# FORMATION OF C<sub>9</sub> AND C<sub>10</sub> ALKYLAROMATIC HYDROCARBONS IN REFORMING LIGHT KEROSENE

By

I. SZEBÉNYI, S. GÖBÖLÖS and G. SZÉCHY

Department of Chemical Technology, Technical University, Budapest Received February 14, 1980

Earlier results [1, 2] for mono- and bimetallic reforming catalysts have indicated that naphtha feedstocks with boiling points up to 180-190 °C and having average carbon numbers higher than nine yielded a high percentage of C<sub>9</sub> aromatics. When reforming naphthas containing fractions boiling above 165 °C, C<sub>10</sub> aromatics are also obtained besides C<sub>9</sub> aromatics [3, 4]. According to the measurements of NAKAMURA et al. [5] on Pt-Al<sub>2</sub>O<sub>3</sub> catalyst, maximum yields of C<sub>10</sub> aromatics can be obtained by reforming naphtha fractions boiling between 150-205 °C.

In order to study the upper limits and degree of the advantageous effects of increasing the boiling range on the yield of  $C_9$  aromatics, experiments were carried out with kerosene boiling between 158–236 °C. These measurements aimed at studying also the distribution and amounts of  $C_9$  and  $C_{10}$  aromatics (among them especially pseudocumene – 1,2,4-trimethyl-benzene – which is already utilized industrially) obtainable in the parameter range applied in commercial units in the presence of Pt-Al<sub>2</sub>O<sub>3</sub> catalyst.

### Experimental

The experiments were carried out under pressure in a continuously operating laboratory "twin-reactor" system, including an isothermal reactor [6] filled with 100 cm<sup>3</sup> Engelhard RD-150C catalyst. The catalyst was pretreated according to specifications of the manufacturer. Because of the high initial hydrocracking activity of the catalyst, the measured data were considered as reliable after 50 hours of operation. The experiments were carried out at a constant level of catalyst activity, checked by repeated measurements.

The light kerosene used as feedstock was of Romaskino origin and was desulphurized on 135 cm<sup>3</sup> of Co-Mo-Al<sub>2</sub>O<sub>3</sub> catalyst at 1,5 vol/vol.h liquid hourly space velocity (LHSV),  $39.2 \cdot 10^5$  Pa (40 kp/cm<sup>2</sup>) pressure and 320-340 °C. The sulphur compounds were removed from the hydrogenated product by alkaline washing. The desulphurized feedstock was subsequently dried with dehydrated Na<sub>2</sub>SO<sub>4</sub> and stored on "Ersorb" molecular sieve layer.

### I. SZEBÉNYI et al.

The characteristics of the desulphurized kerosene are shown in Table 1. The hydrocarbon group composition was determined by the so-called PONA method. The average carbon number of the fraction,  $\bar{c}$  was found to be 10.9, as calculated by the following relationship (valid only in case of sulphur-free fractions):

$$\overline{c} = rac{\overline{M}(100 - H\%)}{1201}$$

where  $\overline{M}$  is the average molar weight and  $H_{0}^{\circ}$  is the hydrogen percentage which can either be determined analytically or calculated on the basis of some physical properties.

### Table 1

Characteristics of the feedstock (light kerosene)

**ASTM** Distillation

| Initial Boiling Point                             | 158 °C |
|---------------------------------------------------|--------|
| 10%                                               | 170 °C |
| 50%                                               | 186 °C |
| 90%                                               | 210 °C |
| End Point                                         | 236 °C |
| Refractive index, $n_D^{20}$                      | 1.4370 |
| Density, $d_4^{20}$                               | 0.7818 |
| Average molecular weight, $\overline{\mathbf{M}}$ | 152.5  |
| Average carbon number, c                          | 10.9   |
| Hydrocarbon Group Composition, $\%$ by weight     |        |
| Paraffins                                         | 38.5   |
| Olefins                                           | 0.4    |
| Naphthenes                                        | 40.5   |
| Aromatics                                         | 20.6   |
| Detailed Composition of Aromatics, % by weight    |        |
| C <sub>8</sub> aromatics                          | 1.3    |
| C <sub>9</sub> aromatics                          | 7.3    |
| C <sub>10+</sub> aromatics                        | 12.0   |

Composition of  $C_9$  aromatics, % by weight

| Pseudocumene             | 2.0 |
|--------------------------|-----|
| Other trimethyl-benzenes | 1.7 |

202

The  $C_9$  and  $C_{10}$  aromatic hydrocarbon contents of the feedstock and the aromatic hydrocarbon contents of the reformates were determined by gaschromatography (2).

Industrial aspects ruled both setting the experimental program and choosing the values of the technological parameters. From among the parameters, pressure and the hydrogen/hydrocarbon molar ratio are essentially determined by the catalyst so only the effect of the temperature and the liquid hourly space velocity (LHSV) were studied. In order to establish the effects of the chosen independent variables (t, Ts) with a good reliability from a minimum number of runs, the program was set up on the basis of experiment planning (8).

The second-order orthogonal plan for two variables gives the possibility to describe the yields of the different aromatic hydrocarbons in the studied parameter range with regression equations which can be easily calculated from the experimental data. In case of two variables, the regression equation becomes:

$$Y = b'_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2 + b_{11} x'_1 + b_{22} x'_2$$

where

Y is the objective function

 $b_i$  is the *j*-th coefficient of the equation

 $x_j$  is the dimensionless form of *j*-th independent variable

$$egin{aligned} & x_j = rac{z_j - z_j^0}{\varDelta z_j} & x_j' = x_j^2 - x_j^{ar 2} \ & z_j^0 = rac{z_j^{ ext{max}} + z_j^{ ext{min}}}{2} & \varDelta z_j = rac{z_j^{ ext{max}} - z_j^{ ext{min}}}{2} \end{aligned}$$

In the variables z, the reaction parameters appear with their natural values,  $z_j^{\max}$  and  $z_j^{\min}$  are the extreme values of the parameter range,  $z_j$  is the actual value of the *j*-th parameter.

### **Results and discussion**

The results of our measurements carried out in the parameter range 470-530 °C and 1-3 vol/vol.hour LHSV are summarized in Table 2. Regression equations were written and calculated for the following objective functions:

- $Y_1$  liquid yield, % by wt
- $Y_2$  yield of total aromatics, % by wt
- $Y_3$  yield of C<sub>9</sub> aromatics, % by wt
- $Y_4$  yield of  $C_{10}$  aromatics, % by wt
- $Y_5$  yield of trimethyl-benzenes, % by wt
- $Y_6$  yield of pseudocumene, % by wt.

Stand Strend Clark Column (1997) and the strength of the standard problem (2017). A strength of the standard problem in the strength of the

# Conditions of reforming

Catalyst: RD-150C

Feed: light kerosene

# Pressure: 30.3 · 10<sup>5</sup> Pa (31 kp/cm<sup>2</sup>)

# $H_2/CH$ mole ratio: 9

| Temperature, °C                           | 470                    | 470  | 470      | 500  |
|-------------------------------------------|------------------------|------|----------|------|
| Liquid Hourly Space Velocity, vol/vol hr. | 1                      | 2    | 3        | 1    |
| Component ·                               | Yield of components in |      |          |      |
| benzene                                   | 1.3                    | 0.9  | 0.8      | 1.2  |
| toluene                                   | 5.2                    | 4.9  | 4.7      | 6.6  |
| ethyl-benzene                             | 1.6                    | 1.5  | 1.4      | 2.0  |
| meta and para-xylene                      | 4.3                    | 4.2  | 4.0      | 5.7  |
| iso-propyl-benzene                        | 0.9                    | 0.9  | 0.9      | 0.4  |
| ortho-xylene                              | 1.3                    | 1.2  | 1.1      | 2.5  |
| n-propyl-benzene                          | 1.7                    | 1.6  | 1.5      | 1.1  |
| meta- and-para-ethyl-toluene              | 3.0                    | 3.0  | 2.8      | 4.3  |
| mesitylene                                | 2.4                    | 2.3  | 2.3      | 2.9  |
| ortho-ethyl-toluene                       | 1.5                    | 1.1  | 0.9      | 2.1  |
| pseudocumene                              | 4.2                    | 4.2  | 4.1      | 6.2  |
| n-butyl-and 1,3-diethyl-benzene           | 3.2                    | 2.4  | 2.4      | 3.3  |
| l-methyl-2-n-propyl-benzene               | 0.6                    | 0.5  | ۹    0.5 | 0.8  |
| hemimellitene                             | 2.4                    | 2.2  | 2.0      | 3.0  |
| indane                                    | 0.7                    | 0.6  | 0.5      | 0.9  |
| 1,2-dimethyl-4-ethyl-benzene              | 2.3                    | 2.0  | 1.8      | 3.5  |
| indene                                    | 0.4                    | 0.3  | 0.2      | 0.5  |
| 1,2-dimethyl-3-ethyl-benzene              | 1.5                    | 1.5  | 1.4      | 0.7  |
| durene                                    | 1.4                    | 1.2  | 1.0      | 1.1  |
| iso-durene                                | 2.5                    | 2.3  | 2.1      | 2.1  |
| 5-methyl-indane                           | 0.6                    | 0.4  | 0.4      | 0.3  |
| prehnitene                                | 2.8                    | 2.8  | 2.8      | 1.5  |
| benzene                                   | 1.3                    | 0.9  | 0.8      | 1.2  |
| toluene                                   | 5.2                    | 4.9  | 4.7      | 6.6  |
| C <sub>8</sub> aromatics                  | 7.2                    | 6.9  | 6.5      | 10.2 |
| C <sub>9</sub> aromatics                  | 17.5                   | 16.2 | .15.2    | 21.4 |
| C <sub>10</sub> aromatics                 | 14.6                   | 13.2 | 12.4     | 13.3 |
| total aromatics                           | 45.8                   | 42.1 | 39.6     | 52.7 |
| trimethyl-benzenes                        | 9.0                    | 8.7  | 8.4      | 12.1 |
| liquid yield                              | 93.1                   | 94.3 | 95.2     | 82.0 |

### FORMATION OF C, AND $\mathrm{C}_{10}$ ALKYLAROMATIC HYDROCARBONS IN KEROSENE

### in reforming light kerosene

| 500                              | 500  | 500  | 500  | 530  | 530  | 530  |  |  |
|----------------------------------|------|------|------|------|------|------|--|--|
| 2                                | 2    | 2    | 3    | 1    | 2    | 3    |  |  |
| percentage by weight of the feed |      |      |      |      |      |      |  |  |
| 1.0                              | 1.0  | 1.0  | 1.1  | 1.3  | 1.1  | 1.0  |  |  |
| 5.6                              | 3.9  | 5.6  | 5.0  | 6.2  | 5,5  | 5.1  |  |  |
| 1.8                              | 1.8  | 1.9  | 1.6  | 2.2  | 1.8  | 1.8  |  |  |
| 4.2                              | 4.1  | 4.4  | 3.7  | 7.2  | 5.8  | 4.4  |  |  |
| 1.0                              | 1.0  | 1.1  | 0.7  | 0.2  | 0.2  | 0.3  |  |  |
| 2.0                              | 2.0  | 1.9  | 1.9  | 3.0  | 2.2  | 2.1  |  |  |
| 1.7                              | 1.7  | 1.7  | 1.8  | 1.0  | 1.2  | 0.9  |  |  |
| 4.1                              | 4.2  | 4.0  | 4.0  | 5.4  | 4.4  | 4.4  |  |  |
| 2.5                              | 2.6  | 2.4  | 2.4  | 2.9  | 2.2  | 2.0  |  |  |
| 1.9                              | 2.0  | 1.8  | 1.9  | 2.0  | 1.9  | 1.9  |  |  |
| 5.4                              | 5.8  | 5.4  | 4.5  | 7.9  | 6.9  | 6.2  |  |  |
| 4.0                              | 4.2  | 3.9  | 3.1  | 2.2  | 3.1  | 3.9  |  |  |
| 0.8                              | 0.7  | 0.9  | 0.6  | 1.1  | 1.1  | 1.0  |  |  |
| 2.7                              | 2.8  | 2.7  | 2.4  | 1.6  | 2.1  | 2.8  |  |  |
| 0.8                              | 0.8  | 0.8  | 0.8  | 0.7  | 0.7  | 0.8  |  |  |
| 2.5                              | 2.6  | 2.5  | 2.2  | 2.0  | 2.4  | 3.0  |  |  |
| 0.4                              | 0.4  | 0.4  | 0.4  | 0.5  | 0.4  | 0.4  |  |  |
| 1.4                              | 1.5  | 1.5  | 1.6  | 0.2  | 1.2  | 1.1  |  |  |
| 1.1                              | 1.1  | 1.1  | 1.4  | 1.0  | 1.3  | 1.4  |  |  |
| 2.3                              | 2.4  | 2.3  | 2.7  | 2.0  | 2.2  | 2.4  |  |  |
| 0.4                              | 0.4  | 0.3  | 0.4  | 0.2  | 0.3  | 0.6  |  |  |
| 2.4                              | 2.3  | 2.3  | 2.0  | 1.2  | 2.0  | 1.7  |  |  |
| 1.0                              | 1.0  | 1.0  | 1.1  | 1.3  | 1.1  | 1.0  |  |  |
| 5.6                              | 3.9  | 5.6  | 5.0  | 6.2  | 5.5  | 5.1  |  |  |
| 8.0                              | 7.9  | 7.2  | 7.2  | 12.4 | 9.8  | 8.3  |  |  |
| 20.5                             | 21.3 | 21.5 | 18.7 | 22.2 | 20.0 | 16.8 |  |  |
| 14.9                             | 15.2 | 14.8 | 14.2 | 9.9  | 13.6 | 17.9 |  |  |
| 50.0                             | 49.9 | 50.1 | 46.2 | 52.0 | 50.0 | 49.2 |  |  |
| 10.6                             | 11.2 | 10.5 | 9.3  | 12.4 | 11.2 | 11.0 |  |  |
| 89.6                             | 88.0 | 87.2 | 92.8 | 65.3 | 72.8 | 78.8 |  |  |

All the yields are expressed as percentages by weight of the charge.

The experimental data were processed in a WANG 2200 computer.

The reliability of regression coefficients was checked by the t-test, that of the fitting of the model by the F-test. After carrying out the statistical tests, the following equations were obtained:

$$egin{aligned} Y_1 &= 84.13 - 10.950 x_1 + 4.440 x_2 + 2.850 x_1 x_2 - 4.439 x_1' \ Y_2 &= 47.51 + 3.950 x_1 - 2.583 x_2 + 0.850 x_1 x_2 - 3.183 x_1' \ Y_3 &= 18.76 + 1.683 x_1 - 1.733 x_2 - 2.317 x_1' \end{aligned}$$



Fig. 1. Yields of aromatics from reforming light kerosene on RD-150C catalyst

$$Y_4 = 13.79 + 1.117x_2 + 2.550x_1x_2$$
  

$$Y_5 = 10.32 + 1.417x_1 - 0.800x_2 - 0.617x_1'$$
  

$$Y_6 = 5.52 + 1.417x_1 - 0.583x_2 - 0.400x_1x_2$$

In the equations,  $x_1$  is the dimensionless form of reforming temperature,  $x_2$  is that of LHSV.

The reliability of the regression coefficients in the above equations is 95%, the models fit the measured data with 5% error.

It is seen from the first equation that the liquid yield decreases sharply with the temperature elevation and the interaction term shows that this decrease is different for each LHSV value. The liquid yield is not very sensitive to the LHSV alteration.

Also the yield of total aromatics changes more pronouncedly with the temperature than with the LHSV. This can be clearly seen in Fig. 1 illustrating the experimental results. The comparatively low value of the coefficient of the interaction expression indicates the disadvantageous effect of the temperature elevation on the total aromatics yield caused by the decrease of the liquid yield.

Similar considerations are valid also for the yield of  $C_9$  aromatics, though this yield depends more on the space velocity than do the other yields. This is seen in Table 3 where the corresponding  $b_j/b_0$  values for each type of yield have been tabulated. The elevation of the temperature above 520 °C is especially disadvantageous to the yield of  $C_9$  aromatics (partly by reducing the liquid yield), apparent from comparing the  $b_{11}/b_0$  values. The reason for this tendency is the high sensitivity of the  $C_9$  and  $C_{10}$  hydrocarbon molecules to cracking, thus shifting the distribution of aromatics towards the lower carbon numbers.

The yields of trimethyl-benzenes and of pseudocumene increase monotonously with the temperature elevation and with the decrease of space velocity. The dependence on space velocity is slighter than that on the temperature,

| <i>bj/b</i> o<br><i>Y</i> | $b_1/b_0$ | <i>b</i> <sub>2</sub> / <i>b</i> <sub>0</sub> | b11/b0 | b11/b0 |
|---------------------------|-----------|-----------------------------------------------|--------|--------|
| Y1                        | -0.129    | 0.052                                         | 0.034  | -0.052 |
| Y <sub>2</sub>            | 0.083     | -0.054                                        | 0.018  | -0.067 |
| $\mathbf{Y}_{3}$          | 0.090     | -0.092                                        |        | -0.124 |
| Y4                        | -         | +0.081                                        | 0.185  |        |
| Y <sub>5</sub>            | 0.137     | -0.078                                        | _      | -0.060 |
| Y <sub>6</sub>            | 0.257     | -0.106                                        | -0.072 |        |

Table 3

Relative coefficients of the regression equations

### I. SZEBÉNYI et al.

The interaction and second-order expressions have no marked effect on the yields.

Figure 1 shows the yield of trimethyl-benzenes and within that the yield of pseudocumene not to have extreme values in the parameter range studied. The highest yields are obtained at 530 °C and 1 vol/vol.hour LHSV, numerically 12.4 and 7.9 percent by weight, respectively. At a constant 1 vol/vol.hour space velocity the total aromatics yield and within that the yield of  $C_9$  aromatics show a maximum as a function of temperature. On the basis of the equation

$$rac{\mathrm{d} Y_2}{\mathrm{d} x_1} = 3.950 + 0.850 \, x_2 - 6.366 \, x_1$$

where  $x_2 = -1$ , the temperature belonging to the maximum (53% by wt) of total aromatics yield is 515 °C. The maximum yield of C<sub>9</sub> aromatics (22.3% by wt) may be expected at 511 °C. The yield of C<sub>10</sub> aromatics has no extreme value in the parameter range studied, the elevation of temperature and increase of space velocity increase this yield up to 17.9% by wt at 530 °C and 3 vol/vol.hour LHSV.

Studying the yield data in Table 2, the following statements can be made on the individual  $C_9$  aromatics isomers:

– The yield of iso- and normal-propyl-benzene – present in concentrations lower than 2% – decreases with decreasing space velocities and at temperatures above 500 °C.

— The yield of ortho-ethyl-toluene and the combined yield of the meta- and para-ethyl-toluene at 500 and 530 °C are 1.8-2.1 and 4.1-5.4 % by wt, resp., that is, slightly increasing with increasing reforming severity.

- Among the trimethyl-benzenes, pseudocumene has the greatest thermodynamic stability. Its yield increases from 4.1 to 7.9% by wt with increasing reforming severity (elevated temperature and reduced space velocity). The yield of mesitylene (1,3,5-trimethyl-benzene, a compound of considerable industrial interest) changes between 2.0-2.9% by wt, that of hemimellitene (1,2,3-trimethyl-benzene) between 1.6-3.0% by wt. The mesitylene to hemimellitene ratio increases with the elevation of temperature, as the rate of aromatic isomerization reactions increases.

- Indane and indene are formed in concentrations lower than 1%.

- Increasing the severity of the reforming conditions, the concentration of thermodynamically more stable alkyl-benzene isomers increases. This is seen in Table 4 where percentual distributions of the  $C_9$  alkyl-benzenes measured at different space velocities at 530 °C are compared with the thermodynamic equilibrium data (9).

The distribution data in Table 4 indicate that the ratios of pseudocumene, mesitylene, and meta- plus para-ethyl-toluene increase with decreasing space velocities because of secondary isomerization and dealkylation.

|                             |       | LHSV, vol/vol · hr |       |             |
|-----------------------------|-------|--------------------|-------|-------------|
| Compound                    | 1     | 2                  | 3     | equilibrium |
| iso-propyl-benzene          | 1.0   | 1.1                | 1.5   | 1.3         |
| n-propyl-benzene            | 4.8   | 6.3                | 4.6   | 3.9         |
| o-ethyl-toluene             | 9.5   | 10.0               | 9.7   | 8.2         |
| meta- and para-ethyltoluene | 25.7  | 23.4               | 22.6  | 31.5        |
| pseudocumene                | 37.6  | 36.5               | 31.9  | 34.2        |
| mesitylene                  | 13.8  | 11.6               | 10.3  | 11.5        |
| hemimellitene               | 7.6   | 11.1               | 14.4  | 9.4         |
|                             | 100.0 | 100.0              | 100.0 | 100.0       |

Table 4 Distribution of C<sub>9</sub> alkyl-benzenes/percent by weight/at 530  $^\circ$ C

The amount of  $C_{10}$  aromatics within the total aromatics depends on the conditions of reforming. Increasing the reforming severity, the distribution of aromatics is shifted towards the lower carbon numbers because of increased dealkylation. This is illustrated also by the data in Table 5, where  $Y_4/Y_2$  values are shown.

### Table 5

Fraction of  $C_{10}$  aromatics within the total aromatics as a function of the conditions of reforming

| Temperature, °C    | $Y_4/Y_2$<br>(Yield of C <sub>10</sub> aromatics/Yield of total aromatics) |       |       |  |
|--------------------|----------------------------------------------------------------------------|-------|-------|--|
| • •                | 470                                                                        | 500   | 530   |  |
| LHSV, vol/vol · hr |                                                                            |       |       |  |
| 1                  | 0.319                                                                      | 0.252 | 0.190 |  |
| 2                  | 0.314                                                                      | 0.300 | 0.272 |  |
| 3                  | 0.313                                                                      | 0.307 | 0.364 |  |

The data in Table 5 indicate that the  $Y_4$  to  $Y_2$  ratio is especially sensitive to the alteration of the other parameters at low space velocities and high temperatures. The bulk of  $C_{10}$  alkyl-aromatics consists of tetra-methyl-benzenes and dimethyl-ethyl-benzenes. In the parameter range studied, iso-durene (1,2,3,5tetramethylbenzene) and prehnithene (1,2,3,4-tetramethyl-benzene) have the highest yields, 2.0-2.5 and 1.2-2.8% by wt, respectively.

The yields of durene (1,2,4,5-tetramethyl-benzene) — the most important isomer from the industrial point of view — are between 1.0-1.4% by wt, its concentration in the reformate does not exceed 2% by wt. With increasing the severity of the reforming conditions, the concentrations of iso-durene and durene increase among the tetramethyl-benzenes.

8

가는 가지가 가지 않는 것이다. 한 것이라는 것이다. 한 것이다. 이렇게 있는 것이지 않는 것이지 않는 것이다. 같은 것이다. 알려지 않는 것이다. 같은 것이다. 하는 것이 같은 것이다. 하는 것이 같은 것이지? 것이지? 것이지 않는 것이다. 알려지 않는 것이지 않는 것이다. 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같

### I. SZEBÉN¥I et al.

Of the dimethyl-ethyl-benzenes, 1,2-dimethyl-4-ethyl-benzene has the highest yield reaching 3.5% by wt at 500 °C and 1 vol/vol.hour space velocity. The combined yields of n-butyl- and 1,3-diethyl-benzene aromatics may rise to 2.2-2.4% by wt while yields of the methyl-propyl-benzenes and methyl-indanes remain below 1% by wt.

In reforming kerosene, the yield of total aromatics and that of  $C_9$  aromatics was seen to be higher than in reforming naphtha boiling between 90 and 180 °C [10]. On the other hand, our earlier results have indicated that for producing  $C_9$ aromatics it is more advantageous to reform naphtha fractions with 35-40 °C boiling range between 130 and 190 °C than to reform kerosene (1).

This observation can be explained by the fact that kerosene contains significant amounts of  $C_{11}-C_{12}$  hydrocarbons, which only give  $C_9$  aromatics under severe reforming conditions. Under such conditions, however, hydrocracking is also enhanced, resulting in sharply reduced liquid yields.

Figure 2 shows aromatics yields obtained by reforming different hydrocarbon fractions on RD-150C catalyst. In reforming runs at 500 °C and 2 vol/vol.hour LHSV the yield of total aromatics as well as that of the  $C_9$  aromatics and within that the yield of trimethyl-benzenes show a common maximum when the average carbon number of the feedstock is about 10.

The highest yield of pseudocumene can be expected already at  $\bar{c} = 9.4$ , attributed to the high thermodynamic stability of this compound [1]. The yield of C<sub>10</sub> aromatics reaches 15% by wt only in cases where the average carbon number of the feed is above 10.



Fig. 2. Yields of aromatics from reforming different naphtha fractions with different average carbon numbers. Catalyst: RD-150C

As a conclusiont i, can by stated that in reforming kerosene boiling between 158-236 °C, a considerable portion of C<sub>9</sub> aromatics is formed from hydrocarbons having higher carbon numbers than 9. This means that reforming should be carried out at 1 vol/vol.hour space velocity and at least at 515 °C to facilitate proper dealkylation. Because of the high sensitivity of the big molecules to cracking, increased reforming severity results in sharply reduced liquid yields, causing the yields of C<sub>9</sub> aromatics to be lower than those obtained from heavy naphtha fractions. Thus, such an increase ( $\bar{c} = 10.9$ ) in the average carbon number of the feedstock is not advantageous from the point of view of C<sub>9</sub> aromatics production.

 $C_{10}$  aromatics are produced in significant total yields (12-16% by wt), but the amount of the individual isomers does not exceed 1-3% by wt. The concentration of the practically important durene is not higher than 2% by wt even in reformates rich in aromatics.

#### Summary

Effect of the temperature and space velocity on yields of aromatics were studied in reforming light kerosene, boiling between 158 and 236 °C and with an initial aromatics percentage of 20.6% by wt. The reforming runs were carried out on RD-150C platinum-alumina catalyst at constant pressure and hydrogen/hydrocarbon mole ratio ( $30.3 \cdot 10^5$  Pa, and 9, resp.). The yields of aromatics in the parameter range 470-530 °C and 1-3 vol/vol  $\cdot$  hr were described with regression equations.

Maximum yield of  $C_9$  aromatics (22.3% by wt) was obtained at 511 °C, 1 vol/vol · hr; that of pseudocumene amounted to 7.9% by wt at 530 °C, 1 vol/vol · hr and that of  $C_{10}$  aromatics reached 17.9% by wt at 530 °C, 3 vol/vol · hr.

Reforming of light kerosene has shown, that a feedstock with such a high initial boiling point and average carbon number ( $\bar{c} = 10.9$ ) isn't advantageous from the point of C<sub>9</sub> aromatics production: the yields of C<sub>9</sub> aromatics obtained earlier /1/ by reforming heavy naphtha fractions were higher than those measured in this work.

### References

- 1. GÖBÖLÖS, S.-SZEBÉNYI, I.-SZÉCHY, G.-TÁTRAI, F.: Magyar Kémai Folyóirat 86, 406–412 (1980)
- 2. SZEBÉNYI, I.- SZÉCHY, G.- ACKERMANN, L.- GÖBÖLÖS, S.: Periodica Polytechnica Chem. Eng. 22, 49 (1978)
- 3. MASLJANSKY, G. N. POTAPOVA, A. A. SHKORNAKOVA, V. T.: Neftehimija 7, 392–7 (1967)
- 4. VIDAL, A.-BARBIER, J. C.: Rev. Assoc. Franc. Pétrole 224 75 (1974)
- 5. NAKAMURA, E.-KAGUCHI, K.-NAKAYAMA, T.: Kogai Shiegen Kenkyusho Hoköku (3) 127 (1971)
- 6. HEVESI, J.: Erdöl und Kohle 24, 687 (1971)
- 7. ACKERMANN, L.-SZEBÉNYI, I.-VERMES, E.: Periodica Polytechnica Chem. Eng. 16, 279 (1972)
- 8. KAFAROV, V. V.: Metodi kibernetiki v khimii i khimicheskoy tekhnologii (Methods of the kybernetics in chemistry and chemical technology) Izd. "Himija" Moscow (1976)
- 9. FARKAS, A.: Physical Chemistry of Hydrocarbons Vol. I. 413, Academic Press, New York (1950)
- 10. SZEBÉNYI, I.-SZÉCHY, G.-PAP, G.: Kőolaj és Földgáz 8, 183 (1975)

# Prof. Imre Szebényi)

dr. Gábor Széchy H-1521 Budapest

u. Gaboi Szechi J

## dr. Sándor Göbölös Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest Pusztaszeri út 57–69.