
PERIODICA POLYTECHNICA SER. CHEM. ENG. VOL. 43, NO. 2, PP. 103–115(1999)

THE LOAD-CARRYING CAPACITY FOR SOME TUBULAR
REACTORS AND STRESS CONCENTRATION

Calin Ioan ANGHEL and I. LAZǍR
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Abstract

The purpose of this paper was to evaluate the state of stress and the stress concentration in the main
critical junctions of a tubular reactor. Additional two numerical analyses were developed to identify
the critical junctions of reactor due to the main loads: temperature gradient and internal pressure. One
analysis is based on the extension of classical thin shell theory and the flexibility matrix method and the
second on the finite element method (FEM), by the package COSMOS/M Designer II. Comparative
experimental study based on recording the strains at selected surface positions, for different values
of the reaction loads, was done using strain gauges. The analyses reveal a reasonable accuracy of the
results and accurate positioning of the critical junctions. The loads are variable, so that the study may
give a primary estimation on the fatigue design and analysis.

Keywords: numerical analysis, tubular reactor, the state of stress, stress concentration factors, flexi-
bility matrix method, strain gauges.

1. Introduction

Chemical tubular reactors are apparatus characterised by a great diversity of con-
structive forms. About 6–8% of chemical industrial technologies is realised in these
kinds of apparatus. They have different constructions which depend on the type of
chemical reactions, flow capacity, technological parameters, etc. Our study deals
with tubular reactors for liquid phase reactions. These reactions are well known
as strongly exothermal and having a dynamic behaviour. Liquid phase reactions
are sensitive to all working parameters especially to the rise of the temperature of
the cooling liquid, when the reaction can run away and the pressure in the reactor
can rapidly increase, having destructive effects and the structure of the reactor must
resist these loads. There are two principal types of tubular reactor (Fig.1): tubular
reactor with tubular fascicle in instalments and tubular reactor with central tube in
instalments. The length of the tubular reactor can vary from a few meters to hundred
meters, so they often have a modular construction. Although the mechanical con-
struction of these reactors is relatively simple, due to the dynamic behaviour of the
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chemical reaction, this structure may be subjected to cyclic fatigue loading through
the variation of the chemical reaction parameters: pressure and temperature.

This paper highlights the highest stressed zones and the stress concentration
in a tubular reactor using a classic theoretical analysis; a numerical study based on
finite element method (FEM) and strain gauge measurements. In order to facilitate
the strain gauge measurement at high temperature, the numerical analysis and exper-
imental study were done using a particular equivalent tubular reactor for ethoxylated
products. In this reactor the liquid phase reaction has the following steady param-
eters: maximum temperatureTmax = 120◦C and the pressurep = 0.4...0.8 MPa.
Taking into account the principle of superposition in the analysis results, for this
study, only the linear elastic behaviour of the material was considered.

2. Theoretical Analysis

Analysing the drawings of these tubular reactors (Fig. 1), we can establish major
structural discontinuities at the junctions between the reactor’s elements – changes
of the geometrical profile and the variations of the elements’ thickness. It is well
known that junctionD (Fig. 2a) is a critical area in which important stress con-
centration is developed (ROSE, 1962; CIOCLOV, 1983 and MELERSKI, 1991).
Degradation effects induced at these critical areas are extremely dangerous when
the external loads are variable and have a major effect on the corrosion resistance.
Table 1 presents the main geometrical characteristics of the tubular reactor elements
required for strength calculation. The structural elements of the tubular reactor are
subjected to the main reaction parameters: internal pressurep and temperature
gradient�T .

Table 1. The main geometrical characteristics of the reactor elements

No Element Geometrical simplex Value Type of element
1 Plate cover βi 0.257< 0.3 ‘Moderate’ rigid ring
2 Outer cylinder β 0.12 < 0.2 Shell of revolution
4 Inner cylinder β 0.066< 0.2 Shell of revolution
β = h/R;
βi = hi/Rm ;
R – medium radius of the shell;
Rm – medium radius of the ring cover;
h andhi – shell and cover thickness.

It is well known that the classical shell theory is suitable for shells called
‘thin’, having simplex orderh/R ≤ 0.1, but it is valid with reasonable accuracy of
the results for shells called ‘moderate’ (STEELE 1974; IM, 1986; RANJAN, 1980
and HUTCHINS, 1973) having simplex orderh/R ≤ 0.2 . . . 0.33. Several authors
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Fig. 1. The main constructive types of tubular reactors. a. Tubular reactor: 1-plate cover,
2-cylindrical shell, 3-pipe column, 4-spherical closure. b. Double-pipe tubular
reactor: 1-plate cover, 2- outer pipe, 3-inner pipe

(PAVEL, 1998 and HUTCHINS, 1973) have examined, on the basis of the classical
shell theory, some shells having simplex orderh/R ≤ 0.5 and produced reason-
able results, the differences did not exceed 7–12%. In this case, it is necessary
to develop a higher order theory capable of accurately describing the elastic be-
haviour. Most components of these technological structures, under conditions of
axial symmetry, may be considered typical ‘thin or moderate’, having a simplex
order h/R ≤ 0.1 . . . 0.33. As we have presented above, in this situation, it is
possible to make an investigation based on the classical shell theory (IM, 1986;
BERDICHEVSKY, 1992 and ANGHEL, 1997) for stress state and displacements es-
timation. In these conditions, the theoretical analysis represents an approximate
analytical method developed on the basis of the classical shell theory and flexibil-
ity matrix method (the influence coefficients method). The approaches for these
methods are cumbersome, so that, based on previous considerations and concrete
relations established in the literature (CIOCLOV, 1983; CONSTANTINESCU and
TACU, 1979; MELERSKI, 1991, 1992 and ANGHEL, 1996,1998), only the final
equations for internal efforts and stresses, for ‘moderate’ shell of revolution, are
presented inTable 2 and3.

A polynomial function of degree 4 for the distribution of the temperature
along the wall of the outer shell was considered, based on the correlation with
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Table 2. Internal efforts and stresses in a shell of revolution under internal pressure

No. Effort or stress Symbol Formula
1 Contour shearing force Q 0 −0.778p

√
Rh

2 Contour couple M0 0.303p Rh
3 Meridional couple Mx Q0F4/β + M0F2
4 Hoop couple K x µKx

5 Shearing force Tx 2β Q0F1 + 2β2RM0F3

6 Meridional stress σ1 Sx/h ± 6Mx/h2

7 Hoop stress σ2 Tx/h ± 6Kx/h2

D = Eh2/12(1− µ2); k = 1.285/
√

Rh
F1 = e−kx coskx ; F2 = e−kx (coskx + sinkx)

F3 = e−kx (coskx − sinkx); F4 = e−kx sinkx
µ – Poisson ratio

Table 3. Thermal efforts and stresses

Shell of revolution
No. Effort or stress Symbol Formula
1 Contour shear force Q0 6αk3a3DR
2 Contour couple M0 2αk2a2DR
3 Meridional couple Mx αk2DR
4 Shear force Tx 24αa4DR2

Plate cover
6 Radial stress σ3 (−Q0R2

2/r2 − Q0)/(β
2 − 1)h

−Eα
∫

r T (r) dr
+Eα(1/R2

1 − 1/r2)
∫

r T (r) dr/(β2 − 1)

7 Hoop stress σ2 (−Q0R2
2/r2 − Q0)/h(β2 − 1)

+Eα
∫

r T (r)dr/R2

+Eα(1/R2
1 + 1/r2)

∫
r T (r)dr/(β2 − 1)

−EαT (r)

experimental measurements of the temperature (Table6) and well known statements
(CONSTANTINESCU, 1979 and FETT, 1986):

T (x) =
4∑

i=0

ai x
i . (1)

A logarithmic temperature distribution in radial direction has been considered for
plate cover (PAVEL and POPESCU, 1998 and JINESCU, 1984). The liquid phase
reaction is exothermal and the thermal flux is from the inner surface to the outer sur-
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face of the plate cover, so that the distribution of the temperature in radial direction
is:

T (r) = Ti − �T
ln βr

ln β
, (2)

whereβ = Re/Ri ; βr = R2/r ; �T = Ti − Te andTi > Te.
Considering an elastic behaviour of the material, the state of stress in the shell

and in the plate cover may be calculated separately for the internal pressure and
for the temperature gradient and then, using the superposition of effects, the global
thermo-mechanical stress may be calculated.

3. Numerical Analysis

The FEM analysis of the stress distribution in the same equivalent reactor was done.
Due to the axial symmetry of the model, only a half of the axial section was analysed
(Fig. 1b). The numerical analysis was carried out by COSMOS /M Designer II,
using triangular axisymmetric solid elements with six nodes.Fig. 2d shows the
equivalent model for FEM analysis and the boundary conditions. In the FEM
analysis the elements and the nodes employed were 2217 and 5064, respectively.
The principal and von Mises equivalent stresses were calculated.

4. Stress Concentration

In order to evaluate the theoretical effect of stress concentration in the area of
constructive junctions,D (Fig. 2), which are the major structural discontinuity, we
will simplify the analysis taking into consideration plane stress which is close to
the axisymmetric thin shell – the main structure of the tubular reactors. Based on
well-known statements, the area of the elastic and elastoplastic domain of stress
can be satisfactorily approximated using Neuber’s formula (RENERT, 1982):

α2 = ασ · αε, (3)

whereα is the general stress concentration factor considering a linear elastic be-
haviour of the material,ασ is the pure stress concentration factor andαε the pure
strain concentration factor. According to the usual design standards and other state-
ments, we will consider a modified Neuber’s formula taking into consideration a
major theoretical dangerous load, which produces 0.2% maximum plastic strain in
the most stressed zone, named ‘critical area’. On the other hand, for elastic and
elasto-plastic domain of stress and for materials generally used in tubular reactor
construction, having technical yield stressσ0.2 = (250− 450) MPa (Table 4), ac-
cording to RENERT, 1982, the stress concentration factor may be estimated using a
modified and simplified formula:

α = 1.0717
√

ασ (ασ + 2.15), (4)
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Fig. 2. Experimental tubular reactor. a. A sketch of the cross-section of the tubular reac-
tor: 1-plate cover, 2-cylindrical shell, 3-central pipe, 4-spherical closure. b. Actual
location of the strain gauges and thermocouples: 5-oil bath, 6-electric resistance, 7-
electric cables, c. Conventional discretising junction area and replacement by a dis-
crete system of structural elements: 1-plate structural element, 2 and 3-cylindrical
structural element. d. FE model and boundary conditions

where the stress concentration factors,ασ , can be substituted by the Kellog–Win
stress concentration factor,αkw, which can be evaluated using a ‘pressure area’
method (RENERT, 1982). Based on previous statements, the maximum elastic stress
concentration factor, according to PAVEL and POPESCU, 1998 and CIOCLOV, 1983,
may be simplified in the form as:

αkσ = σech max

σnom
, (5)

whereσech max is the von Mises equivalent stress in the junction andσnom is the
nominal normal stress according to the Laplace formula. For an axisymmetric
cylindrical shell this stress is:

σnom = max(σ1, σ2) = pD

2h
. (6)
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For a hasty assessment of the stress concentration factor, a modified formula can
be used (JINESCU, 1984 and RENERT, 1982):

ασ = σ ∗
max

σmax
, (7)

whereσmax is the maximum value for the nominal or equivalent stress in the area
without stress concentration andσ∗

max the effective value for the stress in the critical
area with stress concentration. If the values of stresses are in the elastic domain,
where (σmax andσ ∗

max) < σ0.2, the previous formula may be considered in a simpli-
fied form:

α ∼= ασ = σ ∗
max

σmax
. (8)

For safe operation of the tubular reactor, we can consider the following relationship
between the stress concentration factors:

αkσ ≥ [α, ασ ]. (9)

5. Numerical Applications

The quantitative analysis of the stress distribution and stress concentration will be
realised considering seeding condition and the development of the chemical reac-
tion in steady state conditions, characterised by two working parameters: max-
imum temperatureTmax = 120 ◦C and variable internal pressurep = 0.4 . . .
0.8 MPa (CARLOGANU, 1980). If the reaction runs out of control (for example dis-
turbances in the cooling system) and the working parameters exceed 200. . . 240◦C
for temperature and 1.6 MPa for internal pressure, the chemical reaction runs away
with a strong and quick increase of the pressure over 1.6 MPa. Therefore we con-
sidered these parameters as limiting values for the normal working conditions in the
reactor analysis. Based on experimental measurements of the temperature using
thermocouples, with±1 ◦C accuracy, the temperature distribution in the shell and
in the plate cover was calculated usingEqs. (1) and (2). The polynomial coefficients
for an algebraic polynomial of degree four are presented inTable5, for two cases.

Analytical, numerical (FEM) and experimental results for the state of stress
and the stress concentrations, corresponding to case 1, 3 and 6 only (Table 6)
are presented graphically and in tables. For simplicity, the results are presented
only for the von Mises stresses. AnalysingFigs. 3 and 4 we can state that the
most stressed area is the inner surface of the welding joint between the plate cover
and cylindrical shell. In steady-state conditions the maximum equivalent stress is
σmax = (50− 70) MPa, but this stress increases to(54− 76) MPa at the limit of
stable operation (Table6), so that the state of stress is still under the allowable stress
of the materialσa = 150 MPa.

According to our expectations and other assessments (ROSE, 1962; CIOCLOV,
1983 and MELERSKI, 1991, 1992), the maximum analytical nominal and equivalent
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Fig. 3. The distribution of the equivalent stresses in junctionD. a. FE von Mises stresses
and deformed shape around the critical junction case 3. b. Analytical results along
the outer surface: A1 - case 1, A2 - case 3; Finite element method: M1 - case 1,
M2 - case 3; Experimental: E1 - case 1, E2 - case 3

Fig. 4. Equivalent stresses in junctionD for stationary loading conditions – case 6 (Table 6).
a. FE von Mises stresses and deformed shape around the critical junction, b. A -
analytical results along the outer surface, M - finite element method
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Fig. 5. Equivalent stresses due to temperature only, in junctionD. a. FE von Mises stresses
and deformed shape around the critical junction case 3. b. Equivalent stresses along
the outer surface due to temperature only (Table 6): Analytical results: A1 - case
1, A2 - case 3; Finite element method: M1 - case 1, M2 - case 3; Experimental: E1
- case 1, E2 - case 3

Fig. 6. The variation of the equivalent stresses along the outer surface of junction D.
a. Equivalent stresses in steady loading conditions - case 3 (Table 6): A1, M1-
analytical and FEM values due to pressure; A2, M2 - analytical and FEM results
due to temperature. b. FEM equivalent stresses done by distinct loads: M1p,
M2p, M3p, - values from pressure and M1t, M2t, M3t, - values from temperature,
corresponding to cases 1, 2 and 3 (Table 6)
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stresses in the junction exceed numerical (FEM) or experimental results by more
than 30%–50%. A first agreed and well known justification is the assumption
that the connections between structural elements at their mid planes lead to an
overestimation of the shell bending moments and an underestimation of the plate
moments.Fig. 5 shows the pure thermoelastic stress distribution, when the internal
pressure is zero, marking the same joint with maximum equivalent stress as inFig.3.
According to the values of the thermoelastic equivalent stresses, we can assume that,
for the welding joint between the plate cover and cylindrical shell of the tubular
reactor, the temperature gradient has a major role in the stress distribution. The
analysis ofFig. 6 turns into certainty the fact that for this modelled tubular reactor
the thermal gradient has the major weight in the stress state in the welding joint
between the plate cover and cylindrical shell. In the limiting operation conditions
(case 6 –Table 6), the maximum equivalent stress is less than in transitory reaction
conditions (case 5 –Table 6) – possibly due to zero temperature gradient along the
cylindrical shell. As the maximum thermoelastic equivalent stress,σt max, due to
temperature gradient,�T , is localised in the welding joint (Fig.2b), the maximum
equivalent stress,σe max, due to internal pressure,p, reaches another local maximum
in the tubular reactor. This value does not exceed the maximum value in the welding
joint. AnalysingFigs. 3–6 we can conclude that the length of the critical stress
concentration zone increases with the internal pressure,p, and temperature gradient,
�T . Due to the high rigidity of the plate cover compared to the cylindrical shell
rigidity, the stress concentration factor will be calculated using the nominal stress
in the shell.

Based on the modelled values of the stresses, the stress concentration effects
identified in the junction between the plate cover and cylindrical shell are strong
(Table 7), even if the proper values of the stress are relatively small. Because the
maximum value of the stress concentration factor respects the inequality (9) and the
important consolidation due to the dimensions of the plate cover, the actual limits
of the maximum stress level are still in the linear elastic domain, offering a good
reserve of load-carrying capacity.

Table 4. Material properties

Element Material∗ σ0.2 [MPa] σr [MPa] KCU [J/cm2] σa [MPa]
Shell OLT 45 250 440–550 40 150. . . 160
Plate cover R 44 250 430–540 47 150. . . 160
∗ Proceeding from STAS 8183–80 and 8183/1–80 at ambient temperature;
σa = min{σ0.2/cc; σr/cr } allowable stress at working temperature;
cc = 1.5 safety factor for technical yield stress;cr = 2.4 safety factor for breaking strength,
proceeding from JINESCU, 1984 and PAVEL, 1998.
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Table 5. The polynomial coefficients

Case a0 a1 a2 a3 a4
1 −8.526631e − 10 1.569466e − 06 9.878861e − 04 2.143444e − 01 6.399971e + 01
3 1.718707e − 09 2.448055e − 06 1.302311e − 03 2.705599e − 01 8.699941e + 01

Table 6. Modelling parameters for equivalent tubular reactor

Case No. p
Experimental temperature measured

by thermocouples [◦C]
[MPa] T1 T2 T3 T4 T5 T6

1 0.4 45 64 76 76 68 66
2 0.6 59 78 92 92 87 80
3 0.8 63 87 102 104 97 91
4 1.0 70 92 109 110 103 96
5 1.2 77 96 114 114 105 98
6∗ 1.6 200 220 223 223 223 223

∗ Conventional values considered as limit for a steady running of the reactor.
All other values of the temperature were experimentally determined on the model of the
equivalent tubular reactor (Fig. 2a).

Table 7. Stress concentration factors

Case σ ∗∗
e max σnom α∗∗∗

kw αkσ ασ α

[MPa] [MPa]
3∗ 38.9 6.72 1.90 5.8 1.71 2.96
6∗ 51.4 13.44 1.90 3.8 3.10 2.96

∗ according toTable 4;
∗∗ results proceeding fromFigs. 3–4;
∗∗∗ analytical results according to PAVEL, 1998.

6. Experimental Studies

The aim of the experiments was to determine the state of stress corresponding
to various loading cases in some characteristic locations and to supply numerical
values for a primary validation of analytical and numerical (FEM) results. All
experiments were done on an equivalent reactor (Fig.2a andb) considering plane
state of stress, in the following conditions:

• strain gauges with thermal compensation between 120− 160 ◦C, type
3/120XY11, Hottinger Baldwin Messtechnik, withR = 120 � (and k =
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1.98± %1, glued in the two principal, hoop and meridional, directions using
thermal resin;

• a strain gauge apparatus having 6 channels, type N-2302 IEMI Bucharest,
carrying frequency 5000 Hz, internal calibrating device, analog indicator with
0.3–0.5% accuracy;

• thermocouples with±1◦C accuracy for measuring temperature in six points,
T1, . . . , T6 (Fig. 2a).

In order to obtain different values for the internal pressure,p, and tempera-
ture,T , the reactor was filled with oil and an electric resistance was placed in the
central pipe (Fig. 2b). The electric resistance was controlled using an electronic
thermoregulator coupled to the six thermocouples,T1, . . . , T6, having±1 ◦C accu-
racy. Using the experimental principal strains,ε1 andε2, the principal stressesσ1,
σ2 and von Mises stresses were calculated.Figs.3 and4 show the analytical, FEM
and experimental equivalent stresses.

7. Conclusions

The first important conclusion is a reasonable correlation between analytical, nu-
merical (FEM) and experimental results. Excepting the inaccuracies between the
maximum analytical stresses and numerical (FEM) results, in the junctionD, the
established average differences between the three methods,±(2 − 12)%, are usu-
ally accepted. Numerical and experimental results for the usual operation of the
equivalent tubular reactor for ethoxylated products show a state of stress under the
allowable stress of the material and an important reserve of load-carrying capac-
ity. Taking into consideration the duration of the chemical reaction, which varies
between 45 and 75 minutes (CARLOGANU, 1980), during the working life of the
real tubular reactor (9–12 years) this loading due to internal pressure and temper-
ature gradient may be considered as oligocyclical, the number of loading cycles
is N < 105. The variable loading establishes a state of stress under the allowable
stress of the materialσa(σc) so it will lead to a favourable consequence, the increase
of the fatigue endurance limit (PAVEL 1998). This favourable consequence may
determine a simultaneous dropping of the corrosion resistance.

Based on these comparative analyses of the mechanical stress due to internal
pressure and pure thermoelastic stress in the welded junction plate between cover
and cylindrical shell (Fig. 2b, 4–5) we can conclude the predominant effect of the
thermoelastic stress.

Based on the reasonable correlation between analytical, numerical (FEM) and
experimental results and the high cost of materials – strain gauges, glue and strain
gauge measuring instrument for experiments at high temperature – we can consider
the numerical analysis as an alternative useful method for the mechanical design of
these reactors.
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Appendix

Other notations:
h – thickness;
R – radius;
Rm, Rmax, Rmin – average, maximum, and minimum radius;
β = Rmax/Rmin – geometrical simplex;
L – length of structural element.
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