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Introduction

Up to now, partly ab initio (a priori) all electron methods, partly all
valence eleciron methods (CNDO, INDO, MINDO, PCILO, EHT etec.) have
been used for the investigation of bond structure. For studying the molecular
structure of orgamosilicon compounds, calculations have been carried out
mainly by CNDO/2 method and to a lesser degree by ab initio method. The
latter has been less widely extended because of its large computer time demand
while the CNDO/2 method does not give reasonable results either in sp or
in spd approximation. The role of d orbitals is entirely neglected in sp approxi-
mation and taken excessively into account in spd approximation. Naturally,
this problem refers not only to silicon but to any element in the 3rd, 4th and
5th rows. Of course the difficulty ever grows for increasing atomic numbers.

To eliminate the mentioned shortcomings a more sensitive quantum-
chemical calculation method has been developed, requiring greater attention,
the so-called LCVO-MO (linear combination of valence orbitals — molecular
orbitals) method.

Basic principles of the LCVO-MO method

The method formally is a stricter alternative of the CNDO/2 method
by Crarxk [1]. It is known that CLARK modified the original CNDO/2 method
by the following way: he calculated the electron repulsion integrals according
to Orn~o [2], the shielding factors according to Burns’ [3] and the resonance
integrals by the WorrsBeErRG— HELMBOLZ formula [4]. The ionization energies
and electron affinities were chosen according to SicEEL and WHITEHEAD [5].
Assuming a fixed configuration, the CNDO/2— CrarRK method provides the
excitation energies of electron transition and the corresponding oscillator
strengths in addition to the orbital energies and other usual quantities. CLARK
carried out calculation [6] by this method, among others, for cyclopropane,
ethylene oxide and ethylamine.



250 J. NAGY

Starting from the principles of CNDO/2 — CrARK method, the LCVO-MO
method is featured by the following.

1. It takes only the valence electrons of the system into account. The
electrons on closed atomic shells and part of the atomic nucleus are omitted
and their effect only approximated.

2.In comtrary to the ab initio and the generally used approximate
methods, the starting base functions are related to valence orbitals (VO)
rather than to atomic orbitals (AO). The VO base functions are mostly hybrid
functions based on the geometry of molecules in question, e. g.:

1
- (1 + a2+ b2)12

Pp [s + ap, + bpy +cp.],

where s, p., p, and p, are AO eigenfunctions, a, b and ¢ are hybridization
factors.

Consequently, the values of ionization energies and electron affinities
in the HARTREE—FoCK matrix elements are calculated according to HINzE
and JAFFE [7] on the basis of a given valence state.

3. Using the ZDO (zero differential overlap) condition, part of the neces-
sary integrals are neglected. The rest of the integrals — with the exception of
overlap integrals — are empirically calculated:

a) For the calculation of one-center electron repulsion integrals y,,
Pariser’s method [8] was used:

Vop = 1p—4, (1)
where I p is the ionization energy, Ap

b) The two-center electron repulsion integrals y,, were taken according
to Omn~o [2]:

is the electron affinity.

14.397

Ypg =
(@5 + Ko™

[eV] ' (2)

where
28.794

Vpp T Vag
and R is the bond distance.

¢) The resonance integrals §,, were calculated by WoLrsBErRc —HELM-
#o0LZ formula [4]:

Bog = 1/2 K(Ip + 1)) Sy,

where K is a proportionality factor and S, is the overlap integral.

The overlap integrals were calculated from Srater (STO) functions.
The orbital exponent was given according to BUrNs’ rules [3], for hydrogen
the { = 1,2 value was chosen, similarly to the CNDO/2 method.
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4. Assuming fixed configuration, the electronic transition energies and
the oscillator strengths can also be calculated using the configurational inter-
action (CI) method.

Formalism of LCVO-MO approximatien

The eigenvalue problem for a molecule (consisting of A, B, C. .. atoms,
w centers and containing N valence electrons, n valence orbitals) can be
written as:

A(1,2,...,N)AN)=E(@1,2,...,N)AN) (4)

where A(N) is a determinant wave function.
The Hamiltonian operator in (4) can be separated to one-electron
Hamiltonian operators:

~ N A N
A2, ...N=3H = >0 )
i=1 =1 z:,:é{] T

2
e . - . .

where —is the repulsion potential between electrons and Hy(i) is the core
rij

Hamiltonian operator. The latter can be specified:

Ayi) = TG) + V() + 3 Ps0) (6)
B#£A

where T(i) is the kinetic energy operator related to electron i, V(i) and V(i)
are potential energies from atoms A and B, respectively.

The MO eigenfunction relating to electron ¢ in quantum state % is a
linear combination of valence orbitals:

W) = 3 curali)- (1)

p=1

The wave function ¢@,(i) can be either VO function or hybrid function,
i. e. SLATER type orbital function (AO). For example, in ethylene three sp*
trigonal hybrid wave functions and one pz atomic wave function belong
to a carbon atom. The exact HARTREE —FocK eigenvalue equation:

Fec, = ¢S¢, . (8)
Neglecting the overlap integrals § becomes unity matrix:

FC’{ == EuCr . (9)

2 Periodica Polytechnica Ch 21/3
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The elements of Fock matrix in Eq. (8):

Fo= I+ 2 Prs <priq8>-——<prlsq>

r§==1
where
N2
Prs = 220}0‘ P Crsos
k=1
Ipq == <q7p ]Ho 1 ¢q> B
{pr|g¢s) and {pr|sqg) are electronic repulsion integrals.
l.1et p=g,
then Fop=1Ip,+1/2,<{pp|pp) + 34 9:{PalPo> +
ap
+ 3 Zqﬂ {pslpp
BEA
and
pa€A4
BeB
where

Pp = Qpp> 9« = Ppx> 9 = Pp8

(10)

(11)

(12)

(13)

2. If p == ¢, that is, orbitals p and g belong to two different atoms, then

qu = Ipq — 12 p,, {pq|pp

ped
g€ B

(14)

Naturally, if two orbitals marked by p and ¢ are on the same atom,

then Eq. (14) becomes:

Fi = —1/2p,{pqg|pg and p,g € 4 ,
since

I, =0.

On the basis of Eq. (7) I, can be written as:

Ipp=<svp|ﬁosqop>=j¢p[T<z Dot >V,

B#A

(15)
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= J¢p(f(i) + f/:é) (ppd’C -+ J“Pp 2 T};q’pdr =

BzA
Z ge?
=W,— 3 |pp—"—gdr=
B3#A Tp
. 1
=W, 3 Zge® f(pp ——g,dt (16)
B#A 'p

where W), is the energy of the electron on orbital g, in the field of the core of
isolated atom p.

Be Z, the number of valence electrons on atom B, then the core of atom
B will bave a positive charge Z - e. Approximating the interaction of this
core with the orbital ¢, by repulsion Coulomb integral of the electron on orbital
@, and of the Zy valence electrons belonging to atom B, and separating this
interaction into terms Zgpy,s according to orbitals on atom B:

N 1
—Zpe? J #p—9pd7 = —Z57ps = S5 Zngp (17)
B p

Naturally, the number of all valence electrons on atom B equals to the
total of electrons on the particular orbitals, i. e.

Zp= 3pZpp ' (18)
8

Approximating the nondiagonal elements between given orbitals of
atoms A and B according to Hermuorz and WOLFSBERG:

Ipq: <<Pp‘Hoi%> :ﬂgq =

2o |

K(I,+ I)S,, (19)

A relation is known to exist between the ionization energy and the one-
electron, non perturbed eigenvalue of valence orbital p on atom A:

—I,=W, + ZZAa(poc[poO =W, + Z'Zm;ypal and o€A4. (20)
azEp a%p

Replacing Eqs (17) and (20) into (16), we obtain:

Ip=—I,— 3ZaVp.— 3 SpZaVps (21)
aF=p Bs#A 8

2*
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Substituting (21) for diagonal matrix elements and introducing simpli-
fied notation for electronic repulsion integrals y,, {px | pz), v,z = {pB | pB>
voqg =<pq| P9 Eq. (13) becomes:

1
Fop=—I,+ —GppVpp + Z(Qa —~Z)Vpat 2 23 (96— Zg) V8 (22)
2 atp BZA"F
and the nondiagonal matrix element expressed in terms of Eqs (14) and (20):

F, =

pa = Ppg = 5" Pod¥pg (23)
if orbitals p and ¢ belong to different atoms.
If orbitals p and g are on the same atom, Eq. (15) takes the form
Foqg = —1/2 Ppgpq - (24)

It can be proven that, after certain simplifications and introducing:

‘§A9==PAA—%= Yep = YAA = Vpp
asEp .
ZAZa =Zsn— 1, Y6p = YaAB T Vpq (25)
a®p
ZB‘IB:PBB
B

Eq. (22) can be written as:

Fop=—I, + 1/2qyan + (Pas — 9 — Zaa + 1) yaa +
+ S(Pyp — Zg) pag - (26)
Bz#A

Incorporating 1/2 g,y4, into terms in parentheses and taking Eq. (1)
into account:

1 1 ,
Frp= = g Uyt )+ [ (Pan— Z) = -0, = D] pan
+ 3 (Pss—Zs)vas (27)
BxA

Eq. (23) may be transformed similarly,

qu = .Bopq - 1/2 Ppg¥aB » (28)
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Eqgs (27) and (28) correspond to the formalism of the CNDO/2 method.

Solving the eigenvalue equation (9), the MO energies e5¢7 are obtained,
identifiable, on the basis of Koormans’ theorem, with the one-electron ioniza-
tion energies.

In the knowledge of SCF-MO energies and coefficients of the particular
MO, the total electron energy of a system (E,) is easy to give in the LCVO-MO
approximation:

nf2
E, = 3 (I3 + £F) (29)
i=1
where
n
HE" = T |l S 2~ 3 3 | +
p=1 aEp B#A"F
+ 3T B ey (30)
p#Fq
The respective electron energies of atoms A, B, C ... are:

Ey= 2aZy(—1I, — ZZ«'}’ap) + 2 27’1']' =
P azEp i<ij
- ;[ —Z,I, +(Z, — 1) ypp] - ‘p2<;ZpZ«7’p= (31)

where i, j are electron numerals; Z, and Z, are numbers of electrons on orbitals
p and «, respectively; y;; is the Coulomb integral for interaction between elec-
trons i and j.

The repulsion energy between nuclei may be written as:

Z.Z
EM=2\ A~B

B#A fiap

- 14.397[¢V]. (32)

The total energy in ground state is given by the algebraic sum of Eqs
(29) and (32),
Er = E, + E,. (33)

Subtracting the atomic electron energies, Kq. (31), from the total
energy yields the dissociation (binding) energy:

Ep=E,+Ey —E,. (34)

In the LCVO-MO approximation the MurrLikaN population analysis
can be applied. For example, the partial charge ¢% may be defined as:

0a=2s— Paa (35)
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where

Paa = EZQ& (36)

the total population on atom A and ¢ the population on orbital x of atom A.
Bond orders, hard or sophisticated to obtain from the CNDO/2 approximation,
are easy to derive by the LCVO method such as:

Pap = 2 2 Prs (37)
reA s¢B

where p 4 is the total bond order between atoms A and B, p,, is the bond
order between valence orbitals r and s.

The dipole moment g consists of two parts, namely atomic dipoles
fhyy and electron displacement y,, i. . '

p= e + Unyp - (38)

The electron displacement part:
pe = 4,803 S R,0% (39)
A

where R is a position vector with the nucleus as origin. tryy in Eq. (38)
can further be divided into two parts, namely the atomic dipole parts of
hybrid robitals sp and pd:

Ynyp = HUsp -+ Kpa (40)

If both atoms A and B form a bond by hybrid orbitals, then the hybrid
atomic dipole sp tending from atom A to atom B is:

2e) a® + b* -+ ¢® -
fled) = —go ATz (41)

g 5P

where a, b and ¢ are hybridization factors, g, is the charge in orbital ¢, and
Z, :Js M_,pdz -—:jsipdz' (42)

The value of z;, can be evaluated for atoms with principal quantum

numbers 2 and 3 as follows,
= iw(zszp)slz ao
V§ [1/2(zs + zp)]G
7__ (z52p)2 a
V3 [1/3(z, + z,)] °

(43)

zp(n = 2)

ol = 3) = (23 (44)
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where z; and z, are the BurNs effective nuclear charges belonging to orbitals
s and p, respectively; a, = 0,5292 A.
Definition of the hybrid atomic dipole pd:

tpa(A) = ppa() i + di(}’); + ppa(s) & (45)

where p,4(x), pya(y) and p,4(z) are the dipole vector components along the
three Cartesian co-ordinates; this dipole y,; may similarly be evaluated as it
was shown for ug,.

It has already been mentioned that electronic excitation energies and
oscillator strengths can be calculated by LCVO method. The one-electron
excitation energies of singlet and triplet @ — b tranmsition (M3E3S5) can be
derived in the known way [9] from the SCF-LCVO-MO method.

Considering the ZDO condition used in LCVO-MO approximation:

n
SFSCF — £SC CF s
1, E&S—;b =& F__ 8&5 _ 2 *SPCF Cg CF .
pg#l
SCF ¢SCF 4 13,cSCF ¢5CF
(C + kca q Cb P )qu (4*6)
where %k = —2, 3%k = 0, ¢ and b designate the ground and the excited state,

respectively.

Starting from the SCF-LCVO molecular orbitals obtained by LCVO
method, the configurational interaction can be taken into account. The state
function related to excited state (3®) is obtained as the linear combination
of eigenfunctions belonging to one-electron singlet and triplet excited configura-
tions:

BO(1,2, .. .n) = IF13C,_sda(n) 4n
a-b
where 4,(n) is a SLATER determinant.

For determining the “3C,_, constants a variational calculation has to
be carried out in the known way. Finally the E (singlet) and 3E (triplet)
one-electron transition energies modified by configurational interaction are
obtained. In the knowledge of 3C,__, constants the transition dipole moments
and oscillator strengths can also be calculated [10]. The LCVO method gives
the orbital energies, ionization energies, total energy and bond energy, as it
will be shown in a subsequent paper. Varying bond lengths and bond angles
vields the potential curve and force constants, the dipole moment and singlet
and triplet transitions energies for each set of bond lengths and bond angles.

With an appropriate variation of parameters the method is likely to
give fair results for the physical quantities needed.
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Summary

1. A stricter alternative of CNDO/2 method, the so-called LCVO-MO method has been
developed. The MO eigenfunctions are approximated by the linear combination of valence
orbital (VO) base functions.

2. The ZDO condition zeroes all three-centre and four-centre integrals, only the one-
and two-center integrals of type y,, are taken into account.

3. The resonance integrals are given by the Hermmo1z— WoLFSBERG formula and the
necessary overlap integrals are calculated from VO eigenvalues according to BURNS’ rules,
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