DIE PARAMETER DER QUANTENCHEMISCHEN RECHNUNGSMETHODE VON DEL RE.II.

DIE PARAMETER DER C-C BINDUNG

Von

M. T. VÁNDORFFY

Lehrstuhl für Anorganische Chemie, Technische Universität, Budapest Vorgelegt von Doz., Dr. J. NAGY (Eingegangen am 9. December 1975)

Der erste Teil dieser Mitteilungs-Serie [1] beschäftigte sich mit den C-H-Bindungsparametern der quantenchemischen Methode von Del Re. Es wurde die Elektronendichteverteilung des Methanmoleküls, die den Grund des ganzen Parametersystems darstellt, festgesetzt, weiterhin die Werte der C-H-Bindungsparameter angegeben, mit deren Hilfe die partielle Ladung 0,012 und 0,015 des Wasserstoffatoms im Methanmolekül berechnet werden kann. Das Ziel der gegenwärtigen Mitteilung ist, jene C-C-Bindungsparameter zu bestimmen, die das im vorhergehenden [1] bestimmte Parametersystem ergänzend, geeignet sind, die Ladungsverteilung der Alkane zu berechnen, und partielle Ladungswerte zu liefern, die der bekannten induktiven Wirkung der Alkylgruppe entsprechen.

Zur Bestimmung der optimalen Parameter wurde die bekannte Korrelation zwischen den NMR chemischen Verschiebungen ($\tau_{\rm H}$, $\delta_{\rm C^{13}}$) und den partiellen Ladungen angewandt. Die Werte der NMR chemischen Verschiebungen sind in jenem Fall in erster Linie von der Ladung des Atoms abhängig, wenn nichts die freie Rotation hindert, wenn das Molekül symmetrisch ist und keine anderen anisotropen Effekte wirken [2, 3]. In diesem Falle stellt die Abnahme der NMR-Signale die Verminderung der Beschattung des Atoms, d. h. die Steigerung der positiven Ladung dar. Für die Bestimmung der C—C-Bindungsparameter mußten darum solche einfache Alkanmoleküle als Modellverbindungen ausgewählt werden, die den erwähnten Bedingungen entsprechen. Die bei der Parameter-Bestimmung angewandten experimentellen NMR chemischen Verschiebungen ($\tau_{\rm H}$, $\delta_{\rm C^{13}}$), die Bezeichnungen der Moleküle und der einzelnen Atome enthält Tab. 1.

Neben den, in der vorigen Mitteilung [1] angegebenen $\gamma_{C[H]}$ - und $\gamma_{H[C]}$ -Induktivparametern ist zu den Ladungsverteilungsrechnungen der Alkane die Auswahl der geeigneten $\gamma_{C[C]}$ - und ε_{CC} -Resonanzparameter erforderlich. Für den Wert des ε_{CC} -Resonanzparameters wurde von Del Re [5] der Wert 1,00 empfohlen, der auch für unsere Rechnungen angenommen wurde. Doch zur Prüfung, wie die Änderung des ε_{CC} -Wertes die berechneten Elektronen-

2 Periodica Polytechnica CH. 21/2.

Tabelle 1

		01			
Verbindung	Zeichen	₹ <u>H</u> 1	₹ <u>H</u> 2	ۇC ¹ 3	0C23
CH₄	I.	9,77		195,8	
CH ₃ CH ₃	II.	9,14		187,3	
ĊH ₃ ĊH ₂ CH ₃	III.	9,09	8,55	178,1	177,6
¹ CH ₃ CH ₂ CH ₂ CH ₃	IV.	9,10	8,77	180,5	168,7
¹ CH ₃ ² CH ₂ CH ₂ CH ₂ CH ₃	v.	9,11	8,74		
$(\dot{\tilde{C}}H_3)_3\dot{\tilde{C}}H$	VI.	9,12	8,23	169,4	168,5
$(\overset{1}{\mathrm{CH}}_{3})_{2}\overset{2}{\mathrm{CHCH}}(\mathrm{CH}_{3})_{2}$	VII.	9,18	8,78		
c-Hexan C_6H_{12}	VIII.		8,56		
$(\overset{1}{\mathrm{C}}\mathrm{H}_{3})_{4}\overset{2}{\mathrm{C}}$	IX.	9,07		163,0	167,0
			1	1	

Die NMR $\tau_{\rm H}$ und $\delta_{\rm C13}$ -Signale [2,3] der Modellverbindungen bei der Bestimmung der C-H und C-C-Bindungsparameter

verteilung beeinflußt, wurden die Rechnungen auch mit dem Wert $\varepsilon_{CC} = 0,75$ ausgeführt.

Zur Auswahl des VCICI-Wertes wurde die Korrelation zwischen den NMR τ_{H} -Signalen und der q_H-partiellen Ladungen des Wasserstoffatoms des Moleküls, weiterhin die Korrelation zwischen den NMR δ_{C13} -Signalen und den q_C-partiellen Ladungen des Kohlenstoffatoms des Moleküls angewandt. Die Korrelation zwischen den NMR τ_{H} -Signalen und den q_H-partiellen Ladungen ist zur Auswahl der Parameter allein nicht genügend. Die Änderung der NMR $\tau_{\rm H}$ -Signale bestimmt zwar die Tendenz der Änderung der q_H-Ladungen der Alkane, doch gibt sie keinen Hinweis in bezug auf die Größe der Änderung. Darum kommt es vor, daß solche Parametersysteme, die der $q_H - \tau_H$ -Korrelation entsprechende Ergebnisse ergeben, bei Verbindungen, die mehrere Kohlenstoffatome enthalten, einmal für die Ladungswerte des einen, das anderemal für die Ladungswerte des anderen Kohlenstoffatoms größere Werte geben. Zum Beispiel sind in Tab. 2. mit verschiedenen Parametersystemen berechnete Ladungsverteilungswerte des Propans vorgelegt. Wie aus den Werten der Tabelle ersichtlich ist, zeigt die qHI-Ladung des Wasserstoffatoms der Methylgruppe, bezugsweise die q_{H2}-Ladung des Wasserstoffatoms der Methylengruppe eine den $\tau_{\rm H}$ -Signalen entsprechende Änderung, die Q_{C1C2}-Bindungspolaritäten sind ebenfalls gleichwertig und entsprechen den mit anderen Methoden [4] berechneten Werten, jedoch sind die q_{C1}-Ladungen des Kohlenstoffatoms der Methylgruppe, abhängig von dem gewählten Parametersystem, bald größer, bald gleichwertig, bald kleiner, als die q_{C2}-Ladungen des Kohlenstoffatoms der Methylengruppe. Die Reihen-

L	aaungsvertet	lungen de	s Propanm	olekuls mil	verschiedener	l Parametersy:	stemen
′H[C]	γc[H]	7C[C]	dH1	₫Ħ ⋾	Q _{C¹C²}	qC1	dC r
0,4	-0,2	0,1	0,019	0,021	0,0044	-0,0515	-0,0515
0,43	-0,2	0,1	0,017	0,020	0,0045	-0,0479	-0,0490
0,7	0,1	0,15	0,017	0,018	0,0044	-0,0457	-0,0449
			$\delta^{\circ}_{ m C}=0.07$	$\varepsilon_{CH} =$	$\epsilon_{\rm CC} = 1,00$		•

Tabelle 2

Ladungsverteilungen des Propanmoleküls mit verschiedenen Parametersysteme

folge der Ladungen der Kohlenstoffatome kann aber entschieden werden, wenn die Korrelation zwischen den NMR δ_{C13} -chemischen Verschiebungen und den q_c-partiellen Ladungen berücksichtigt wird.

Bei der Auswahl des $\gamma_{C[C]}$ -Induktivparameters wurde erstens sein Einfluß auf die NMR τ_{H} -, $\delta_{C^{13}}$ -Korrelationsgerade untersucht, danach wurde der optimale $\gamma_{C[C]}$ -Wert mit Hilfe der Variationsrechnungen an der Propanund Neopentanmoleküle angenähert, und zuletzt wurden nach der Bestimmung der Gleichung der $q_H - \tau_H$ -Regressionsgeraden, die regressierten q_H -Werte berechnet und mit der Vergleichung der regressierten und berechneten Ladungen das optimale vollständige Parametersystem ausgewählt.

1. Der Einfluß der Änderung des $\gamma_{C[C]}$ -Induktivparameters auf die Korrelation zwischen den Ladungen und den NMR τ_{H} - bzw. δc_{13} -Signalen.

Die Ladungsverteilung der ausgewählten Alkanmoleküle (Tab. 1) wurde bei gleichen $\gamma_{C[H]}$, $\gamma_{H[C]}$ - und verschiedenen $\gamma_{C[C]}$ -Werten berechnet. Das Ergebnis der Variationen, die $q_H - \tau_H$ bzw. $q_C - \delta_{C13}$ -Korrelationen sind in Abb. 1 dargestellt. Aus der Abbildung ist ersichtlich, daß die Änderung des $\gamma_{C[C]}$ -Wertes die Richtungstangente der $q_H - \tau_H$ -Korrelationsgerade, und im Falle der $q_C - \delta_{C13}$ -Korrelation die Streuung der Wertpunkte in großem Maße beeinflußt. Bei unrichtig gewählten $\gamma_{C[C]}$ -Werten liegen die Ladungspunkte der nicht Methylgruppen (CH₂, CH, C) von der Korrelationsgeraden weit ab, obgleich zwischen den q_{C1} -Werten der Methylgruppen und den δ_{C13} -Werten immer eine lineare Korrelation besteht.

2. Die Bestimmung des Gebietes der optimalen $\gamma_{C[C]}$ -Werte. Für die Auswahl des Gebietes der optimalen $\gamma_{C[C]}$ -Werte wurde die Ladungsverteilung der Propan- und Neopentanmoleküle mit gleichen $\gamma_{C[H]}$, $\gamma_{H[C]}$ -Wertpaaren und verschiedenen $\gamma_{C[C]}$ -Werten berechnet. Das Ergebnis der Variationsrechnungen ist in Abb. 2. dargestellt. In der Abbildung wurden die berechneten q_{C1} und q_{C2} Werte in Funktion der $\gamma_{C[C]}$ -Werte angegeben. Die q_{C1} — $\gamma_{C[C]}$ bzw. q_{C2} — $\gamma_{C[C]}$ -Korrelationen gaben je eine Kurve, die sich in einem Punkte schneiden. In der einen Richtung vom Schnittpunkt ist die q_{C1} -Ladung größer als die q_{C2} -Ladung, hingegen in der anderen Richtung ist eben umgekehrt, die q_{C2} -Ladung größer als die q_{c1} -Ladung. Die Schnittpunkte der Kurven fallen bei den Propan- bzw. Neopentanmolekülen nicht zusammen und zwischen den beiden Schnittpunkten befindet sich ein Bereich, wo bei dem Propanmolekül $q_{C1} < q_{C2}$ und bei dem Neopentanmolekül $q_{C1} > q_{C2}$ ist. Nachdem

Abb. 2. Korrelationen zwischen den q_{C} - und $\gamma_{C[C]}$ -Werten der Propan- und Neopentanmoleküle. q_{H} (Methan) = 0,015

die experimentellen NMR δ_{C13} -Signale bei diesen zwei Molekülen diese Ladungsreihenfolge zeigen, müssen die optimalen $\gamma_{C[C]}$ -Werte in diesem Bereich gesucht werden.

In Abb. 2 sind einige Gebiete, die den optimalen $\gamma_{C[C]}$ -Wert enthalten, dargestellt, bei $\delta_{C}^{\circ} = 0.07$ und $q_{H}(Methan) = 0.015$ festgesetzten Werten. Diese Gebiete wurden auch unter anderen Umständen bestimmt. Die Ergebnisse sind in Tab. 3. zusammengefaßt. Die Tab. III enthält außer den δ_{C}° -

Tabelle 3

δ°C γC[H]	0,2	0,1 0,15		0,16	0,2	
0,06 0,07 0,08	·	$\begin{array}{c} 0,138-0,152\\ 0,13 \ -0,145\\ 0,125-0,14\end{array}$	0,165-0,177 0,162-0,17 0,162-0,167	0,172-0,177 0,170-0,175	0,206 0,207 0,202-0,205	

Die zu der Alkanrechnungen geeigneten $\gamma_{C[C]}$ -Gebiete

 $q_{H}(Methan) = +0,012$

δ°C YC[H]	0,2	0,1	0,15	0,16	0,2
0,06 0,07 0,08 0,09	0,0650,12 0,0380,085	$\begin{array}{r} 0,15 & -0,17 \\ 0,137 - 0,155 \\ 0,133 - 0,148 \\ 0,13 & -0,141 \end{array}$	0,17 -0,18 0,165-0,172	0,176—0,183 0,174—0,181	$\begin{array}{c} 0,208-0,212\\ 0,206-0,208\\ 0,205-0,208\\ 0,203-0,206\end{array}$

 $q_{\rm H}$ (Methan) = +0,015

Werten nur die $\gamma_{C[H]}$ -Werte, die $\gamma_{H[C]}$ -Werte sind in jedem Falle die aufgrund des Methans bestimmten optimalen Werte (s. [1] bzw. in dieser Mitteilung Tab. 4).

Aus Abb. 2 und Tab. 3 sind für die Gebiete, die den optimalen $\gamma_{C[C]}$ -Wert enthalten, die folgenden ersichtlich: Wenn der $\gamma_{C[H]}$ -Wert zunimmt, so verengert sich das Gebiet, das den optimalen $\gamma_{C[C]}$ -Wert enthält, in solchem Maße, daß sich zu den von Del Re empfohlenen $\gamma_{H[C]} = 0.4$; $\gamma_{C[H]} = 0.3$ Induktiv-Parameter-Werten kein solcher $\gamma_{C[C]}$ -Wert mehr finden läßt. mit welchem die Ladungsverteilung der Propan- und Neopentanmoleküle der echten Ladungsverteilung entsprechende Ergebnisse berechnet werden könnten.

3: Die Auswahl des optimalen C-H, C-C Bindungsparametersystems.

Innerhalb der im vorhergehenden angegebenen optimalen $\gamma_{C[C]}$ -Gebiete, kann der einzige $\gamma_{C[C]}$ -Wert, welcher bei der Berechnung der Alkane die besten Ergebnisse gibt, mit Variationsrechnungen ausgewählt werden. Für den besten Wert wurde jener Wert angenommen, mit dem die berechneten Ladungswerte bei der q_C — δ_{C13} -Korrelation die kleinsten Streuungen gaben. In Abb. 3 sind einige, mit den als beste gefundenen $\gamma_{C[C]}$ -Werten berechnete Ladungsverteilungen τ_H — q_H bzw. deren δ_{C13} — q_C Korrelationen dargestellt. Die ermittelten C—H, C—C Bindungsparametersysteme sind in Tab. 4, die berechneten Wertpunkte der Korrelationsgeraden gemeinsam mit den Rechnungsergebnissen aller ermittelten Parameter, in Tab. 5 zusammengefaßt.

Die Regressionsgeraden in Abb. 3 ebenso wie die Regressionsgeraden der anderen Parametersysteme weichen voneinander nur wenig ab, weshalb man mit ihrer Hilfe das einzige Parametersystem nicht auswählen kann, das bei den Ladungsverteilungsrechnungen der Alkane die besten Ergebnisse liefert. Darum wurden die allgemeinen Gleichungen der q_H — τ_H Regressionsgeraden bestimmt, mit deren Hilfe die regressierten q_H -Ladungen

			ε _{cc} =	= 1,00				
9 ^H Methan	0,012	0,012	0,015	0,015	0,012	0,012	0,015	0,015
δ _c	0,07	0,08	0,07	0,08	0,07	0,08	0,07	0,08
γc[H]	0,1	0,1	0,1	0,1	0,15	0,15	0,15	0,15
γн[с]	0,76	0,8	0,7	0,74	0,83	0,85	0,77	0,81
γc[c]	0,135	0,13	0,14	0,139	0,166	0,165	0,172	0,168
q ^H _{Methan}	0,012	0,012	0,015	0,015	0,012	0,012	0,015	0,015
δ _Ĉ	0,07	0,08	0,07	0,08	0,07	0,08	0,07	0,08
Ус]н]	0,16	0,16	0,16	0,16	0,2	0,2	0,2	0,2
γн[с]	0,84	0,87	0,79	0,82	0,91	0,92	0,87	0,89
γc[c]	0,173	0,171	0,178	0,175	0,204	0,204	0,206	0,205
			ε _{cc} =	= 0,75				
q^{H}_{Methan}	0,012	0,012	0,015	0,015	0,012	0,012	0,015	0,015
δ _c	0,07	0,08	0,07	0,08	0,07	0,08	0,07	0,08
γс[н]	0,15	0,15	0,15	0,15	0,16	0,16	0,16	0,16
γн[с]	0,83	0,85	0,77	0,81	0,84	0,87	0,79	0,82
%c[c]	0,156	0,155	0,158	0,157	0,164	0,163	0,165	0,165
	1							

Tabelle 4

Die zu den Alkanrechnungen bestimmten C-H, C-C-Bindungsparameter

Baraiabaun-		y Werte			<i>a</i> *	đe:	() () () () () () () () () () () () () (Q _{C¹C²}
Dezelemning	YH[C]	YC[H]	7C[C]	ЧĦ1	Ч₩≭	ЧСт	40*	, ,
I. _.	0,43 0,70 0,77 0,79 0,87	$-0.2 \\ 0,1 \\ 0,15 \\ 0,16 \\ 0,20$	$\begin{array}{c} 0,05\\ 0,14\\ 0,172\\ 0,178\\ 0,206\end{array}$	0,0148 0,0146 0,0150 0,0149 0,0150		$ \begin{array}{c} -0.0594 \\ -0.0583 \\ -0.0599 \\ -0.0595 \\ -0.0599 \end{array} $		
II.	0,43 0,7 0,77 0,79 0,87	$-0,2 \\ 0,1 \\ 0,15 \\ 0,16 \\ 0,20$	$\begin{array}{c} 0,05\\ 0,14\\ 0,172\\ 0,178\\ 0,206\end{array}$	0,0165 0,0162 0,0167 0,0166 0,0167		$ \begin{array}{c} -0.0495 \\ -0.0485 \\ -0.0502 \\ -0.0498 \\ -0.0502 \end{array} $		
III.	0,43 0,70 0,77 0,79 0,87	$-0,2 \\ 0,1 \\ 0,15 \\ 0,16 \\ 0,20$	$0,05 \\ 0,14 \\ 0,172 \\ 0,178 \\ 0,206$	0,0166 0,0164 0,0171 0,0170 0,0172	0,0184 0,0175 0,0181 0,0179 0,0179	$ \begin{array}{r} -0.0465 \\ -0.0454 \\ -0.0468 \\ -0.0464 \\ -0.0467 \end{array} $	$-0,0434 \\ -0,0428 \\ -0,0451 \\ -0,0449 \\ -0,0456$	0,0032 0,0038 0,0045 0,0045 0,0045
IV.	0,43 0,70 0,77 0,79 0,87	$-0,2 \\ 0,1 \\ 0,15 \\ 0,16 \\ 0,20$	$\begin{array}{c} 0,05\\ 0,14\\ 0,172\\ 0,178\\ 0,206\end{array}$	$\begin{array}{c} 0,0166\\ 0,0164\\ 0,0172\\ 0,0171\\ 0,0174\end{array}$	0,0185 0,0178 0,0184 0,0183 0,0182	$ \begin{vmatrix} -0.0464 \\ -0.0449 \\ -0.0460 \\ -0.0456 \\ -0.0456 \end{vmatrix} $	$\begin{array}{c} -0,0404 \\ -0,0400 \\ -0,0423 \\ -0,0421 \\ -0,0430 \end{array}$	0,0034 0,0045 0,0055 0,0056 0,0066
v.	0,43 0,70 0,77 0,79 0,87	$\begin{array}{c} -0.2 \\ 0.1 \\ 0.15 \\ 0.16 \\ 0.20 \end{array}$	$0,05 \\ 0,14 \\ 0,172 \\ 0,178 \\ 0,206$	0,0166 0,0164 0,0172 0,0171 0,0174	0,0185 0,0178 0,0185 0,0183 0,0184	$ \begin{vmatrix} -0,0464 \\ -0,0448 \\ -0,0458 \\ -0,0454 \\ -0,0452 \end{vmatrix} $	$\begin{array}{r} -0.0403 \\ -0.0396 \\ -0.0417 \\ -0.0414 \\ -0.0421 \end{array}$	0,0034 0,0046 0,0057 0,0059 0,0071
VI.	0,43 0,70 0,77 0,79 0,87	$-0,2 \\ 0,1 \\ 0,15 \\ 0,16 \\ 0,20$	0,05 0,14 0,172 0,178 0,206	0,0167 0,0166 0,0174 0,0173 0,0176	0,0207 0,0188 0,0192 0,0190 0,0186	$\begin{array}{c} -0.0430 \\ -0.0426 \\ -0.0441 \\ -0.0438 \\ -0.0443 \end{array}$	$\begin{array}{r} -0.0417 \\ -0.0405 \\ -0.0435 \\ -0.0432 \\ -0.0438 \end{array}$	0,0070 0,0072 0,0081 0,0081 0,0084
VII.	0,43 0,70 0,77 0,79 0,87	$-0.2 \\ 0.1 \\ 0.15 \\ 0.16 \\ 0.20$	0,05 0,14 0,172 0,178 0,206	0,0167 0,0167 0,0175 0,0174 0,0178	0,0209 0,0192 0,0198 0,0195 0,0191	$\begin{array}{c} -0.0427 \\ -0.0417 \\ -0.0428 \\ -0.0425 \\ -0.0427 \end{array}$	$\begin{array}{c} -0,0355\\ -0,0360\\ -0,0392\\ -0,0391\\ -0,0403 \end{array}$	0,0073 0,0084 0,0097 0,0098 0,0106
VIII.	0,43 0,70 0,77 0,79 0,87	$-0,2 \\ 0,1 \\ 0,15 \\ 0,16 \\ 0,20$	0,05 0,14 0,172 0,178 0,206		0,0186 0,0181 0,0189 0,0188 0,0190		$\begin{array}{c} -0.0372 \\ -0.0362 \\ -0.0379 \\ -0.0376 \\ -0.0379 \end{array}$	
IX.	0,43 0,70 0,77 0,79 0,87	-0,2 0,1 0,15 0,16 0,20	0,05 0,14 0,172 0,178 0,206	0,0168 0,0168 0,0176 0,0175 0,0178		$ \begin{array}{r} -0.0389 \\ -0.0401 \\ -0.0418 \\ -0.0416 \\ -0.0425 \\ \end{array} $	$\begin{array}{r} -0,0458\\ -0,0413\\ -0,0443\\ -0,0439\\ -0,0436\end{array}$	0,0114 0,0103 0,0111 0,0110 0,0109

Tabelle 5/b

Berechnete	Ladungsverteilungen:	$\delta_{\rm C} = 0.07;$	$q_{\rm H}(Met)$	han) =	0,012
------------	----------------------	--------------------------	------------------	--------	-------

Bezeichnung		y Werte			<i>(</i> -	(Ter)	(Tak	Qcicz
Bezeichnung	γH[C]	γC[H]	%C[C]	4Hr	4H2	4Cr	4C2	QC1C2
I.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	0,135 0,166 0,173 0,204	0,0121 0,0119 0,0121 0,0116		$ \begin{array}{c c}0,0483 \\0,0474 \\0,0484 \\0,0463 \end{array} $		
11.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	$0,135 \\ 0,166 \\ 0,173 \\ 0,204$	0,0132 0,0129 0,0132 0,0126		0,0396 0,0388 0,0396 0,0378		
111.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	$0,135 \\ 0,166 \\ 0,173 \\ 0,204$	0,0134 0,0131 0,0134 0,0129	0,0142 0,0137 0,0140 0,0132	0,0367 0,0359 0,0368 0,0349	0,0350 0,0345 0,0352 0,0339	0,0033 0,0035 0,0036 0,0037
IV.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	0,135 0,166 0,173 0,204	0,0134 0,0132 0,0135 0,0130	0,0143 0,0139 0,0142 0,0134	0,0363 0,0353 0,0361 0,0339	0,0325 0,0321 0,0329 0,0318	0,0039 0,0043 0,0045 0,0050
v.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	0,135 0,166 0,173 0,204	0,0134 0,0132 0,0135 0,0130	0,0143 0,0140 0,0143 0,0135	$ \begin{vmatrix} -0,0362 \\ -0,0351 \\ -0,0359 \\ -0,0336 \end{vmatrix} $	-0,0321 -0,0316 -0,0323 -0,0311	0,0040 0,0045 0,0047 0,0054
VI.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	0,135 0,166 0,173 0,204	0,0135 0,0133 0,0136 0,0131	0,0150 0,0144 0,0146 0,0136	$ \begin{vmatrix} -0,0342 \\ -0,0337 \\ -0,0346 \\ -0,0329 \end{vmatrix} $	$\begin{array}{c} -0,0338\\ -0,0331\\ -0,0336\\ -0,0324\end{array}$	0,0063 0,0062 0,0063 0,0062
VII.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	$0,135 \\ 0,166 \\ 0,173 \\ 0,204$	0,0136 0,0134 0,0137 0,0132	0,0153 0,0146 0,0149 0,0139	$\begin{array}{c} -0.0334 \\ -0.0327 \\ -0.0335 \\ -0.0317 \end{array}$	0,0297 0,0296 0,0302 0,0296	0,0072 0,0075 0,0076 0,0079
VIII.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	0,135 0,166 0,173 0,204		0,0145 0,0142 0,0145 0,0138		0,0291 0,0284 0,0291 0,0276	
IX.	0,76 0,83 0,84 0,91	0,1 0,15 0,16 0,2	0,135 0,166 0,173 0,204	0,0136 0,0134 0,0138 0,0132		0,0321 0,0319 0,0328 0,0315	0,0354 0,0338 0,0340 0,0321	0,0089 0,0084 0,0085 0,0080

Tabelle 5/c

•								
Bezeichnung		γ Werte		ជាងា	् प्रमः	qC1	get.	Octor
	γH[C]	YC[H]	7C[C]				10	
I.	0,74 0,81 0,82 0,89	0,1 0,15 0,16 0,2	$0,139 \\ 0,168 \\ 0,175 \\ 0,205$	0,0148 0,0148 0,0152 0,0153		0,0591 0,0591 0,0606 0,0611		
II.	0,74 0,81 0,82 0,89	0,1 0,15 0,16 0,2	0,139 0,168 0,175 0,205	0,0163 0,0163 0,0167 0,0169		$ \begin{array}{c}0,0488 \\0,0488 \\0,0501 \\0,0506 \end{array} $		
III.	0,74 0,81 0,82 0,89	0,1 0,15 0,16 0,2	0,139 0,168 0,175 0,205	0,0165 0,0166 0,0170 0,0173	0,0176 0,0174 0,0178 0,0178	$ \begin{vmatrix} -0,0454 \\ -0,0453 \\ -0,0465 \\ -0,0469 \end{vmatrix} $	$ \begin{array}{r} -0.0435 \\ -0.0435 \\ -0.0448 \\ -0.0457 \\ \end{array} $	0,0042 0,0044 0,0045 0,0050
IV.	0,74 0,81 0,82 0,89	$\begin{array}{c} 0,1\\ 0,15\\ 0,16\\ 0,2 \end{array}$	0,139 0,168 0,175 0,205	0,0166 0,0166 0,0171 0,0174	0,0178 0,0176 0,0181 0,0182	$ \begin{vmatrix} -0,0448 \\ -0,0445 \\ -0,0457 \\ -0,0457 \end{vmatrix} $	-0,0405-0,0407-0,0419-0,0430	0,0049 0,0054 0,0056 0,0066
V.	0,74 0,81 0,82 0,89	0,1 0,15 0,16 0,2	0,139 0,168 0,175 0,205	0,0166 0,0166 0,0171 0,0175	0,0178 0,0177 0,0182 0,0183	-0,0447-0,0443-0,0454-0,0452	$-0,0400 \\ -0,0400 \\ -0,0412 \\ -0,0420$	0,0050 0,0056 0,0059 0,0072
VI.	0,74 0,81 0,82 0,89	0,1 0,15 0,16 0,2	0,139 0,168 0,175 0,205	0,0167 0,0168 0,0173 0,0176	0,0188 0,0183 0,0187 0,0185	$\begin{array}{ c c c c c }\hline & -& 0,0423 \\ & -& 0,0425 \\ & -& 0,0438 \\ & -& 0,0443 \end{array}$	$ \begin{vmatrix} -0,0423 \\ -0,0418 \\ -0,0429 \\ -0,0437 \end{vmatrix} $	0,0078 0,0079 0,0081 0,0084
VII.	0,74 0,81 0,82 0,89	$\begin{array}{c c} 0,1\\ 0,15\\ 0,16\\ 0,2 \end{array}$	0,139 0,168 0,175 0,205	0,0168 0,0169 0,0174 0,0178	0,0191 0,0187 0,0192 0,0189	$ \begin{vmatrix} -0,0413 \\ -0,0413 \\ -0,0425 \\ -0,0427 \end{vmatrix} $	-0,0373-0,0375-0,0387-0,0402	0,0091 0,0094 0,0097 0,0106
VIII.	0,74 0,81 0,82 0,89	$\left \begin{array}{c} 0,1\\0,15\\0,16\\0,2\end{array}\right $	0,139 0,168 0,175 0,205		0,0181 0,0181 0,0186 0,0188		$ \begin{vmatrix} -0.0362 \\ -0.0361 \\ -0.0372 \\ -0.0376 \end{vmatrix} $	
IX.	0,74 0,81 0,82 0,89	$\begin{array}{c c} 0,1\\ 0,15\\ 0,16\\ 0,2 \end{array}$	0,139 0,168 0,175 0,205	0,0169 0,0170 0,0175 0,0178		$ \begin{array}{c} -0.0396 \\ -0.0403 \\ -0.0416 \\ -0.0425 \end{array} $	$ \begin{array}{c} -0.0445 \\ -0.0427 \\ -0.0434 \\ -0.0435 \end{array} $	0,0111 0,0107 0,0109 0,0109

Berechnete Ladungsverteilungen: $\delta^{\circ}_{C} = 0.08$, $q_{H}(Methan) = 0.015$

Berechnete 1	Ladungsverteilungen:	$\delta_{\rm C}^{\circ} = 0,08,$	$q_{\rm H}(Methan) = 0.012$
--------------	----------------------	----------------------------------	-----------------------------

Bezeichnung		y Werte			0		~	0
Dezeicini ung	γH[C]	γc[H]	γc[C]	4H1	dH ₂	ЧСт	4C ²	QC1C1
I.	0,8 0,85 0,87 0,92	0,1 0,15 0,16 0,2	0,130 0,165 0,171 0,204	0,0118 0,0122 0,0117 0,0121		-0,0471 -0,0490 -0,0469 -0,0485		
II.	0,8 0,85 0,87 0,92	0,1 0,15 0,16 0,2	$0,130 \\ 0,165 \\ 0,171 \\ 0,204$	0,0127 0,0133 0,0126 0,0131		0,0381 0,0398 0,0379 0,0393		
III.	0,8 0,85 0,87 0,92	0,1 0,15 0,16 0,2	$0,130 \\ 0,165 \\ 0,171 \\ 0,204$	0,0128 0,0135 0,0128 0,0134	0,0135 0,0140 0,0133 0,0137	0,0352 0,0367 0,0350 0,0361	0,0336 0,0354 0,0336 0,0354	0,0033 0,0037 0,0035 0,0040
IV.	0,8 0,85 0,87 0,92	0,1 0,15 0,16 0,2	0,130 0,165 0,171 0,204	0,0129 0,0135 0,0129 0,0135	0,0136 0,0142 0,0134 0,0139	-0,0347-0,0360-0,0343-0,0351	$\begin{array}{c} -0,0311\\ -0,0329\\ -0,0313\\ -0,0331\end{array}$	0,0038 0,0045 0,0044 0,0053
v.	0,8 0,85 0,87 0,92	0,1 0,15 0,16 0,2	0,130 0,165 0,171 0,204	0,0129 0,0135 0,0129 0,0135	0,0136 0,0142 0,0135 0,0140	0,0347 0,0358 0,0341 0,0347	0,0307 0,0323 0,0307 0,0323	0,0039 0,0047 0,0046 0,0058
VI.	0,8 0,85 0,87 0,92	0,1 0,15 0,16 0,2	$0,130 \\ 0,165 \\ 0,171 \\ 0,204$	0,0130 0,0136 0,0130 0,0136	0,0142 0,0146 0,0138 0,0141	-0,0327-0,0343-0,0328-0,0340	0,0327 0,0343 0,0322 0,0340	0,0062 0,0066 0,0062 0,0066
VII.	0,8 0,85 0,87 0,92	0,1 0,15 0,16 0,2	0,130 0,165 0,171 0,204	0,0130 0,0137 0,0130 0,0137	$\begin{array}{c} 0,0144\\ 0,0149\\ 0,0140\\ 0,0143\end{array}$	$ \begin{array}{r} -0.0319 \\ -0.0332 \\ -0.0317 \\ -0.0326 \\ \end{array} $	0,0285 0,0306 0,0288 0,0311	0,0071 0,0078 0,0074 0,0084
VIII.	0,8 0,85 0,87 0,92	0,1 0,15 0,16 0,2	$\begin{array}{c} 0,130\\ 0,165\\ 0,171\\ 0,204\end{array}$		0,0138 0,0145 0,0137 0,0143		$-0.0276 \\ -0.0289 \\ -0.0274 \\ -0.0286$:
IX.	0,8 0,85 0,87 0,92	$0,1 \\ 0,15 \\ 0,16 \\ 0,2$	0,130 0,165 0,171 0,204	0,0131 0,0137 0,0131 0,0137		$ \begin{vmatrix} -0.0305 \\ -0.0324 \\ -0.0310 \\ -0.0325 \end{vmatrix} $	$\begin{array}{c c} -0.0347 \\ -0.0354 \\ -0.0328 \\ -0.0341 \end{array}$	0,0087 0,0088 0,0082 0,0085

berechnet und diese mit den berechneten q_H -Ladungen verglichen wurden. Für das beste Parametersystem wurde jenes System angenommen, das die kleinste Abweichung zwischen den berechneten und regressierten q_H -Werten gab.

Die allgemeine Gleichung der regressierten Geraden wurde folgenderweise bestimmt: Auf der Korrelationsgeraden wurden zwei Fixpunkte gewählt und zwar die q_{H^1} und τ_{H^1} Punkte der Methylgruppe des Propanmoleküls und die q_{H^2} -Wertpunkte der Methylengruppe des c-Hexanmoleküls. Unter Verwendung der Grundbeziehungen der Rechnungsmethode von Del-Re wird

$$q_{H^{1}} = 1/2(1 - \gamma_{H[C]}) \frac{\delta_{C}^{\circ}(1 - 2\gamma_{C[H]}\gamma_{H[C]} + \gamma_{C[C]})}{(1 - 3\gamma_{C[H]}\gamma_{H[C]})(1 - 2\gamma_{C[H]}\gamma_{H[C]}) - 2\gamma_{C[C]}^{2}}$$
(1)

und

$$q_{H^2} = 1/2(1 - \gamma_{H[C]}) \frac{\delta_{C}^{\circ}}{1 - 2\gamma_{C[H]}\gamma_{H[C]} - 2\gamma_{CC}} .$$
 (2)

Da

$$\tau_{\rm H}{}^{\rm x} = {\rm m}{\rm q}_{\rm H}{}^{\rm x} + {\rm b} \tag{3}$$

und aus diesem

$$q_{\rm H}{}^{\rm x} = \frac{\tau_{\rm H}{}^{\rm x} - {\rm b}}{\rm m} , \qquad (4)$$

wobei

$$\mathbf{m} = \frac{\tau_{\rm H^2} - \tau_{\rm H^1}}{q_{\rm H^2} - q_{\rm H^1}} \tag{5}$$

und

$$\mathbf{b} = \tau_{\mathrm{H}^2} - \mathrm{m}\mathbf{q}_{\mathrm{H}^2} \tag{6}$$

ist, und wenn die experimentellen τ_{H^1} und τ_{H^2} -Werte des Propan- und c-Hexanmoleküls, sowie die für die Ladungen ermittelten Beziehungen (1) und (2) in die Gleichungen (5) und (6) substituiert werden, wird zuletzt aufgrund der Beziehung (3) die Abhängigkeit der Regressionsgerade, und aufgrund der Gleichung (4) die Abhängigkeit der regressierten Ladungen von den Parametern der Rechnungsmethode in allgemeiner Form erhalten.

$$q_{H}x = \frac{(8,56 - \tau_{H}x) \{(1 - \gamma_{H[C]}) \delta_{C}^{\circ} [(1 - 2\gamma_{C[H]}\gamma_{H[C]}) (\gamma_{C[C]} - \gamma_{C[H]}\gamma_{H[C]})]\}}{0,53 \cdot 2 \{(1 - 2\gamma_{C[H]}\gamma_{H[C]} - 2\gamma_{C[C]}) [(1 - 3\gamma_{C[H]}\gamma_{H[C]}) (1 - 2\gamma_{C[H]}\gamma_{H[C]}) - 2\gamma_{C[C]}]\}} + \frac{(1 - \gamma_{H[C]}) \delta_{C}^{\circ}}{2(1 - 2\gamma_{C[H]}\gamma_{H[C]} - 2\gamma_{C[C]})}$$
(7)

Die mit Hilfe der Gleichung (7) berechneten regressierten $q_{H^{\times}}$ Werte und die mit den Parametersystemen berechneten $q_{H^{\times}}$ Werte (die in Tab. 5 auch auffindbar sind) sind in Tab. 6 zur Vergleichung zusammengestellt.

yR(c) = 0.1 yC(c) = 0.14yR(c) = 0.17 yC(c) = 0.172Bez.QH (ber)QH (reg) d QH (ber)QH (reg) d I.0.01620.016200.01500.0147+0.000II.0.01640.016400.01710.01710.01710.0000III.20.01750.0181-0.00060.01810.0190-0.0000IV.10.01640.0174+0.00040.01720.0171+0.0000V.10.01640.0163+0.00030.01720.0171+0.0000V.10.01660.0163+0.00030.01720.0170+0.0000V.1.10.01660.0163+0.00030.01740.0170+0.0000VI.10.01670.0161+0.00080.01750.0168+0.0000VI.1.20.01880.0192-0.00040.01920.0201-0.0000VI.1.20.01810.018100.01920.0170+0.0010VII.10.01660.0161+0.00180.01980.0182+0.0010VIII.10.01680.0165+0.00030.01760.0172+0.0000VIII.10.01680.0168-0.00040.01670.0171-0.0000VIII.20.01790.0188-0.00020.01740.0172-0.0000VIII.10.01680.0168-0.00020.01720.0128+0.0010VIII.10.01680.0168-0.00020.01740.0171-0.0000<		Vergle	ichung der b	erechneten und	regressierten	q _H -Werte	
Bez. qH (ber) qH (reg) d qH (ber) qH (reg) d I. 0.0146 0.0147 -0.0001 0.0150 0.0147 +0.000 II. 0.0162 0.0162 0 0.0167 0.0167 0.0001 II.1 0.0164 0.0164 0 0.0171 0.0171 0.0170 II.2 0.0178 0.0174 +0.0004 0.0181 0.0190 -0.000 IV.2 0.0178 0.0174 +0.0004 0.0184 0.0182 +0.000 V.1 0.0166 0.0163 +0.0003 0.0172 0.0170 +0.000 V.1 0.0166 0.0163 +0.0003 0.0174 0.0170 +0.000 V.1 0.0167 0.0161 +0.0006 0.0175 0.0168 +0.0000 VI.1 0.0168 0.0192 0.0172 0.0168 +0.0000 VII.1 0.0168 0.0165 +0.0003 0.0176 0.0172 +0.000 VII.1	<u>үн</u>	$[C] = 0,7 \gamma_{C}$	$\mu_{l} = 0.1 \gamma_{C[C]} =$	0,14	γH[C] = 0,77	$\gamma_{C[H]} = 0.15$	$\gamma_{C[C]} = 0,172$
I. 0,0146 0,0147 -0,0001 0,0150 0,0147 +0,000 II. 0,0162 0,0162 0 0,0167 0,0169 -0,000 III.1 0,0164 0,0164 0 0,0171 0,0171 0 III.2 0,0175 0,0181 -0,0006 0,0181 0,0190 -0,000 IV.1 0,0164 0,0172 0,0171 +0,000 V.1 0,0164 0,0175 +0,0003 0,0184 0,0182 +0,000 V.1 0,0166 0,0163 +0,0003 0,0172 0,0170 +0,000 V.1 0,0167 0,0161 +0,0003 0,0171 0,0168 +0,000 V.1 0,0167 0,0161 +0,0003 0,0175 0,0168 +0,000 VI.2 0,0188 0,0192 0,0172 0,000 0,0172 +0,000 VII.1 0,0168 0,0181 0 0,0189 0,0182 +0,001 VII.2 0,0180 0,0164<	Bez.	¶H (ber)	¶H (reg)	4	qH (ber)	III (reg)	Δ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I.	0,0146	0,0147	-0,0001	0,0150	0,0147	+0,0003
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	II.	0,0162	0,0162	0	0,0167	0,0169	-0,0002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	III.1	0,0164	0,0164	0	0,0171	0,0171	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	III.2	0,0175	0,0181	-0,0006	0,0181	0,0190	-0,0009
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IV.1	0,0164	0,0164	0	0,0172	0,0171	+0,0001
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IV.2	0,0178	0,0174	+0,0004	0,0184	0,0182	+0,0002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V.1	0,0164	0,0163	+0,0001	0,0172	0,0170	+0,0002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V.2	0,0178	0,0175	+0,0003	0,0185	0,0183	+0,0002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VI.1	0,0166	0,0163	+0,0003	0,0174	0,0170	+0,0004
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VI.2	0,0188	0,0192	-0,0004	0,0192	0,0201	-0,0009
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VII.1	0,0167	0,0161	+0,0006	0,0175	0,0168	+0,0007
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VII.2	0,0192	0,0174	+0,0018	0,0198	0,0182	+0,0016
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	VIII.	0,0181	0,0181	0	0,0189	0,0189	0
Max Diff. $+0,0018$ $-0,0006$ Max Diff: $+0,0016$ $-0,000$ $\gamma_{\rm H(C]} = 0.79$ $\gamma_{\rm C(H]} = 0.16$ $\gamma_{\rm C(C]} = 0.178$ $\gamma_{\rm H(C]} = 0.87$ $\gamma_{\rm C(H]} = 0.2$ $\gamma_{\rm C(C]} = 0.206$ I. $0,0149$ $0,0144$ $+0,0005$ $0,0150$ $0,0128$ $+0,002$ II. $0,0166$ $0,0168$ $-0,0004$ $0,0167$ $0,0171$ $-0,000$ III.1 $0,0170$ $0,0170$ 0 $0,0172$ $0,0172$ 0 III.2 $0,0179$ $0,0188$ $-0,0009$ $0,0172$ $0,0172$ 0 III.2 $0,0171$ $0,0169$ $+0,0002$ $0,0174$ $0,0172$ $+0,000$ IV.1 $0,0171$ $0,0169$ $+0,0002$ $0,0174$ $0,0171$ $+0,000$ V.1 $0,0171$ $0,0169$ $+0,0002$ $0,0174$ $0,0171$ $+0,000$ V.2 $0,0183$ $0,0182$ $+0,0001$ $0,0184$ $0,0184$ 0 VI.1 $0,0173$ $0,0169$ $+0,0004$ $0,0176$ $0,0171$ $+0,0004$ VI.2 $0,0190$ $0,0199$ $-0,0009$ $0,0186$ $0,0200$ $-0,000$ VII.1 $0,0174$ $0,0167$ $+0,0007$ $0,0178$ $0,0182$ $+0,004$ VII.2 $0,0195$ $0,0180$ $+0,0015$ $0,0191$ $0,0182$ $+0,004$ VIII. $0,0188$ 0 $0,0190$ $0,0190$ 0 $0,0173$ $+0,004$	IX.	0,0168	0,0165	+0,0003	0,0176	0,0172	+0,0004
$\gamma_{H[C]} = 0.79$ $\gamma_{C[H]} = 0.16$ $\gamma_{C[C]} = 0.178$ $\gamma_{H[C]} = 0.87$ $\gamma_{C[H]} = 0.2$ $\gamma_{C[C]} = 0.206$ I. 0.0149 0.0144 $+0.0005$ 0.0150 0.0128 $+0.002$ II. 0.0166 0.0168 -0.0004 0.0167 0.0171 -0.0004 III.1 0.0170 0.0170 0 0.0172 0.0172 0 III.2 0.0179 0.0188 -0.0009 0.0179 0.0190 -0.000 IV.1 0.0171 0.0169 $+0.0002$ 0.0174 0.0172 $+0.000$ IV.2 0.0183 0.0181 $+0.0002$ 0.0174 0.0171 $+0.000$ V.1 0.0171 0.0169 $+0.0002$ 0.0174 0.0171 $+0.000$ V.2 0.0183 0.0182 $+0.0001$ 0.0184 0.0171 $+0.000$ VI.1 0.0173 0.0169 $+0.0004$ 0.0176 0.0171 $+0.000$ VI.2 0.0190 0.0199 -0.0009 0.0186 0.0200 -0.000 VI.1 0.0174 0.0167 $+0.0007$ 0.0178 0.0169 $+0.0007$ VII.2 0.0195 0.0180 $+0.0015$ 0.0190 0.0190 0 VIII. 0.0175 0.0171 $+0.0004$ 0.0178 0.0173 $+0.006$	Max Diff.		+0,0018	-0,0006	Max Diff:	+0,0016	-0,0009
I. $0,0149$ $0,0144$ $+0,0005$ $0,0150$ $0,0128$ $+0,005$ II. $0,0166$ $0,0168$ $-0,0004$ $0,0167$ $0,0171$ $-0,0006$ III.1 $0,0170$ $0,0170$ 0 $0,0172$ $0,0172$ 0 III.2 $0,0179$ $0,0188$ $-0,0009$ $0,0179$ $0,0190$ $-0,0006$ IV.1 $0,0171$ $0,0169$ $+0,0002$ $0,0174$ $0,0172$ $+0,0006$ IV.2 $0,0183$ $0,0181$ $+0,0002$ $0,0182$ $0,0183$ $-0,006$ V.1 $0,0171$ $0,0169$ $+0,0002$ $0,0174$ $0,0171$ $+0,006$ V.2 $0,0183$ $0,0182$ $+0,0001$ $0,0184$ $0,0184$ 0 V.1 $0,0173$ $0,0169$ $+0,0004$ $0,0176$ $0,0171$ $+0,006$ VI.2 $0,0190$ $0,0199$ $-0,0009$ $0,0186$ $0,0200$ $-0,000$ VII.1 $0,0174$ $0,0167$ $+0,0007$ $0,0173$ $0,0169$ $+0,006$ VII.2 $0,0195$ $0,0180$ $+0,0015$ $0,0191$ $0,0182$ $+0,006$ VIII.1 $0,0188$ $0,0188$ 0 $0,0190$ 0 0 VIII.2 $0,0188$ $0,0188$ 0 $0,0173$ $0,0173$ $+0,006$ VIII. $0,0175$ $0,0171$ $+0,0004$ $0,0178$ $0,0173$ $+0,006$	γĦίc	$\gamma = 0,79 \gamma c_{1}$	$H_{\rm H} = 0.16 \gamma_{\rm C[C]} =$	= 0,178	$\gamma_{\mathrm{H[C]}} = 0.8$	37 $\gamma_{C[H]} = 0.2$	γ _{C[C]} = 0,206
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I.	0,0149	0,0144	+0,0005	0,0150	0,0128	+0,0022
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	II.	0,0166	0,0168	-0,0004	0,0167	0,0171	-0,0004
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	III.1	0,0170	0,0170	0	0,0172	0,0172	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	III.2	0,0179	0,0188	-0,0009	0,0179	0,0190	-0,0011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IV.1	0,0171	0,0169	+0,0002	0,0174	0,0172	+0,0002
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IV.2	0,0183	0,0181	+0,0002	0,0182	0,0183	-0,0001
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V.1	0,0171	0,0169	+0,0002	0,0174	0,0171	+0,0003
VI.1 0,0173 0,0169 +0,0004 0,0176 0,0171 +0,000 VI.2 0,0190 0,0199 -0,0009 0,0186 0,0200 -0,000 VII.1 0,0174 0,0167 +0,0007 0,0178 0,0169 +0,000 VII.2 0,0195 0,0180 +0,0015 0,0191 0,0182 +0,000 VII.2 0,0188 0,0188 0 0,0190 0 0 VIII. 0,0188 0,0188 0 0,0190 0,0190 0 IX. 0,0175 0,0171 +0,0004 0,0178 0,0173 +0,000	V.2	0,0183	0,0182	+0,0001	0,0184	0,0184	0
VI.2 0,0190 0,0199 -0,0009 0,0186 0,0200 -0,00 VII.1 0,0174 0,0167 +0,0007 0,0178 0,0169 +0,000 VII.2 0,0195 0,0180 +0,0015 0,0191 0,0182 +0,000 VIII. 0,0188 0,0188 0 0,0190 0 0 VIII. 0,0175 0,0171 +0,0004 0,0178 0,0173 +0,00	VI.1	0,0173	0,0169	+0,0004	0,0176	0,0171	+0,0005
VII.1 0,0174 0,0167 +0,0007 0,0178 0,0169 +0,000 VII.2 0,0195 0,0180 +0,0015 0,0191 0,0182 +0,000 VIII. 0,0188 0,0188 0 0,0190 0,0190 0 VIII. 0,0175 0,0171 +0,0004 0,0178 0,0173 +0,000	VI.2	0,0190	0,0199	-0,0009	0,0186	0,0200	-0,0014
VII.2 0,0195 0,0180 +0,0015 0,0191 0,0182 +0,00 VIII. 0,0188 0,0188 0 0,0190 0,0190 0 IX. 0,0175 0,0171 +0,0004 0,0178 0,0173 +0,00	VII.1	0,0174	0,0167	+0,0007	0,0178	0,0169	+0,0009
VIII. 0,0188 0,0188 0 0,0190 0,0190 0 IX. 0,0175 0,0171 +0,0004 0,0178 0,0173 +0,000	VII.2	0,0195	0,0180	+0,0015	0,0191	0,0182	+0,0009
IX. 0,0175 0,0171 +0,0004 0,0178 0,0173 +0,00	VIII.	0,0188	0,0188	0	0,0190	0,0190	0
	IX.	0,0175	0,0171	+0,0004	0,0178	0,0173	+0,0005
Max Diff: +0,0015 -0,0009 Max Diff: +0,0022 -0,00	Max Diff	:	+0,0015	-0,0009	Max Diff:	+0,0022	-0,0014

Tabelle 6/a Vergleichung der berechneten und regressierten au-W

 $\delta_{\rm C}^{\,\circ} = 0.07$ q_H(Methan) = 0.015 $\epsilon_{\rm CC} = 1.00$

	-	0				
γ H [0	$c_{ m j}=0.76$ $\gamma_{ m C}$	$[H] = 0,1 \gamma_{C[C]} =$	0,135	7H[C] = 0,8	$\gamma_{C[H]} = 0.15$	$\gamma_{C[C]} = 0,166$
Bez.	qH (ber)	Чн (reg)	Δ	9日 (ber)	Чн (reg)	⊿
I.	0,0121	0,0121	0	0,0119	0,0115	+0,0004
II.	0,0132	0,0133	-0,0001	0,0129	0,0130	-0,0001
III.1	0,0134	0,0134	0	0,0131	0,0131	0
III.2	0,0142	0,0146	-0,0004	0,0137	0,0142	-0,0005
IV.1	0,0134	0,0133	+0,0001	0,0132	0,0131	+0,0001
IV.2	0,0143	0,0141	+0,0002	0,0139	0,0138	+0,0001
V.1	0,0134	0,0133	+0,0001	0,0132	0,0131	+0,0001
V. 2	0,0143	0,0141	+0,0002	0,0140	0,0138	+0,0002
VI.1	0,0135	0,0133	+0,0002	0,0133	0,0131	+0,0002
VI.2	0,0150	0,0153	-0,0003	0,0144	0,0149	-0,0005
VII.1	0,0136	0,0132	+0,0004	0,0134	0,0130	+0,0004
VII.2	0,0153	0,0140	+0,0013	0,0146	0,0138	+0,0006
VIII.	0,0145	0,0145	0	0,0142	0,0142	0
IX.	0,0136	0,0134	+0,0002	0,0134	0,0132	+0,0002
Max Diff:	1	+0,0013	-0,0004	Max Diff:	+0,0006	-0,0005

Tabelle 6/bVergleichung der berechneten und regressierten qH-Werte

γĦίQ	$\gamma_{C[} = 0.84 \gamma_{C[}$	$H_{\rm H} = 0.16 \gamma_{\rm C[C]} =$	= 0,173	$\gamma_{\rm H[C]} = 0.9$	91 $\gamma_{C[H]} = 0,2$	$\gamma_{C[C]} = 0,204$
I.	0,0121	0,0116	+0,0005	0,0116	0,0095	+0,0021
II.	0,0132	0,0133	-0,0001	0,0126	0,0128	-0,0002
III.1	0,0134	0,0134	0	0,0129	0,0129	0
III.2	0,0140	0,0146	0,0006	0,0132	0,0138	-0,0006
IV.1	0,0135	0,0134	+0,0001	0,0130	0,0129	+0,0001
IV.2	0,0142	0,0141	+0,0001	0,0134	0,0134	0
V.1	0,0135	0,0134	+0,0001	0,0130	0,0128	+0,0002
V.2	0,0143	0,0142	+0,0001	0,0135	0,0135	0
VI.1	0,0136	0,0134	+0,0002	0,0131	0,0128	+0,0003
$\mathbf{VI.2}$	0,0146	0,0152	-0,0006	0,0136	0,0144	-0,0008
VII.1	0,0137	0,0133	+0,0004	0,0132	0,0127	+0,0005
VII.2	0,0149	0,0141	+0,0008	0,0139	0,0134	+0,0005
VIII.	0,0145	0,0145	0	0,0138	0,0138	0
IX.	0,0138	0,0135	+0,0003	0,0132	0,0129	+0,0003
Max Diff:		+0,0008	-0,0006	Max Diff:	+0,0021	-0,0008

 $\delta_{\rm C}^{\rm a} = 0.07 ~ q_{\rm H} ~ ({\rm Methan}) = 0.012 ~ \varepsilon_{\rm CC} = 1.00$

γĦίc	$\gamma_{\rm c} = 0,74; \ \gamma_{\rm C}$	$[H] = 0,1; \gamma_{C[C]}$	= 0,139	$\gamma_{\rm H[C]} = 0.81$	$\gamma_{C[H]} = 0,15;$	$\gamma_{\rm C[C]} = 0,168$
Bez.	IH (ber)	AH (reg)	Δ	٩Ħ (ber)	प्रम (reg)	Δ
I.	0,0148	0,0149	-0,0001	0,0148	0,0144	+0,0004
II.	0,0163	0,0164	-0,0001	0,0163	0,0164	-0,0001
III.1	0,0165	0,0165	0	0,0166	0,0166	0
III. 2	0,0176	0,0181	-0,0005	0,0174	0,0181	-0,0007
IV.1	0,0166	0,0165	+0,0001	0,0166	0,0165	+0,0001
IV.2	0,0178	0,0175	+0,0003	0,0176	0,0175	+0,0001
V.1	0,0166	0,0165	+0,0001	0,0166	0,0165	+0,0001
V.2	0,0178	0,0176	+0,0002	0,0177	0,0175	+0,0002
VI.1	0,0167	0,0164	+0,0003	0,0168	0,0165	+0,0003
VI.2	0,0188	0,0191	-0,0003	0,0183	0,0190	-0,0007
VII.1	0,0168	0,0162	+0,0006	0,0169	0,0163	+0,0006
VII.2	0,0191	0,0175	+0,0016	0,0187	0,0174	+0,0013
VIII.	0,0181	0,0181	0	0,0181	0,0181	0
IX.	0,0169	0,0166	+0,0003	0,0170	0,0166	+0,0004
Max Diff:	+0,001	6	-0,0003	Max Diff:	+0,0013	-0,0007
7H[0]	$\gamma = 0.82; \gamma c_{[}$	$H_{\rm I}=0,16; \ \gamma C[C]$	= 0,175	γ _{H[C]} = 0,89	$\gamma_{C[H]} = 0,2;$	$\gamma_{C[C]} = 0,205$
I.	0,0152	0,0146	+0,0006	0,0153	0,0128	+0,0025
II.	0,0167	0,0169	-0,0002	0,0169	0,0171	-0,0002
III.1	0,0170	0,0170	0	0,0173	0,0173	0
111.2	0,0178	0,0186	-0,0008	0,0178	0,0188	-0,0010
IV.1	0,0171	0,0170	+0,0001	0,0174	0,0173	+0,0001
IV.2	0,0181	0,0180	+0,0001	0,0182	0,0182	0
V.1	0,0171	0,0170	+0,0001	0,0175	0,0172	+0,0003
V. 2	0,0182	0,0180	+0,0002	0,0183	0,0183	0
VI.1	0,0173	0,0169	+0,0004	0,0176	0,0172	+0,0004
VI.2	0,0187	0,0195	-0,0008	0,0185	0,0197	-0,0012
VII.1	0,0174	0,0168	+0,0006	0,0178	0,0170	+0,0008
VII.2	0,0192	0,0179	+0,0013	0,0189	0,0181	+0,0008
VIII.	0,0186	0,0186	,0	0,0188	0,0188	0
IX.	0,0175	0,0171	+0,0004	0,0178	0,0173	+0,0005
Max Diff:	: :	+0,0013	0,0008	Max Diff:	+0,0025	-0,0012

 $\delta_{\rm C}^{\circ} = 0.08 \quad q_{\rm H}({\rm Methan}) = 0.015 \quad \varepsilon_{\rm CC} = 1.00$

3 Periodica Polytechnica CH. 21/2.

		-			-		
?H[$C_{]} = 0.8; \gamma_{C_{1}}$	$[H] = 0,1; \gamma C[C] =$	= 0,13		$\gamma_{\rm H[C]} = 0.83$	5; $\gamma_{C[H]} = 0,15;$	$\gamma_{\rm C[C]} = 0,165$
Bez.	ЧН (ber)	ЧН (reg)	Δ		¶표 (ber)	Чн (reg)	4
I.	0,0118	0,0118	0		0,0122	0,0119	+0,0003
II.	0,0127	0,0127	0		0,0133	0,0134	-0,0001
III.1	0,0128	0,0128	0		0,0135	0,0135	0
III.2	0,0135	0,0138	-0,0003		0,0140	0,0145	-0,0004
IV.1	0,0129	0,0128	+0,0001		0,0135	0,0134	+0,0001
IV.2	0,0136	0,0134	+0,0002		0,0142	0,0141	+0,0001
V.1	0,0129	0,0128	+0,0001		0,0135	0,0134	+0,0001
V.2	0,0136	0,0135	+0,0001		0,0142	0,0141	+0,0001
VI.1	0,0130	0,0128	+0,0002		0,0136	0,0134	+0,0002
VI.2	0,0142	0,0144	-0,0002		0,0146	0,0151	-0,0005
VII.1	0,0130	0,0127	+0,0003		0,0137	0,0133	+0,0004
VII.2	0,0144	0,0134	+0,0010		0,0149	0,0140	+0,0009
VIII.	0,0138	0,0138	0		0,0145	0,0145	0
IX.	0,0131	0,0129	+0,0002		0,0137	0,0135	+0,0002
Max Diff:		+0,0010	-0,0003		Max Diff:	+0,0009	-0,0005
-				-			
γ H [C]	= 0,87; γc[$\mu_{\rm H} = 0.16; \ \gamma_{\rm C[C]} = 0.16;$	= 0,171		γH[C] = 0,9	2; $\gamma_{C[H]} = 0,2;$	7C[C] = 0,204
I.	0,0117	0,0111	+0,0006		0,0121	0,0098	+0,0023
II.	0,0126	0,0127	-0,0001		0,0131	0,0133	-0,0002
III.1	0,0128	0,0128	0		0,0134	0,0134	0
III.2	0,0133	0,0137	-0,0004		0,0137	0,0143	-0,0006
IV.1	0,0129	0,0128	+0,0061		0,0135	0,0134	+0,0001
IV.2	0,0134	0,0134	0		0,0139	0,0139	0
V.1	0,0129	0,0128	+0,0001		0,0135	0,0133	+0,0002
V.2	0,0135	0,0134	+0,0001		0,0140	0,0140	0
VI.1	0,0130	0,0128	+0,0002		0,0136	0,0133	+0,0003
VI.2	0,0138	0,0142	-0,0004		0,0141	0,0150	-0,0009
VII.1	0,0130	0,0127	+0,0003		0,0137	0,0132	+0,0005
VII.2	0,0140	0,0133	+0,0007		0,0143	0,0139	+0,0004
VIII.	0,0137	0,0137	0	455	0,0143	0,0143	0
IX.	0,0131	0,0129	+0,0002		0,0137	0,0134	+0,0003
Max Diff:		+0,0007	-0,0004	 -	Max Diff:	+0,0023	-0,0009

Tabelle 6/d Vergleichung der berechneten und regressierten q_H-Werte

 $\delta^{\circ}_{\mathrm{C}} = 0,08 \quad \mathrm{q}_{\mathrm{H}}(\mathrm{Methan}) = 0,012 \quad \varepsilon_{\mathrm{CC}} = 1,00$

.

Aus den Differenzen der Werte in Tab. 6 ist ersichtlich, daß zwischen den q_H-Ladungsergebnissen der verschiedenen Parametersysteme kein wesentlicher Unterschied besteht, obzwar die Abweichung zwischen den berechneten und regressierten q_H-Werten die kleinste bei $\delta_{\rm C}^{\rm c} = 0.07$, mit $\gamma_{\rm C[H]} = 0.15$ und bei $\delta_{\rm C}^{\circ} = 0.08$ mit $\gamma_{\rm CIH1} = 0.16$ Parametersystemen ist, wenn der Wert $q_{\rm H}({\rm Methan}) = 0.012$ beträgt.

4. Der Einfluß der Änderung des ε_{CC} -Parameters auf die berechneten Ladungsverteilung-Ergebnisse.

Der $\gamma_{C[C]}$ -Wert wurde mit der im vorhergehenden beschriebenen Methode für das $\gamma_{H(C)} = 0.83$; $\gamma_{C(H)} = 0.15$; $\delta_{C}^{\circ} = 0.07$ Parametersystem auch bei $\varepsilon_{\rm CC} = 0.75$ bestimmt. Während sich der $\varepsilon_{\rm CC}$ -Wert von 1,00 auf 0,75 änderte, wechselte der optimale $\gamma_{C[C]}$ -Wert des Systems von 0,166 auf 0,156. Die Korrelation zwischen den berechneten Ladungsverteilungswerten und den $\tau_{\rm H}$ bzw. $\delta_{\rm C^{13}}$ -Werten ist zusammen mit der Korrelationsgeraden $\varepsilon_{\rm CC} = 1,00$ in Abb. 4 dargestellt. Die ermittelten Geraden weichen voneinander nur wenig ab, eine wesentliche Änderung des ε_{CC} -Parameters beeinflußte die Ergebnisse nur unwesentlich. Die Ladungsverteilungen (berechnet mit $\varepsilon_{\rm CC} = 0.75$) sind in Tab. 7 zusammengestellt, den Vergleich zwischen den qH-Ladungswerten und den regressierten qH-Werten enthält Tab. 8. Vergleicht man die Ergebnisse der Tab. 8 mit jenen in Tab. 6/b, die mit dem entsprechenden Parametersystem ermittelt wurden, ist ersichtlich, daß die q_H-Werte, die mit dem $\varepsilon_{\rm CC} = 0.75$ Parametersystem berechnet wurden, in geringe-

		-,, -((-,, -11	1()	- ,	
Verbindung	Bez.	dH1	dH3	dC1	dC₃	Q _{C¹C¹}
CH4	I.	0,0119		-0,0474		
CH ₃ CH ₃	II.	0,0126		-0,0379		
¹ CH ₃ CH ₂ CH ₃	III.	0,0128	0,0132	-0,0349	0,0334	0,0035
CH ₃ CH ₂ CH ₂ CH ₃	IV.	0,0128	0,0134	-0,0343	-0,0309	0,0042
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	v.	0,0128	0,0134	-0,0341	-0,0304	0,0044
(CH ₃) ₃ CH	VI.	0,0129	0,0137	-0,0325	-0,0322	0,0062
(CH ₃) ₂ CHCH(CH ₃) ₂	VII.	0,0130	0,0139	-0,0316	-0,0285	0,0073
c-Hexan C ₆ H ₁₂	VIII.		0,0136		-0,0271	
(CH ₃) ₄ C	IX.	0,0130		-0,0307	-0,0333	0,0083

Tabelle 7

Berechnete Ladungsverteilungen mit den Werten: $\delta_{C}^{c} = 0.07$; $\gamma_{C[H]} = 0.15$; $\gamma_{H[C]} = 0.83$; $\gamma_{C[C]} = 0.156$; $\varepsilon_{CH} = 1.00$; $\varepsilon_{CC} = 0.75$; q_{H} (Methan) = 0.012

Tabelle 8

Vergleichung der berechneten und regressierten q_H -Werte. $\gamma_{H[C]} = 0.83$, $\gamma_{C[H]} = 0.15$, $\gamma_{C[C]} = 0.156$, $\delta_C^* = 0.07$, $\varepsilon_{CH} = 1.00$ $\varepsilon_{CC} = 0.75$ $q_H(Methan) = 0.012$

Bez.	q _H (ber)	q _H (reg)	Δ
I.	0,0119	0,0115	+0,0004
II.	0,0126	0,0127	-0,0001
III.1	0,0128	0,0128	0
III.2	0,0132	0,0136	-0,0004
IV.1	0,0128	0,0128	0
IV.2	0,0134	0,0133	+0,0001
v.i	0,0128	0,0128	0
V.2	0,0134	0,0133	+0,0001
VI.1	0,0129	0,0128	+0,0001
VI.2	0,0137	0,0140	-0,0003
VII.1	0,0130	0,0127	+0,0003
VII.2	0,0139	0,0132	+0,0007
VIII.	0,0136	0,0136	0
IX.	0,0130	0,0128	+0,0002
Max. Diff	· · · ·	+0,0007	-0,0004

rem Maß von den regressierten Werten abweichen, daß heißt die Streuung der einzelnen Punkte ist, die Korrelations-Gerade entlang, etwas kleiner, wenn mit dem Parametersystem des $\varepsilon_{CC} = 0.75$ -Wertes gerechnet wird.

5. Berechnung der Dipolmomentwerte

Einen Dipolmomentenwert haben von den untersuchten Alkanen nur das Propanmolekül (0,083 D) und das Isobutanmolekül (0,132 D). Da das Parametersystem aufgrund der echten Ladungsverteilung des Methans bestimmt wurde, ist nicht zu erwarten, daß die berechneten Dipolmomentwerte (Tab. 9) den experimentellen Werten entsprechen. Aus den Werten der Tab. 9 ist ersichtlich, daß die berechneten Dipolmomentwerte von den experimentellen Werten abweichen, doch dieselbe Größenordnung besitzen. Die Struktur-Daten zu den Dipolmomentwert-Berechnungen wurden den Arbeiten [6, 7] entnommen.

Tal	belle	9
-----	-------	---

γ H [0]	γ c[H]	γο[0]	δĉ	q _H (Methan)	۶CC	Propan	i-Butan
0,77	0,15	0,172	0,07	0,015	1,00	0,0348	0,047
0,83	0,15	0,166	0,07	0,012	1,00	0,028	0,038
0,81	0,15	0,168	0,08	0,015	1,00	0,035	0,047
0,85	0,15	0,165	0,08	0,012	1,00	0,030	0,041
0,83	0,15	0,156	0,07	0,012	0,75	0,029	0,039

Berechnete Dipolmoment-Werte

Zusammenfassung

Die Parametersysteme der C-H-Bindung der quantenchemischen Del Re Rechnungen, die aufgrund der prinzipiellen Ladungsverteilung des Methans ermittelt worden sind, wurden mit den Parametern der C-C-Bindung ergänzt. Ladungsverteilungs-Werte der Alkane wurden mit den erhaltenen Parametersystemen berechnet und die berechneten q_H -Ladungen mit den regressierten q_H -Werten verglichen. Die kleinsten Abweichungen wurden mit den folgenden Parametersystemen bei festgesetztem q_H (Methan) = 0,012 Wert erhalten.

$\delta_{ m C}^{\circ} = 0,07$	$\gamma_{C[H]} = 0.15$	$\gamma_{\rm H[C]} = 0.83$	$\gamma_{\rm C[C]} = 0,166$	$\varepsilon_{\rm CC} = 1,00$
$\delta^{\circ}_{C} = 0,08$	$\gamma_{C[H]} = 0.16$	$\gamma_{H[C]} = 0.87$	$\gamma_{\rm C[C]} = 0,171$	$\epsilon_{\rm CC} = 1,00$
$\delta_2^{\circ} = 0.07$	$\gamma_{\rm C[H]} = 0.15$	$\gamma_{H[C]} = 0,83$	$\gamma_{\rm C[C]} = 0.155$	$\varepsilon_{\rm CC} = 0,75$

Literatur

- VÁNDORFFY, M. T.-NAGY, J.: Periodica Polytechn. Chem. Eng. 18, 263 (1974)
 SUHR, H.: Anwendungen der kernmagnetischen Resonanz in der organischen Chemie. Springer VI. Berlin, 1965
 SPIESECKE, H.-SCHNEIDER, W. G.: J. Chem. Phys. 35, 722 (1961)
 WHITEHEAD, M. A.-BAIRD, N. C.-KAPLANSKY, M.: Theoret. Chim. Acta 3, 135 (1965)
 DER R. C. J. Chem. Soc. 1959, 4021

- 5. DEL RE, G.: J. Chem. Soc. 1958, 4031 6. LIDE, R. D.: J. Chem. Phys. **33**, 1514 (1960) 7. HILDEBRANDT, R. L.-WIESER, J. D.: J. Mol. Struct. **15**, 27-36 (1973)

dr. M. T. VÁNDORFFY H-1521 Budapest