
MATHEMATICAL SIMULATION OF CONTINUOUS GAS 
CHROMATOGRAPHY 11 

DIMENSIONLESS EQUATIONS 

By 

Gy. PARLAGH, Gy. SZEKELY and Gy. Ilicz 

Department of Physical Chemistry, Technical University, Budapest 

Received May 24, 1978 

Presented by Prof. Dr. Gy. VARSANYI 

Introduction 

In a previous communication [1] a set of differential equations have 
been set up to describe the behaviour of a continuous chromatographic 
column: 
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axial co-ordinate; 

diffusion coefficient; 

pressure; 

free cross sectional area; 

(i = 1,2, ... , k) 

mole fraction of component i in the gas phase; 

(la) 

(lb) 

(le) 

amount (in moles) per unit length, of component in the 
condensed phase; 

linear gas velocity; 

linear velocity of the condensed phase; 

volume flow rate of the sample introduced III the middle; 

mole fraction of component i in this sample; 

weight function; 

number of the eluted components (except the carrier); 

Si sorption rate of component i per unit length. 
In order to reduce the number of the parameters and to obtain more general 
results, a series of dimensionless parameters will now be introduced. 
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Non-equilibrium chromatography 

The following boundary conditions prevail in this case [1]: 

ai = ° 
d)'!' 

(i=1,2, ••• ,k) (2) 

-(=0 
dz 

o I~ v =-
q 

The superscripts 0, m and t refer to the lower boundary, the central feeding 
zone and the upper boundary of the column, respectively. 

Let us define the relative velocity difference 

and the characteristic length 

v - V O 

v=---
VO 
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L 

where L is the total length of the column. A new weight function, 

w*(C) = L . w (LC) 

IS then to be written instead of w(z), since the equation 

1 

S w*(C) dC = 1 
o 

must remain valid, and 

L L L/L 

1 = f w . dz = f t~ d(LC) = f w*dC 

000 

(3) 

(4) 

(5) 

(6) 

For sake of simplicity, the function w*(C), Eq. (5) will henceforth be written 
as w. 

The reference quantity a o for the adsorption ai is the unimolecular 
adsorption, or some related, well-defined quantity, e.g. the adsorption at 
the so-called point B in case of a BET isotherm. So, the sorption can be 
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characterized by the dimensionless c!)verage 

(7) 

The overall sorption rates Si - if the intrinsic rates are high enough -
are controlled by diffusion and can be described by the mass transfer 
coefficient {3i: 

Ct and c; are the actual concentrations of the species i in the gas phase and 
that in equilibrium with ()i, respectively, A is the surface of the sorbent per 
unit length (m2Jm). The terms {3i are theoretically different - they are essentially 
the ratios of diffusivities Di to the film thickness - but once having 
accepted an average diffusivity D, the use of an average {3 is at hand. So 
we accept 

(8) 

where LlYi stands for (Yi-Y;)' 

By the aid of the quantities defined by Eqs (3) to (8) the set of Eqs (1) 
can be written in the form 

d2yi _ LI~ (dYi I d(V)'i») {3L2A A I~L m 
-- -- ----- +-qD LJYi- qD 'Yi W 
dC2 - qD dC I dC 

{3AL k Im __ ~ LlY . ...L _v_w 
l a,.,;;;;;,. jllo 

v j=i v 

and introducing the dimensionless groups 

2 

Cl = vOL = LI~ 
D qD 

C2 = {3LA 
1° v 

C3 =1;' 
1° v 

(9) 
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the set turns to 

~~ - Cl [(1 + 11) !~ + Yi· !; + C2(Yi - yi) - C3 . yr· w] = 0 (lOa) 

(i = 1,2, ... , k) 

d k 
d: + C2 ~ (Yi - yj) - C3 • w = 0 (lOb) 

;, J=I 

dei -L C4() •. _ Y~) = 0 d, I 1 1 
(i = 1,2, ... , k) (10c) 

Cl is the Pedet group Pe, and C3 is the ratio of flow rates of gases 
introduced in the middle and at the bottom. To interpret C2 and C4, let us 
notice that 

fJALL = fJAL(c o - 0) 
RT 

is the upper limit of mass transfer rate realizable on the column. C2 is the 
rate of this "mass transfer capacity" to the feed at the bottom, while C4 is 
the ratio of the "mass transfer capacity" to the "sorption capacity" vLao' 

(This latter is the highest possible rate at which material can leave the column 
in adsorbed state.) 

In case of gas-liquid chromatography, the mole fraction in the liquid 
phase Xi can be used instead of ei • Eqs (lOa) and (lOb) are not affected by 
this modification, but (10c) becomes 

where 

k 

1- ~xi 
_-,Je.-·=_I --(Yi - yi) = 0 

Xi 
1 + ---'k 

1- ~Xj 
j=1 

(i= 1,2, ... , k) 

and Lo is the amount of solvent (in mol) per unit length. 

(llc) 

(9'd) 
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The boundary conditions given by Eqs (2) can also be given in dimen­
sionless form: 

C2 
Yi(I) . [1 + v(I)] - C4 . 8i(O) - C3 . Y!' = ° I 

8i (I) = ° I (i= 1,2, ... ,k). 

dh(I) = 0 
d~ 

v(O) = 0 

(I2a) 

(I2b) 

(I2c) 

(I2d) 

In case of gas-liquid chromatography the last two equations are the same, 
the first two turn to 

C3· YP = 0 (I2'a) 

and 
(I2'b) 

Disregarding the weight function w - its form has little importance 
except for short columns - the system and its working parameters can be 
characterized by four dimensionless groups. This fact facilitates a general 
treatment. Naturally, to compute factual concentration profiles, one needs 
in addition the equilibrium data and input concentrations (Y~) of the com­
ponents. 

Equilibrium chromatography 

For high sorption rates or high C2, an equilibrium between the gas 
and condensed phases can practically be achieved. It has been proved [1] 
that in this case both Si and ai can be eliminated from Eqs (1). ai or rather 
8i can be calculated from Yi by equilibrium relationships. The set of equations 
then takes the form 

D d2yi = d(vYi).L, RTvL ml~ dYi I;;'yP w 
T (i = 1,2, ... , k) 

dz2 dz pq dz q 
(I3a) 

~ = I;;' w _ RTvL .icpj dYi 
dz q pq j=i dz 

(I3b) 

The terms CPi represent equilibrium relationships 

ai = CPi(Yi) (14) 
and 

(14') 

2' 
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Introducing the quantities defined by Eqs (3) to (8) and considering 
the definition 

(15) 

Eqs (14) may be written as 

dv 17; 
-=-w-
de Ig 

or 

-= +v+ ''P' --y .. -- 'y"w = d
2
Yi Cl [(1 C5 rfi') dy! I dv C3 m ] 0 

dC2 Z de I Z de Z 
(I6a) 

(i = 1,2, ... , k) 

dv k dy" 
- = C3· w + C5. ~rp; _1 = O. 
dC j=l de 

(I6b) 

Cl and C3 have already been defined, while 

(ge) 

i.e. the ratio of the "sorption capacity" to the molar flow rate of the feeding 
at the bottom. To sum up, the column can now be characterized by three 
dimensionless groups. 

In equilibrium chromatography the boundary conditions are rather 
different from Eqs (2) [1]: 

(i = 1,2, ... , k) (I7a) 

V m.(yQ) + pq [vo+yQ _ (v t- ..L D "" dyj- ) y! _ D dY?+] ..L pI7; ylJl= 0 
LT! I RT Z I ~ dz Z dz I RT I 

J 

(i = 1,2, ... , k) (17b) 

v o+. 1- ~YJ =~- D ~J.L 
( ) 

10 d 0+ 

j q j dz 
(I7c) 
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or in dimensionless form 

dy· 
d~ (1 - 0) + Cl· CS'@i[Yi(I)] = 0 (i = 1,2, ... , k) (I8a) 

dy· 
de (+0) + Cl . CS . IJ?dYi (0)] + Yi(I) . [Cl + Cl . v(I - 0) + 

dy· + ~ d' (1 - 0)] - Cl . [1 + v(+O)] . Yi(O) - Cl . C3 . yf = 0 (I8b) 

(i = 1,2, ... , k) 

~dYj (+0) + Cl . v(+O) - [l + v(+O)] ~Yj (0) = 0 (I8c) 
j de j . 

There are discontinuities at the boundaries of the column, but they 
do not raise difficulties since only the column side limiting values occur in 
Eqs (18). 

Linear isotherms 

When ei or Xi are small enough, the sorption isotherms are nearly 
always linear, and can be characterized by a single partition coefficient or 
capacity ratio. Although our model is not limited to linear isotherms - in 
fact, we consider it to be the most important in non-linear cases - the general 
use of linear isotherms in chromatography justifies a somewhat detailed 
treatment of the topic. In addition, we can point out some relations between 
the parameters of classical and continuous chromatographies. 

One of the fundamental quantities in classical chromatography is the 
capacity ratio (capacity factor, mass distribution ratio) kt. It means the 
fraction of a component in the stationary phase divided by the fraction in 
the mobile phase, supposing equilibrium. In case of a linear isotherm k' IS 

constant and determines the migration velocity Vm: 

VO 
v =---

m 1 + k' 
(19) 

VO is the velocity of the carrier gas supposed to be constant. But even 
at constant k', Eq. (19) is only true for infinitesimal concentration of the solute, 
since the gas velocity in the chromatographic wave is greater than VD. It has 
also to be kept in mind that the term "linear isotherm" is never absolute, 
it refers only to a part of the isotherm - for small ei or Xi values. 
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Let us examine the relationship between k', VL and VO in continuous 
chromatography, when the concentration of the solute is infinitesimal. Be 
Vr the migration velocity of the solute referred to the moving condensed 
phase. It is evident that the linear gas velocity, referred to the moving condensed 
phase, is 

Since VO and VL are always of opposed sign, 

in every case. 
Equation (19) IS valid only for the moving condensed phase, i.e. 

(20) 

In the special case where the solute does not migrate referred to the column 
wall, 

and, considering Eq. (20), 

k* = (21) 

is the characteristic capacity ratio of the column. For k' = k*, the solute 
"does not migrate". 

In fact, this "non-migration" causes an accumulation of the solute 
in the feeding zone, the gas velocity increases and an upward migration will 
be observed. It is therefore more correct to say that downward migration 
is not to be expected when k' ::s;: k*. 

The definition of k* permits to introduce a "dimensionless" or "relative" 
or rather normalized capacity ratio 

k' 
~=­kO (22) 

For ~ ::s;: 1, no downward migration is possible if not due to dispersion effects. 
Equation (15) can be written for linear isotherms 

(23) 
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where (1.i is constant. The definition of the capacity ratio by the aid of Eq. (23), 

combined with Eqs (21) and (22) gives 

or 

"i (Xi=-' 
C5 

(24) 

Snbstituting Eq. (24) into the sets of equations (16) and (18), the 
dimensionless group C5 is eliminated. So in case of linear isotherms and 
equlibrium chromatography the column can be characterized by not more 
than two dimensionless groups (Cl and C3). For a total description of the 
system - for computing concentration profiles - the "i values and inlet 
concentrations ()'~) of the solutes have to be known additionally. 

In case of non-linear isotherms, " can be defined analogously from 
Eq. (24): 

"i = (25) 
Yi 

Xi is now a function of Yi, but, by this transformation of the sorption isotherm, 
C5 can be eliminated from Eqs (16) and (18) also in non-linear cases. 

Results 

Computer programs have been written to solve the sets of equations 
given above. A number of runs have been made, others are in progress. Both 
the programs and the results will be reported in separate papers. Only a 
few selected cases are exposed now, merely for sake of illustration (Figs 1-5). 
Only one solute has been examined in these runs. The column parameters 
were always the same: Cl = 150, C2 = 37, C3 = 0.05, C4 = 0.03, and a 
pure solute was introduced in the middle (ym = 1). 

Typically, the concentrations in the middle are much higher than at 
the ends. This is true both for the condensed and the gas phases, confirmed 
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by experimental results. For % < 1.0, the solute moves only upwards (Fig. 1). 
Increasing % above unity, the direction of migration does not change but 
very slowly. For % = 1.028 the solute still moves practically upwards (Fig. 2), 
and even for % = 1.37 the distribution is nearly symmetrical (Fig. 3). 

The length of the feeding zone does not modify the distribution but 
in the zone itself and in its immediate vicinity. In Fig. 2 the feeding zone is 
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Fig. 1. Computed concentration and velocity profiles. Length of the feeding zone 0.01, )(; = 0.822 

la. y,v 
2.1, 

1.8 . 

1.2 

0..6 

C 

150..0. 0..0.50.0. 
37.0. 0..0.300 

K = 1.0.28 
YNI= 1.000 

1.2 

OB 

0.4 

0.0 IIC-_"--_-'---..l..---'----'---'----'---'----'----' 0..0 
0.0 G.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Zet,~ 

Fig. 2. Computed concentration and velocity profiles. 
Length of the feeding zone 0.01, % = 1.028 
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Fig. 3. Computed concentration and velocity profiles. 
Length of the feeding zone 0.01, " = 1.37 

1 % of the column, while in Fig. 4 it is 5%. In practice even 1 % is a rather 
high value, so it can be stated that this parameter is negligible. 

The parameters in Figs 1 and 5 are the same, but in the second case 
the sample is fed near the bottom of the column. It is clearly observable 
that, in spite of the low value of ~, a significant portion of the solute moves 
downwards. In the short lower part of the column the chromatographic 
separation cannot fully develop: it is offset by dispersion effects. 
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Fig. 4. Computed concentration and velocity profiles. 
Length of the feeding zone 0.05, " = 1.028 
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Fig. 5. Computed concentration and velocity profiles. Length of the feeding zone 0.01, 
)e = 0.822. Asymmetrical feeding 

Summary 

The differential equations and boundary conditions describing a continuous chromato­
graphic column are given in dimensionless form. In non-equilibrium chromatography four 
independent dimensionless groups are necessary to characterize the column and its working 
parameters. If the sorption processes are fast enough (equilibrium chromatography), three 
dimensionless groups are sufficient. 

The solutes can be given by their sorption isotherms and inlet concentrations. In 
equilibrium chromatography the number of the dimensionless groups can still be reduced 
by an appropriate transformation of the sorption isotherms: then two groups are sufficient 
to describe the column. 
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