziums schließen läßt. Die relativen Intensitäten der Molekülpeaks der Verbindungen 3-6 sind in einem verhältnismäßig engen Intervall (11-18%) zu finden. Dies kann damit erklärt werden, daß das Silizium zugleich mit Sauerstoff verbunden ist und die Stärke der O-Si-

Abb. 3. Massenspektrum der Verbindung Nº 3

Bindung durch Et-, Ph-, $pClC_6H_4$ -, $pO_2NC_6H_4$ -Substituenten nur geringfügig beeinflußt wird. Die untersuchten Verbindungen haben einen Basispeak von $M-Rl^+$, m/z: 174 (»Silatranyl-Ion«). Die Me-Derivate bilden eine Ausnahme, denn ihr Basispeak liegt bei m/z: 146. Auch hier hat das »Silatranyl«-Ion eine

Abb. 6. Massenspektrum der Verbindung Nº 6

Abb. 7. Struktur des m/z: 174 Ions

sehr hohe Intensität (73,8%). Mit der Herausbildung des m/z: 174 Ions hört die Pentakoordination des Siliziumatoms auf zu existieren (Abb. 7). Charakteristisch und auch analytisch anwendbar ist für die Silatrane des m/z: 174 Ion. Literaturangaben über andere Derivate unterstützen dies (Tab. II).

Tabelle II

Substituent	¥+.	Basispea			
R—	M · ·	Ion	m/z	Literatur	
H	175	M-R ⁷⁺	174 ^a	[1]	
F—	193	M-C ₂ H ₃ O ⁷⁺	150	[1]	
Yle—	189	M-R ^{]+}	174^a	[2, 5]	
ClCH ₂ —	223^b	M-R ⁷⁺	174^a	[1, 6]	
Et—	203	M-R ⁷⁺	174	[3]	
Vi—	201	M-R ^{]+}	174	[4]	
CH ₂ =CCl-	235^b	M-R ⁷⁺	174	[4]	
CH=C-	199	M-C ₂ H ₃ O ⁷ +	156	[4]	
PhC=C-	275	M+·	275	[4]	
Ph—	251	M-Rl+	174	[2, 4, 5	
C ₆ F ₅ —	341	M-R ⁷ +	174	[4]	

Literaturübersicht der massenspektroskopisch untersuchten Silatrane (RSi(OCH₂CH₂)₂N)

Experimentelle Bedingungen:

Gerāt	Elektronen- energie, Ve	Emissions- strom, I _e	Temperatur der Ionenquelle, T _{IQ}	Proben- einlaß- system	Literatur
	-		entite	_	[1]
Eigenbau ^c			303-313K		[2]
Perkin-Elmer Hitachi RMU-6	80 eV			direkt	[3]
MX-1303	50 eV	1,5 mA		direkt	[4]
AEI MS-50	70 eV		423K	batch	[5]

^akeine eindeutigen Angaben

^bberechnet auf ³⁵Cl

^cPhotoplattendetektierung; keine Hinweise über Intensitätsverhältnisse

Eine Abweich ung kommt nur bei den Derivaten F-, HC=C-, PhC=C- vor sie kann mit der Verstärkung der Si-F-bzw. Si-C-Bindung erklärt werden;

Die Intensität der Molekülionen der im Silatrarylskelett $-CF_3$ sub. stituierten Verbindungen ist größer als die Intensität der Molekülionen M⁺der in der gleichen Position substituierten – Me-Verbindungen. Diese stabilere Struktur wird durch den starken +I-Effekt hervorgerufen [8]. Auf Grund der Spektren kann festgestellt werden, daß die Bindungsstärke der – OCHMe-

Tabelle III

T

Literaturübersicht der massenspektrometrisch untersuchten,

im Skelett substituierten Silatrane

Substituent		_	M+•	Basispeak		T
R	x	n	m/z	Іоп	m/z	Literatur
ClCH ₂ -	Me—	3	223	M-R ^{]+}	174	[6]
ClCH ₂ -	Me-	2	237	M-R ^{]+}	188	[6]
ClCH ₂ -	Me—	1	251	M-R ⁷⁺	202	[6]
ClCH ₂ -	Me—	0	265	M-R ⁷⁺	216	[6]
Ph	Me-	0	293	$C_{3}H_{6}N^{+}$ und?	56 und 71^a	[5]
Me-	CF3	2	257	M-R ¹⁺	242	[8]
Me—	CF3	1	325	M-R ¹⁺	310	[8]
Me—	CF3	0	393	M-OCHCF ₃ CH ^{]+}	282	[8]
CICH ₂ -	CF3	2	291	M-R ⁷⁺	242	[8]
ClCH ₂ -	CF3	0	427	M-R ¹⁺	378	[8]
MeCHCl-	CF3	2	305	M-R7+	242	[8]
MeCHCl-	CF3	1	373	M-R ⁷⁺	310	[8]
$Cl(CH_2)_4-$	CF ₃	0	469	M-R ^{]+}	378	[8]
$CF_3(CH_2)_2-$	CF3	2	339	MR ⁷ +	242	[8]

		,
R-Si(OCH.	CH.), (OCHX	CH.),N
· · ·	· •/11 · ·	<i>⊾</i> /3−11

Experimentelle Bedingungen:

Gerät	Elektronen- energie, V _e	Emissions- strom, Ie	Temperatur der Ionenquelle, T _{IQ}	Proben- einlaß	Lite- ratur
MX-1303	50 eV	1,5 mA	423K	direkt	[8]
MX-1303	50 eV	0,75 mA	423K	direkt	[6]
AEI MS-50	70 eV	—	423K	direkt	[5]

^akeine eindeutigen Angaben ^bberechnet auf ³⁵Cl

CH₂-Gruppe in den Me-substituierten Silatranen größer ist als die der OCH₂-Gruppe (Tab. III).

Es ist charakteristisch für die Spektren der von uns untersuchten, und in der Literatur veröffentlichten Verbindungen daß sie verhältnismäßig wenig intensive Peaks aufweisen. Dementsprechend entstehen durch die Fragmentierung des $M-R^{7+} = m/z$: 174 Ions überwiegend Ionen geringer Intensität (Abb. 8).

Abb. 8. Fragmentierung des Silatran-Skeletts [6]

Tabelle	TV
Labout	**

Ergebnisse der hochauflösenden Messung einiger Peaks

Verbin- dung	Ioner	nmasse	Ion	
N°	gemessen berechnet			
1	189,0815	189,0821	M+•	
	174,0588	174,0586	M-R]+	
	158,0639	158,0637	M-CH ₃ O]+	
	146,0641	146,0637	M-C ₂ H ₃ O]+	
	130,0325	130,0324	$174 - C_2 H_4 O]^+$	
	116,0523	116,0531	$146 - CH_2O]^+$	
2	118,0864	118,0868	$C_{5}H_{12}NO_{2}]^{+}$	
	44,9794	44,9797	SiOH]+	
5	301,0567	301,0537	M+·	
	128,0043	128,0029	ClC ₆ H ₄ OH]+ (³⁵ Cl)	
	129,9997	129,9999	ClC ⁶ H ⁴ OH]+ (₃₂ Cl)	
	130,0298	130,0324	$Si(C_2H_4O)_2N]^+$	
6	312,0799	312,0778	M+•	
	139,0253	139,0269	$O_2NC_6H_4OH]^+$	
	109,0325	109,0290	OC ₆ H ₄ OH]+	
	l			

Die Fragmentierung der OCH_2 -, OC_2H_4 -, OC_2H_3 -, C_2H_4 -Gruppen ist dafür sehr charakteristisch [6].

Der andere Fragmentierungsverlauf geht von dem Silatran-Skelett aus (die Bindung bleibt also zwischen den Carbon- bzw. Sauerstoffatomen der Substituenten und des Siliziums unverändert), und die Peaks haben nur eine geringe Intensität ($\langle 5\%_0 \rangle$).

Ein interessanter Umlagerungsprozeß kann bei den Verbindungen 5 und 6 beobachtet werden. Intensive Peaks werden in den Spektren dieser Verbindungen bei dem Massenzahlen m/z: 139, $O_2NC_6H_4OH^{1+}$ (71%, N° 6); m/z: 128 (130), $ClC_6H_4OH^{1+}$ (10%, N° 5) gefunden (vgl. auch Massendaten der hochauflösenden Messungen in Tab. IV). Die Bildung der hier erwähnten Ionen ist nur möglich, wenn sich ein Wasserstoffatom einer CH_2 -Gruppe des Silatran-Skeletts umlagert; s. Schema:

Dieselbe Wasserstoffumlagerung kann bei den Verbindungen 3 und 4 beobachtet werden: m/z: 46, EtOH¹⁺ bzw. m/z: 94 PhOH¹⁺, jedoch ist die Intensität der gegebenen Peaks geringer, sie beträgt <1% bzw. 7%. Im Spektrum der Verbindung 6 ist die weitere Fragmentierung des m/z: 139 Ions zu finden, sie verläuft wie die gewöhnliche Fragmentierung aromatischer Nitroverbindungen:

In allen Spektren konnten auch doppeltgeladene Ionen nachgewiesen werden. Während die M2+-Peaks eine Intensität von höchstens 0.5% erreichten, wiesen die anderen doppeltgeladenen Ionen eine Intensität von einigen Prozenten auf. So hat bei der Verbindung Nº 1 der Peak 1292+ eine Intensität von $\sim 4\%$. Im Spektrum dieser Verbindung sind außerdem noch die Ionen 173²⁺, 159²⁺, 145²⁺, 115²⁺ zu finden. Dies bedeutet im Falle des 173²⁺ Ions, daß sich ein Wasserstoffatom aus dem Silatran-Skelett auf eine Me-Gruppe umlagert, erst danach folgt die Spaltung der Si-C-Bindung. Hierbei entsteht ein CH₄-Fragment und das doppeltgeladene Ion, 173²⁺. Wenn man den guten spherischen Aufbau des Silatran-Skelett in Betracht zieht (Abb. 9) sollte dieses Ion verhältnismäßig stabil sein.

Abb. 9. Struktur des 1732+-Ions

Herrn Dr. H. KROSCHWITZ sind wir für Diskussion und Überprüfung des Manuskriptes zu besonderem Dank verpflichtet.

Zusammenfassung

6 Silatranderivate wurden massenspektroskopisch untersucht. Der Basispeak ist, ausgenommen das Me-Derivat, m/z: 174, das »Silatranyl«-Ion. Daraus folgt, daß die Si-R-Bin-dung relativ schwach ist. Bei den Derivaten $pClC_{c}H_{4}O$ - und $pO_{2}NC_{c}H_{4}O$ - wurden inten-sive, bei den anderen schwächere, durch die Umlagerung des Wasserstoffes entstandene ROH1+-Ionen detektiert. In allen Spektren waren auch doppeltgeladenen Ionen zu beobachten.

Literatur

- WORONKOW, M. G.—DYAKOW, W. M.: Silatrany. Izd. Nauka, Nowosibirsk (1978), p. 87.
 MÜLLER, R.—FREY, H. J.: Z. anorg. allg. Chem. 368, 113 (1969).
 ZELDIN, M.—OCHS, J.: J. Organometal. Chem. 86, 369 (1975).

- 4. WORONKOW, M. G .-- VITKOVSKII, V. YU .- BARYSHOK, V. P .: Izv. Akad. Nauk SSSR Ser. Khim. 1979, 626.
- 5. MAZHEIKA, I. B.—GAUHMAN, A. P.—YANKOVSKA, I. S.—ZELCANS, G. I.—SOLOMENNIKOVA. I. I.-LUKEVIC, E.: Zh. Obsch. Khim. 48, 2722 (1978).
- 6. WORONKOW, M. G.-YEMELYANOW, I. S.-VITKOVSKII, V. YU.-KAPRANOVA, L. V.-DYAKOW, W. M.-BARYSHOK, V. P.: Zh. Obsch. Khim. 47, 382 (1977).
- 7. HENCSEI, P.-ZSOMBOK, GY.-BIHÁTSI, L.-NAGY, J.: Periodica Polytechn. 23, 185 (1979).
- 8. WORONKOW, M. G.-BARYSHOK, V. P.-TANDURA, S. N.-VITKOVSKII, V. YU.-DYAKOW, W. M.-PESTUNOVICH, V. A.: Zh. Obsch. Khim. 48, 2238 (1978).

Tibor MÜLLER H-1521, Budapest Pál Hencsei László Bihátsi