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Introduction 

Up to now, partly ab initio (a priori) all electron methods, partly all 
yalence electron methods (CNDO, INDO, MINDO, PCILO, EHT etc.) have 
been used for the investigation of bond structure. For studying the molecular 
structure of organosilicon compounds, calculations have been carried out 
mainly by CNDOj2 method and to a lesser degree by ab initio method. The 
latter has been less widely extended because of its large computer time demand 
while the CNDOj2 method does not give reasonable results either in sp or 
in spd approximation. The role of d orbitals is entirely neglected in sp approxi­
mation and taken excessively into account in spd approximation. Naturally, 
this problem refers not only to silicon but to any element in the 3rd, 4th and 
5th rows. Of course the difficulty ever gro"ws for increasing atomic numbers. 

To eliminate the mentioned shortcomings a more sensitive quantum­
chemical calculation method has been developed, requiring greater attention, 
the so-called LCVO-MO (linear combination of valence orbitals - molecular 
orbitals) method. 

Basic principles of the LCVO-l\:IO method 

The method formally is a stricter alternative of the CNDO/2 method 
by CLARK [1]. It is known that CLARK modified the original CNDO/2 method 
hy the follo,~ing way: he calculated the electron repulsion integrals according 
to OHNO [2], the shielding factors according to BURNS' [3] and the resonance 
integrals by the WOLFSBERG-HELMHOLZ formula [4]. The ionization energies 
and electron affinities were chosen according to SICHEL and WHITEHEAD [5]. 
Assuming a fixed configuration, the CNDOj2 CLARK method provides the 
excitation energies of electron transition and the corresponding oscillator 
strengths in addition to the orbital energies and other usual quantities. CLARK 
carried out calculation [6] by this method, among others, for cyclopropane, 
ethylene oxide and ethylamine. 
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Starting from the principles of CNDOj2 - CLARK method, the LCVO-lVIO 
method is featured by the following. 

1. It takes only the valence electrons of the system into account. The 
electrons on closed atomic shells and part of the atomic nucleus are omitted 
and their effect only approximated. 

2. In contrary to the ab initio and the generally used approximate 
methods, the starting base functions are related to valence orbitals (VO) 
rather than to atomic orbitals (AO). The VO base functions are mostly hybrid 
functions based on the geometry of molecules in question, e. g.: 

where s, Px, py and pz are AO eigenfunctions, a, band c are hybridization 
factors. 

Consequently, the values of ionization energies and electron affinities 
in the HARTREE - FOCK matrix elements are calculated according to HINZE 
and JAFFE [7] on the basis of a given valence state. 

3. Using the ZDO (zero differential overlap) condition, part of the neces­
sary integrals are neglected. The rest of the integrals with the exception of 
overlap integrals - are empirically calculated: 

a) For the calculation of one-center electron repulsion integrals Ypp' 
PARISER'S method [8] was used: 

where Jp is the ionization energy, Ap is the electron affinity. 
b) The two-center electron repulsion integrals Ypq were taken according 

to OHNO [2]: 

14.397 [ V] (2) 
Y pq = (2 I R2 )1/2 e apq T pq 

where 

and R is the bond distance. 

28.794 
apq =----­

Ypp + Yqq 

c) The resonance integrals {3pq were calculated by WOLFSBERG-HELM­
HOLZ formula [4]: 

where K is a proportionality factor and Spq is the overlap integral. 
The overlap integrals were calculated from SLATER (STO) functions. 

The orbital exponent was given according to BURNS' rules [3], for hydrogen 
the C = 1,2 value was chosen, similarly to the CNDOj2 method. 
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4. Assuming fixed configuration, the electronic transition energies and 
the oscillator strengths can also be calculated using the configurational inter­
action (Cl) method. 

Formalism of LCVO-MO approximation 

The eigenvalue problem for a molecule (consisting of A, B, C ... atoms, 
(jJ centers and containing N valence electrons, n valence orbitals) can be 
'written as: 

H(I, 2, ... , N) Li(N) = E (1, 2, ... , N) Li(N) (4) 

where .d(N) is a determinant wave function. 
The Hamiltonian operator in (4) can be separated to one-electron 

Hamiltonian operators: 

'" N '" N '" N e2 
H(I,2, .. . ,N) = ~ Hi = ~ Ho(i) + ~-

i=l i=1 i,j Tij 
i-#j 

(5) 

e2 

where - is the repulsion potential between electrons and Ho(i) IS the core 
Tij 

Hamiltonian operator. The latter can be specified: 

HoCi) = T(i) + VA(i) + ~ VB(i) (6) 
B-#A 

where rei) is the kinetic energy operator related to electron i. VA(i) and VB(i) 
are potential energies from atoms A and B, respectively. 

The MO eigenfunction relating to electron i in quantum state k is a 
linear combination of valence orbitals: 

n 
lJ'k(i) = ~ ckpCfJp(i). (7) 

p=1 

The wave function CfJp(i) can be either VO function or hybrid function, 
i. e. SLATER type orbital function (AO). For example, in ethylene three Sp2 

trigonal hybrid wave functions and one pn atomic wave function belong 
to a carbon atom. The exact H.A.RTREE-FoCK eigenvalue equation: 

(8) 

Neglecting the overlap integrals S becomes unity matrix: 

(9) 

2 Periodica Polytecbnica Ch 21/3 
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The elements of FOCK matrix in Eq. (8): 

where 

then 

and 

F pq = Ipq + i Prs (pr I qs) - ~(pr I sq») 
Gs-l 2 

N/2 

Prs = 2 ::E Ckr . Cks ' 
k-l 

(pr I qs) and (pr I sq) are electronic repulsion integrals. 

1. Let P = q, 

Fpp = Ipp + 1/2qp(pplpp) + ::EA q(f.(pa.lp(f.) + 

P, IX E A 

{JEB 

"-'FP 

where 

(10) 

(11) 

(12) 

(13) 

2. If P 7- q, that is, orbitals p and q belong to two different atoms, then 

Fpq = Ipq - 1/2 Ppq (pq I pq) 

pEA 

q E B 

(14) 

Naturally, if two orbitals marked by p and q are on the same atom, 
then Eq. (14) becomes: 

F~ = -1/2 Ppq (pq I pq) and p, q EA, (15) 
since 

On the basis of Eq. (7) Ipp can be written as: 
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(16) 

where Wp is the energy of the electron on orbital !Pp in the field of the core of 
isolated atom p. 

Be ZB the number of valence electrons on atom B, then the core of atom 
B will have a positive charge ZB . e. Approximating the interaction of this 
core "With the orbital !Pr by repulsion Coulomb integral of the electron on orbital 
!Pp and of the ZB valence electrons belonging to atom B, and separating this 
interaction into terms ZB{3Yp{3 according to orbitals on atom B: 

(17) 

Naturally, the number of all valence electrons on atom B equals to the 
total of electrons on the particular orbitals, i. e. 

(18) 

Approximating the nondiagonal elements between given orbitals of 
atoms A and B according to HELMHOLZ and WOLFSBERG: 

(19) 

A relation is known to exist between the ionization energy and the one­
electron, non perturbed eigenvalue of valence orbital p on atom A: 

-Jp = Wp + ~ Zk.t(Prx Iprx) = Wp + ~ ZAcr.Ypcr. and rxEA. (20) 
a.#-P c:.:j6p 

Replacing Eqs (17) and (20) into (16), we obtain: 

(21) 

2* 
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Substituting (21) for diagonal matrix elements and introducing simpli­
fied notation for electronic repulsion integrals Yp:r; <P'X I P'X), YpfJ = <pfJ I pfJ), 
Ypq = <pq I pq), Eq. (13) becomes: 

and the nondiagonal matrix element expressed in terms of Eqs (14) and (20): 

F -fJo 1 pq - pq - 2" PpqYpq (23) 

if orbitals p and q belong to different atoms. 
If orbitals p and q are on the same atom, Eq. (15) takes the form 

Fpq = -1/2 PpqYpq • (24) 

It can be proven that, after certain simplifications and introducing: 

Y~p = YAA = YpP 

YfJp = YAB = Ypq 

Eq. (22) can be written as: 

Fpp = -Jp + Ii2qpYAA + (PAA - qp - ZAA + 1) YAA + 

+~(PBB -ZB)YAB' 
Bi'A 

(25) 

(26) 

Incorporating 1/2 qpYAA into terms in parentheses and taking. Eq. (1) 
into account: 

(27) 

Eq. (23) may be transformed similarly, 

(28) 
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Eqs (27) and (28) correspond to the formalism of the CNDOj2 method. 
Solving the eigenvalue equation (9), the MO energies efCF are obtained, 

identifiable, on the basis of KOOPMANS' theorem, with the one-electron ioniza­
tion energies. 

In the knowledge of SCF-MO energies and coefficients of the particular 
MO, the total electron energy of a system (Ee) is easy to give in the LCVO-MO 
approximation: 

n/2 
E - '"' (ISCF I e SCF ) e-..,;;;;. kk Tk (29) 

k=l 

where 

-L '"' c*SCF po cSCF 
I ..,.;;;. k, P pq k ,p . (30) 

p,eq 

The respective electron energies of atoms A, B, C ... are: 

(31) 

where i, j are electron numerals; Zp and Za. are numbers of electrons on orbitals 
p and IX, respectively; Yij is the Coulomb integral for interaction between elec­
trons i and j. 

The repulsion energy between nuclei may be written as: 

EM = ~ ZAZB ·14.397 reV]. 
B,eA RAB 

(32) 

The total energy in ground state is given by the algebraic sum of Eqs 
(29) and (32), 

(33) 

Subtracting the atomic electron energies, Eq. (31), from the total 
energy yields the dissociation (binding) energy: 

(34) 

In the LCVO-MO approximation the MULLIKAN population analysis 
ean be applied. For example, the partial charge o~ may be defined as: 

(35) 
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where 
(36) 

the total population on atom A and g the population on orbital cc of atom A. 
Bond orders, hard or sophisticated to obtain from the CNDOj2 approximation, 
are easy to derive by the LCVO method such as: 

PAB = ~ ~ Prs 
rEA sEB 

(37) 

where PAB is the total bond order between atoms A and B, Prs is the bond 
order between valence orbitals rand s. 

The dipole moment fl consists of tw-o parts, namely atomic dipoles 
flhyb and electron displacement fle' i. e. 

fl = fle + flhyb • (38) 

The electron displacement part: 

fle = 4,803 ~ RA o~ (39) 
A 

where R is a position vector 'with the nucleus as OrIgm. fLhyb in Eq. (38) 
can further be divided into two parts, namely the atomic dipole parts of 
hybrid robitals sp and pd: 

flpd (40) 

If both atoms A and B form a bond by hybrid orbitals, then the hybrid 
atomic dipole sp tending from atom A to atom B is: 

2e1/ a2 -L b2 -L c2 -
(A) - - I I I Z 

f-lsp - go 1 + a2 + b2 + c2 sp 
(41) 

where a, band c are hybridization factors, go is the charge in orbital qJp and 

zsp = J s Mzpd-r = J szpd-r (42) 

The value of zsp can be evaluated for atoms with principal quantum 
numbers 2 and 3 as follows, 

(43) 

(44) 
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where Zs and zp are the BURNS effective nuclear charges belonging to orbitals 
sand p, respectively; ao = 0,5292 A. 

Definition of the hybrid atomic dipole pd: 

(45) 

where f-Lpd(X) , f-LPd(Y) and f-Lpd(Z) are the dipole vector components along the 
three Cartesian co-ordinates; this dipole .upd may similarly be evaluated as it 
was shown for f-Lsp. 

It has already been mentioned that electronic excitation energies and 
oscillator strengths can be calculated by LCVO method. The one-electron 
excitation energies of singlet and triplet a ->- b transition (1,3 E~~n can be 
derived in the known way [9] from the SCF-LCVO-MO method. 

Considering the ZDO condition used in LCVO-MO approximation: 

n 
~ c*SCF C*SCF 

..:;;;. a,p b,q 
p,q#l 

• (cSCF c SCF + l,3kcsCF c SCF ) Y a,p b,q a,q b,p pq (46) 

where 1k = - 2, 3k = 0, a and b designate the ground and the excited state, 
respectively. 

Starting from the SCF-LCVO molecular orbitals obtained by LCVO 
method, the configurational interaction can be taken into account. The state 
function related to excited state (1,3<1» is obtained as the linear combination 
of eigenfunctions belonging to one-electron singlet and triplet excited configura­
tions: 

1,3<1>(1,2, ... n) = ~ UCa_bLlab(n) (47) 
a-b 

where Llab(n) is a SLATER determinant. 
For determining the 1,3Ca_ b constants a variational calculation has to 

be carried out in the known way. Finally the lE (singlet) and 3E (triplet) 
one-electron transition energies modified by configurational interaction are 
obtained. In the knowledge of l'3Ca_ b constants the transition dipole moments 
and oscillator strengths can also be calculated [10]. The LCVO method gives 
the orbital energies, ionization energies, total energy and bond energy, as it 
will be shown in a subsequent paper. Varying bond lengths and bond angles 
yields the potential curve and force constants, the dipole moment and singlet 
and triplet transitions energies for each set of bond lengths and bond angles. 

With an appropriate variation of parameters the method is likely to 
give fair results for the physical quantities needed. 
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Summary 

1. A stricter alternative of CNDOj2 method, the so-called LCVO-MO method has been 
developed. The MO eigenfunctions are approximated by the linear combination of valence 
orbital (VO) base functions. 

2. The ZDO condition zeroes all three-centre and four-centre integrals, only the one­
and two-center integrals of type Ypq are taken into account. 

3. The resonance integrals are given by the HELMHOLZ-WOLFSBERG formula and the 
necessary overlap integrals are calculated from VO eigenvalues according to BURNS' rules. 
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