# EFFECT OF HEAVY METAL SOAPS ON THE PROPERTIES OF Ca-COMPLEX GREASES

By

E. NEUMANN and E. VÁMOS\*

Department of Chemical Technology, Technical University, Budapest Received July 15, 1974 Presented by Assoc. Prof. Dr. I. SZEBÉNYI

#### Introduction

One of the most important tendencies in the development of lubricants is that of complex-soap base greases. Up to now three types have been succeeded, among the great number of possibilities studied, such as the sodium-stearate-furane-carboxilate, the barium-stearate-acetate and the calcium-stearate-acetate type complex greases. Of them, the calcium-stearate-acetate greases proved to be utmostly efficient for high temperature lubrication. Such greases are also commercially produced in Hungary  $\lceil 1-4 \rceil$ .

One of the disadvantages of Ca-complex greases is, however, their relative hardness. All products belong to NLGI consistency groups 0, 1 and 2, useful in hand lubricated systems but not in those of central lubrication.

Several authors attempted to modify their structure and consistency by adding other metal soaps, such as sodium, aluminium and lead soap in order to improve consistency, i.e. penetration. Up to now, however, no systematized data on the effect of such components have been published [5, 6].

# Components of the greases studied

The properties of the ingredients used for the greases investigated have been compiled in Table 1.

Pb-stearate was prepared from stearic acid by saponification with analytical grade NaOH, and precipitation of the lead soap by adding Pb-acetate to the sodium soap solution. The greases were prepared by conventional methods usual for the production of Ca-complex greases [4, 5].

After boiling, the greases were subjected to milling in a three-cylinder homogenizer and deareated by panning for 48 hours.

<sup>\*</sup> High Pressure Research Institute, Budapest

|                                         | Stearic<br>acid | Zn-stearate | Acetic<br>acid | Calcium<br>hydroxide | Pb-acetate* | Lubricating<br>oil, GT-50 |
|-----------------------------------------|-----------------|-------------|----------------|----------------------|-------------|---------------------------|
| Molecular weight                        | 280             | 623         | 60             | 74                   | 379.3       |                           |
| Saponification value, mg<br>KOH/g       | 210             |             | _              |                      |             |                           |
| Iodine number, g I/100 g                | 0.8             |             | _              |                      | _           | -                         |
| Pour point, °C                          | 51              |             | 13.6           |                      | _           | -18                       |
| Ash content, % by wt                    | 0.018           | _           |                |                      | _           | 0.005                     |
| Free mineral acid                       | none            | none        | _              |                      | none        | none                      |
| Zn content, % by wt                     |                 | 14.5        |                |                      | _           |                           |
| Pb content, % by wt                     |                 | 0.001       | 0.0001         | 0.05                 | 54.6        |                           |
| Alkali and earth metal content, % by wt |                 | 1.0         |                |                      | 0.048       |                           |
| Cl' content, % by wt                    |                 |             | 0.001          | <u> </u>             | 0.0005      | _                         |
| SO" content, % by wt                    |                 |             | 0.002          | 0.32                 | _           |                           |
| Fe content, % by wt                     |                 |             | 0.0001         | 0.17                 | 0.0010      | _                         |
| Mg and alkali content (in MgO), % by wt |                 |             |                | 0.95                 | _           |                           |
| Cu content, % by wt                     | _               |             |                | _                    | 0.0010      | _                         |
| Viscosity, cSt at 50°C                  |                 | _           |                |                      | _           | 46.9                      |
| Flash point, Marcusson, °C              | _               |             |                |                      | _           | 218                       |
|                                         |                 |             |                |                      |             |                           |

Table 1
Ingredients of the test greases

Beside conventional testing methods, mechanized working and electron microscopy were applied for evaluating the products. Resistance to mechanical stresses was calculated by means of the stability index [7]:

$$S,I_n^{60} = \frac{P_{60}}{P_n} \cdot 100$$

where  $S.I._n^{60}$  the stability index

P<sub>60</sub> the penetration of the grease at 25°C in 0.1 mm, after a working of 60 double strokes

n the number of double strokes applied in the mechanical worker (usually 10,000 or 100,000)

 $P_n$  the penetration of the grease after being exposed to n (usually 10,000 or 100,000) double strokes

<sup>\*</sup> Pb-acetate content 99.94% by wt

### **Experimental results**

Table 2 shows the properties of a conventional Ca-stearate-acetate base complex grease, corresponding in structure and behaviour to the so-called normal complexes, with a Ca-stearate to Ca-acetate mole ratio of about 1:4 [8]. The values are given for the sake of comparison. Such greases are seen to exhibit very good thermal and colloidal stability, and fairly good shear resistance, but are relatively hard.

Table 2
Properties of reference Ca-complex grease

|                                           | Grease No. 1 |
|-------------------------------------------|--------------|
| Ca-stearate, % by wt                      | 10           |
| Ca-acetate, % by wt                       | 10           |
| Penetration, unworked, mm/10 at 25 °C     | 150          |
| after 60 double strokes                   | 185          |
| ,, 10,000 ,, ,,                           | 210          |
| ,, 100,000 ,, ,,                          | 240          |
| Drop point, unworked, Ubb. °C             | 230          |
| after 100,000 doubles strokes             | 230          |
| Syneresis, unworked, at 100 °C, % by vol. | 0.0          |
| after 100,000 double strokes              | 0.0          |
| Stability index S.I. <sub>104</sub>       | 88           |
| $S.I{10^{5}}^{60}$                        | 77           |

Three sets of complex greases were prepared, containing, beside Ca-salts, also heavy metal derivatives. As commercial greases contain usually 20% of gelling components (i.e. soap + structure modifier), an overall concentration of 20% gelling agent was chosen to 80% oil, and composition and ratio of the components of the gelling agent was varied, keeping constant the overall concentration.

In the first set, part of Ca-stearate and/or of Ca-acetate was substituted by Zn-stearate (Table 3). Consistency is seen to be reduced (i.e. penetration increased) by adding Zn-stearate to the mixture.

This impaired, however, the thermal and mechanical stability (see worked penetration values, stability index values and drop points). Only grease 2 shows equal or better values in every respect, compared to the pure Ca-stearate-acetate complex grease.

In a second set of experiments, Pb-stearate was substituted for Zn-stearate. Table 4 shows the unworked penetration to be substantially reduced, at a loss, however, of thermal and mechanical stability. In addition, the colloid

stability decreased, i.e. syneresis of the product increased to an inadmissible degree. Only grease No. 7 shows acceptable characteristics, approaching those of some commercial products of foreign make, examined in our laboratory.

In a third set of experiments, replacing Pb-acetate for Ca-acetate as complexing or structure modifying agent was attempted. The properties of these products are shown in Table 5. This method yields very unstable products. At low Pb-concentrations the penetration values are favourable, but thermal stability and colloid stability are reduced (i.e. syneresis is high). For medium and high Pb-concentrations, both thermal and colloid stability are fairly good, but stability to shear is reduced.

#### Electron micrographs

To get an insight into the structure of the above mentioned greases, electron micrographs were made, shown in Figs 1 through 7.

For each grease two micrographs were taken, after 60 and after 100,000 double strokes, respectively, i.e. the first in a homogenized but practically unworked state, the other after a heavy mechanical stress.

Electron micrographs were made by the well-known method, described earlier in detail [9-12].

Table 3
Properties of Zn-Ca complex greases

|                                      |       | Grease |       |
|--------------------------------------|-------|--------|-------|
|                                      | No. 2 | No. 3  | No. 4 |
| Zn-stearate, % by wt                 | 5     | 3      | 3     |
| Ca-stearate, % by wt                 | 5     | 5      | 3     |
| Ca-acetate, % by wt                  | 10    | 12     | 14    |
| Penetration, mm/10 at 25 $^{\circ}C$ |       | 900    |       |
| unworked                             | 239   | 288    | 250   |
| after 60 double strokes              | 245   | 310    | 273   |
| ,, 10,000 ,, ,,                      | 250   | 398    | 355   |
| ,, 100,000 ,, ,,                     | 268   | 417    | 389   |
| Drop point, Ubb. °C                  |       |        |       |
| unworked                             | 250   | 150    | 136   |
| after 100,000 double strokes         | 250   | 141    | 130   |
| Syneresis at 100°C, % by Vol.        |       |        |       |
| unworked                             | 0.0   | 8.9    | 9.8   |
| after 100,000 double strokes         | 0.0   | 10.6   | 10.8  |
| Stability index                      |       |        |       |
| S.I. <sub>10</sub> ,                 | 96    | 77     | 76    |
| $S.I{10}^{60}$                       | 90    | 74     | 70    |

| _                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grease |       |  |
|                                | No. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. 6  | No. 7 |  |
| Pb-stearate, % by wt           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3      | 3     |  |
| Ca-stearate, % by wt           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5      | 3     |  |
| Ca-acetate, % by wt            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     | 14    |  |
| Penetration, mm/10 at 25 °C    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |  |
| ${f unworked}$                 | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 278    | 284   |  |
| after 60 double strokes        | 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300    | 300   |  |
| ,, 10,000 ,, ,,                | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 440    | 350   |  |
| ,, 100,000 ,, ,,               | liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | liquid | 380   |  |
| Drop point, Ubb. °C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |  |
| ${f unworked}$                 | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 171    | 250   |  |
| after 100,000 double strokes   | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 168    | 229   |  |
| Syneresis at 100 °C, % by Vol. | and the second s |        |       |  |
| unworked                       | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5    | 8.9   |  |

Table 4
Properties of Pb—Ca complex greases

The structure of the reference grease No. 1, typical of Ca-stearate-acetate complex greases, is shown in Fig. 1.

19.0

unmeasurable

17.9

16.0

86

79

after 100,000 double strokes

Stability index S.I.<sup>60</sup>

S.I.60

Figs 2(a, b) show the structure of the grease No. 2 before and after heavy mechanical working. The structure is seen to be little affected by the addition of Zn-stearate. After working some destruction of fibrils is shown.

The structure of grease No. 3 is seen in Figs 3(a, b) to be substantially altered as compared with No. 1 the fibrillar structure being less compact, and more intensively destroyed by mechanical forces.

Figs 4(a, b) show the structure of grease No. 4, where fibrils have been displaced by a foam-like structure and after working, an absolutely indefinite structure came about, accompanied by mechanical breakdown of the grease.

Figs 5(a, b) show the structure of grease No. 5, to entirely differ from the fibrils of any complex grease, very similar, in turn, to the soap particles of conventional non-complex lead greases, known from literature [10, 13]. This structure is seen to have a fairly good shear resistance and to change little after 100,000 double strokes.

Figs 6(a, b) show the structure of grease No. 6 in which Pb-stearate fibrils are less prevailing than before. This grease has a very low shear resistance, as shown by the completely destructed fibrils in Fig. 6b.

Table 5
Properties of Ca-Pb base greases

| No. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. 9                                                | No. 10                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | }                                                    |                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                   | 10                                                                                                                                                        |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                    | 10                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                           |
| 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177                                                  | 185                                                                                                                                                       |
| 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                  | 193                                                                                                                                                       |
| 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260                                                  | 264                                                                                                                                                       |
| 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 398                                                  | 397                                                                                                                                                       |
| ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                                                                                                                           |
| 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250                                                  | 250                                                                                                                                                       |
| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 171                                                  | 175                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                           |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                                                  | 0.0                                                                                                                                                       |
| 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                  | 0.0                                                                                                                                                       |
| ALL AND STATE OF THE STATE OF T |                                                      |                                                                                                                                                           |
| 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78                                                   | 73                                                                                                                                                        |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                   | 48                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 214<br>220<br>254<br>283<br>174<br>170<br>2.0<br>3.7 | 214     177       220     202       254     260       283     398       174     250       170     171       2.0     0.1       3.7     0.3       86     78 |



Fig. 1

Figs 7(a, b) show Ca-acetate crystals to prevail at high Ca-acetate concentration and to be inaffected by shearing.

The greases containing Pb-acetate as structure modifier (complexing agent) are different is structure from Ca-complex greases as seen from pictures



Fig. 2a



Fig. 2b



Fig. 3a



Fig. 3b



Fig. 4a



Fig. 4b



Fig. 5a



Fig. 5b



Fig. 6a



Fig. 6b



Fig. 7a



Fig. 7b



Fig. 8a



Fig. 8b



Fig. 9a



Fig. 9b

of grease No. 9 in Figs 8(a, b). The coarse fibrils are seen, to be entirely destructed by shearing, the destruction being responsible for the thixotropy or rheodestructive behaviour of these greases.

Figs 9(a, b) representing the structure of grease No. 10 are similar as above, the very coarse fibrillar structure, being similar in type to that of sodium base greases, and so is the bleeding tendency (syneresis).

## Summary

The effect of the addition of heavy metal soaps and salts on the properties, structure and behaviour of Ca-complex greases has been studied. A desirable reduction of consistency (increase of penetration) was seen to be possible in any case. This improvement however is often accompanied by loss of thermal, mechanical and colloid stability. The reduced mechanical resistance was shown to result from the liability of the fibrillar lattice of the soap structure to destruction.

At some favourable concentrations, however, products with the desired soft consistency could be prepared, keeping their good or fairly good mechanical, thermal and colloid stabilities.

#### References

- 1. Boner, C. J.: Manufacture and Application of Lubricating Greases, Reinhold. N.Y.
- 2. Vámos, E.: MTA Kém. Tud. Oszt. Közl. 13, 417 (1960)
- 3. Vámos, E.—Fodor, Gy.: MÁFKI kiadv. 147 (1958)
- 4. FEHÉRVÁRI, A.—POGÁNY, J.—VÁMOS, E.: Hung. Pat. 145. 625. (1958)
- 5. Suchánek, V.—Liebl, X.: Ropa a Uhlie 7 (15), 9, 262 (1965)
- 6. Armstrong, E. L.—Balmforth, N.—Berkley, J. B.: Paper 5 of IME. Lubrication and Wear 4 24 Convention, Schweringen (1966)

- 7. Vámos, E.—Fehérvári, A.: Acta chim. Acad. Sci. hung. 36, 417 (1963)
  8. Vámos, E.: MTA Kém. Tud. Oszt. Közl. 13, 4, 417 (1960)
  9. Anderson, L. al.: NLGI Spokesman 31, 1252, 1967 october
  10. Guba, F.—Vámos, E.: Acta chim. Acad. Sci. hung. 25, 85 (1960)
  11. Guba, F.—Vámos, E.—Fehérvári, A.: Acta chim. Acad. Sci. hung. 31, 101 (1962)
- 12. Vámos, E.—Szamos, J.—Bede, I.: Wear, 25, 189 (1973)
- 13. Guba, F.-Vámos, E.: Máfki Közl. 6, 63 (1965)

Dr. Ernő NEUMANN H-1521 Budapest