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I. General 

In the last decade, many efforts have been devoted to the modelling of 
the kinetics of heterogeneous chemical reaction systems. Methods have been 
developed for rigorous parameter estimation, for a posteriori discrimination 
between rival models, for experimental designs of the sequential type aiming 
at optimal discrimination among rival models, and for sequential designs 
aiming at obtaining precise estimates of the parameters of the mathematical 
model. An extensive survey of important contributions in this field has 
recently been given by KITTRELL (1971). 

Application of these advances in mathematical modelling have been 
restricted almost always to systems consisting of a single dependent variable. 
In general, ho·wever, industrial processes include several response variables. 

To obtain maximum information from the system, advantage should be 
taken of its multi-response character. Several criteria have been suggested in 
the literature to estimate parameters in multi-response models. In the follo"'wing 
paragraph a short survey of the most important methods is presented. 

n. Methods for parameter estimation in multi-response models 

Let the general representation of the mathematical model be given by 
the set of v equations, which may be linear or non linear in the parameters: 

Yl = fl(X, (3) + Cl = 7)1 + Cl 

Y2 = f2(X' (3) + C2 = 7)2 + C2 

Yv = fv(X, (3) + Cv = 7). + Cv 

* Lecture held at the Department of Chemical Technology, Technical University 
Budapest, 26. 9. 1973. 
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Some criteria which have been used to obtain estimates of the parameters 
involve the correlation coefficients between the experimentally observed values 
of the dependent variables and the values predicted by the mathematical model. 
The correlation coefficient between these quantities, e.g. for the j-th respon­
se, is defined as follows: 

The y values are functions of the unknm';"ll parameters. It has been suggested 
to seek the parameter values which 

1. maximize the square of the smallest correlation coefficient, 
2. maximize the square of the largest correlation coefficient, 
3. maximize the sum of the squares of the v correlation coefficients, 
4. maximize the square of the product of the v correlation coefficients. 

Criterion No.3 gives the best average multiple correlation coefficient since it 
weights all the correlation coefficients on an equal basis. 

The maximum probability concept which has been sho"W"ll to be of great 
value in the case of single response mathematical models, may be extended 
to multi-response process models. 

The observations of the response variables, which are experimental 
measurements of the v responses at n different settings of the independent 
controllable variables, can be classified into an (n * v) matrix where Yij repre­
sents the element in the i-th row and j-th column. Similarly, the experimental 
errors associated with these n * v observations can be grouped into an analog 
matrix, shown below: 

Experi­
ment No. 

1 
2 
3 

n 

Response No. 1 

The folIo·wing assumptions are made: 

2 .••.• r ....• v 

C12 ••• c1r ••• 81V 

C22 • • • C2T • • • 82v 

8 32 ••• 8 3r ••• c311 

cn2' •• 8nr • •• 8nv 

1. the n errors belonging to the r-th response are normally and independ­
ently distributed ,,;ith zero mean and constant variance arr ; 
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2. the errors "\\'ithin one experiment and associated with the different 
responses of that experiment are statistically dependent with variance­
covariance matrix the symmetric v * v matrix A: 

A 

r all a12 ••• a1v
l 

a12 a?2··· a2v 

3. the errors associated with measurements of different responses and 
having unequal experiment number are uncorrelated. 

The probability function of the parameters then has the form HUNTER [9]: 

or equivalently 

L = n expo --~ ~ (Irs ~ (Yir - rJir) (Yis - rJiS) 1 [ 1 v v [n ]] 
(V 2ntV (det A)2 2 r=1 s=1 i=1 

where a's is the appropriate element of A-I and rJ the predicted value of the 
response variable. 

The maximum probability parameter estimates are thus obtained by 
minimizing 

v v n 

~ ~ c;'S ~ (Yi,-rJi,) (Yis-rJiS) 
,=1 s=1 i=l 

From this expression two frequently encountered criteria for estimating param­
eters in multi-response problems are readily derived: 

1. The responses are uncorrelated but have unequal variances. This 
means that a's = 0 for all rand s with r # s, so that the matrix A and also its 
inverse A-I are reduced to diagonal matrices. The expression which has to be 
minimized simplifies to a sum of weighted sums of squares: 
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2. The responses are uncorrelated and have equal variance. The expres­
sion to be minimized further reduces to 

which is nothing but a straight-forward extension of the least squares principle. 
It is generally not allowed to assume uncorrelated responses and/or 

equal variances for all the responses, so that the full expression should be 
minimized. However, a difficulty arises hereby, since in many cases the matrix 
A and its inverse A-I are unkno·wn. Estimates of the a's elements may be 
obtained from replicated experiments. From a practical point of view however, 
these may be difficult to perform or turn out to be too expensive. A way out of 
this impasse is to replace the unknown variance-covariance matrix A by its 
maximum probability estimate. Box and DRA.PER [1] showed that the 
maximum probability estimates of the parameters are then obtained by the 
minimization of 

\.E(Y1 - 1)1)2 

! .E(Y1 - 1)1) (Y2 - 1)2) 

detj 

I 
L .Eth - 171) (Yv - 17v) 

.E(Y1 - 1)1) (Y2 - 1)2) ••• .E(Y1 - 171) (Yv - 1)v) 
.E(Y2 - 1)2)2 ••• .E(Y2 1)2) (Yv - 1)v) 

with respect to the parameters. 
'Minimization of the above determinant requires search techniques, even 

when the mathematical equations for all the responses are linear in the param­
eters. 

Attention should be given to the fact that the matrix w-hose determinant 
is minimized, must not be singular or nearly singular. Singularities arise from 
linearly dependent responses as encountered e.g. when a so-called 'observed' 
value is obtained from a mole fraction balance, or when the 'observed' value 
for one response is nothing but a constant percentage of the truly e::l..--perimehtal 
value of another response. Empirical methods exist to trace such dependeIices' 
(Box and HUNTER [2]). 

In practice, it is often not known whether the responses are statistically 
independent or not. It is therefore recommended to try the determinant 
criterion first. Only a very limited number of papers has dealt with the appli~ 
cation of the determinant criterion to multi-response data. MEZAKI and BUTT 
[12] analyzed experimental data concerning the dehydration of ethylalcohol 
by means of the determinant criterion. In a paper partly dedicated to the 
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use of the determinant criterion (EAKMAN, [5]), simulated data were employed 
to compare the performance of this criterion ,~ith that of the trivial extension 
of the least squares principle. The results are, however, of little value, since 
some basic properties of the error which must be fulfilled in both methods 
were violated (ERJAVEC [6]). Finally, Box and (HUNTER [2]) recently re­
analyzed the data of FUGUITT and HAWKINS (1947) concerning the thermal 
isomerization of a-pinene and presented a method to detect dependences which 
may cause the determinant to be singular. 

nI. Estimation of parameters in the complex chemical reaction system: 
pentane isomerization with catalyst decay 

A problem of this kind has been encountered in our laboratory where 
the kinetics of the isomerization of n-pentane on a commercial bifunctional 
catalyst has been studied. 

On the basis of published and own experimental data (LAl\IBRECHT, 
NUSSEY and FROl\lENT [H]); (DEPAUW and FROMENT [4]), a tentative 
mechanism for this complex process has been set up 

/ 
)'f Methane, ... , Butane 

h / ~~ h 
n-pentane:;;:::::::::: n-Pentene ~ i-Pentene :;;:::::::::: i-Pentane 

"'-"-' // 
'x Coke;/ 

The deactivation problem has been attacked along the lines suggested 
by FROl\IENT and BISCHOFF [7], i.e. the coke content on the catalyst has 
been related to the process variables, such as partial pressures of reactants 
and reaction products, amount of reactant fed, weight of catalyst etc .... 
instead of time as is frequently done. Time is evidently not a true variable 
from the point of view of the mechanism of coke formation. 

A typical set of experimental results (DEPAUW, Ph. D. Thesis,Gent[3]), 
is shown in Fig. 1. 

. The gas samples are taken at several points along the axis of the reactor 
at time intervals of one hour. The total duration of an experiment is H to 12 
hours. 

At the end of the experiment, the catalyst is unloaded from the reactor 
and divided in several sections. The coke is burnt off from each section. The 
difference in weight before and after the burning off operation yields the 
carbon profile along the bed at the end of the experiment. Fig. 1 shows such 
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Fig. 1. Experimental (0) and calculated (--) results 
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an experimental carbon profile. This profile exhibits a descending as well as an 
ascending part. In terms of the theory set up by FROMENT and BISCHOFF 

[7] the coke may be considered as deposited by both a parallel and a con­
secutive mechanism. 

In order to describe the process, a mathematical model was set up taking 
into account the multiresponse character of the system. The reaction rate 
equations for the three responses were chosen as follows: 

Isomerization (main reaction) (HOSTEN and FROMENT [8]) 

k] (YA - YB/K) 
YH,+KBYB 
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Hydrocracking (parallel side reaction) 

Coke formation (parallel and consecutive secondary reactions) 

To account for the deactivation of the catalyst, the rate coefficients in the 
three reaction rate equations contain a deactivation function which is only 
dependent upon the coke content of the catalyst 

k/ = k~ 0 1 

kH = k'H O2 

kcp = k~p 0 3 

kcc = kcc 0 4 

From separate experiments, kcp was shown to vary exponentially with the 
coke content. To limit the complexity, all Oi were assumed to be identical and 
of the exponential type, so that 

With these simplifications the mathematical model for the process con­
tains seven parameters: four rate constants, two reaction orders and one de­
activation parameter. These parameters were estimated by means of the de­
terminant criterion discussed in the preceding paragraph. To limit the com­
putations, the differential method of kinetic analysis, involving reaction rates 
instead of conversions, had to be adopted, so that the appropriate determinant 
to be minimized was 

I 1:(r/ _ r/)2 
det 1:(r/ - r/) (rH - rH) 

1:(r/ - r1) (rc - rc) 

1:(r/ - r/) (rH - rH) 
1:(rH - rHP 
1:(rH - rH) (rc - re) 

1:(r/ - r/) (rc - re) 
1:(rH - rH) (re - re) 
1:(rc - rc)2 

The rates were not observed directly: they were derived from the experiment­
ally measured mole fractions or coke content. 

The isomerization reaction rates were obtained by means of a method 
similar to that proposed by KITTRELL and MEZAKI [10], involving a fit of 

9 Periodica Polytechnica CH. XIX. 1-2. 
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some logarithmic function of The conversion by means of a truncated poly­
W 

nomial in-- and subsequent analytical differentiation. 
FA, 

The hydrocracking reaction rates were obtained by direct numerical 
differentiation of the ex-perimental hydro cracking conversion vs. Wj FA, curves. 

A. difficulty is encountered in finding the carbon formation reaction 
rates. This is due to the fact that only one coke profile corresponding to the 
entire reaction period is available and all intermediate contents, necessary for 
the derivation ,vith respect to time, are missing. This seriously complicates the 
data analysis since an iterative procedure has now to be adopted. In the first 
·stage, the intermediate coke profiles are estimated ,vith the aid of a Voorhies­
type rule for the coke content: 

c= P(z) Vt 
where the function P(z) is defined by the final profile. These profiles have to be 
improved by iteration. The procedure is as follows. From the preliminary 
estimated coke contents, first estimates of the carbon formation reaction 
rates are obtained by numerical differentiation. Minimization of the deter­
minant, an iterative procedure in itself, is then started for parameter esti­
mation. However, only a limited number of parameter improvements is 
allowed because of the temporary character of the current estimates of the 
carbon formation reaction rates. With the current parameter estimates, an 
integration of the model equations is performed. The mathematical model of 
the process consists of the 

continuity equation for n-pentane: 

continuity equation for hydro cracking products: 

continuity equation for carbon on the catalyst: 

oc 
at 

The integration of this set of partial differential equations is carried out numer­
ically along the characteristics z and t - z. This integration yields predicted 
carbon profiles at the end of the run as well as at all intermediate times. The 
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final integrated carhon profile is shifted to correspond to the experimentally 
measured profile. This shift yields a scaling function q;(z) 'vith the aid of which 
all intermediate predicted coke profiles are corrected. The ohtained corrected 
coke profiles are now considered as improved estimates of the unknown ex­
perimental profiles. The operations described constitute one cycle of the iter­
ative procedure. Program control is then transferred to the numerical differenti­
ation procedure to yield improved estimates of the experimental carhon 
formation reaction rates. The procedure is continued until stahle solutions are 
ohtained. 

The search procedure for minimizing the appropriate determinant was 
RosENBRocK's method. The number of parameter improvements within one 
of the described cycles was arhitrarily limited to 99. 

In Fig. 2 a typical hehaviour of the parameters is shown as a function of 
the numher of iteration cycles. In early stages of the procedure, large oscil­
lations in the parameter estimates are ohserved. A fairly large numher of these 
iterations is required to level out the oscillations. 

In Fig. 1 experimental results and model predictions are compared for a 
typical experiment. Both calculated curves, predicting the n-pentane mole 
fraction, lie entirely ahove the experimental ones. This should not he misinter­
preted, however. The systematic deviations are due to the fact that the param­
eter estimation criterion actually involved the rates, rather than the ex­
perimentally ohserved mole fractions. No ahnormal hehaviour is ohserved 
when predicted and experimental rates are compared, as is done in Fig. 3. 
The largest deviation hetween experimentally ohserved and predicted mole 
fractions of n-pentane does not exceed 5%. The agreement may he considered 
as excellent. The largest deviation hetween experimentally measured and pre­
dicted coke contents amounts to 18%. The average error is 9.6% which is 
indeed the accuracy with which the carhon content of the catalyst is measured. 
The overall agreement is satisfactory. 

It is interesting to compare the results ohtained hy the determinant 
criterion 1Vith those ohtained hy a more commonly applied procedure, such as 
the minimization of a sum of weighted sums of squares. For this purpose the 
follo1Ving quantity was minimized 

where the weights were chosen on the hasis of common sense. The procedure 
was started 'vith the initial parameter estimates and coke profiles used in the 
procedure hased upon the determinant criterion. It was ohserved that the 
oscillations persisted for a much larger number of iterations. A comparison of 
hoth sets of parameter estimates is made in columns 2 and 3 of Table 1. Rather 
large deviations are seen to exist among hoth estimates for the parameters 

9* 
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Fig. 2. Behaviour of parameter estimates as a function of the number of iteration cycles 

which appear in the carbon formation reaction rate. The deactivation parameter 
ex is also subject to some variation. Thesc discrepancies might be explained to 
a great extent by the fact that the latter criterion does not account for the 
correlation between the different responses. Table 2 shows the maximum 
probability estimates of the correlation coefficients between responses. The 
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Table 1 

Parameter estimates and confidence intervals at the 0.95 probability level 

I Confidence intervals 
Parameter Sum of squares Detenninant for the parameters 

criterion criterion from determinant 
criterion 

k'j 0.0268 0.0278 

I 
± 0.00079 

Cl( 197 228 + 20.3 

nz 2.46 3.67 + 0.17 

kH 0.000172 0.000184 -L 0.0000052 

kcp 0.000434 0.000333 , 0.000026 

kcC 0.00336 0.00836 + 0.00058 

n1 3.64 3.46 -L 0.11 

Table 2 

Maximum probability estimates of correlation coefficients between the responses 

Isomerization 

Hydro cracking 

Carbon formation 

Isomerization 

1 

HydrGcracking 

0.419 

1 

Carbon formation 

0.938 

0.183 

I 

133 

carbon formation reaction rate seems to be highly correlated v,ith the iso­
merization reaction rate. Besides the correlation, also the magnitude of the 
weighting factors in the least squares criterion affects the parameter estimates. 
The parameters related to the main reaction and the hydrocracking are fairly 
insensitive with respect to the estimation criterion. For k], this is not surprising 
since the isomerization rates vary over the ·widest range and are accurately 
determined, so that almost any criterion would yield comparable estimates. 

Any analysis of this type should be accompanied by a statistical analysis 
of the reliability of the estimated parameters to test if the model does not 
contain any superfluous parameters. If it does, these parameters should be 
deleted since they do not significantly contribute to the adequacy of the model, 
or further experiments may be designed attempting to improve the reliability 
of the non significant parameters. Such an analysis was performed and the 
result is sho,m in the 4th column of Table 1. This column lists the confidence 
intervals for the parameters corresponding to the 95 % probability level. The 
intervals are seen to be rather narrow. None of them contains the value zero 
so that all parameter estimates are significantly determined. The results are 
statistically meaningful. It should be mentioned here that the confidence 
intervals in Table 1 are individual confidence intervals, i.e. they give the range 
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Fig. 3. Experimental (0) and calculated Ce) isomerization rates 

in which the true but unknown parameter value may be expected to lie 95 out 
of 100 times when all the remaining parameters are held constant at their 
optimal value. The construction of the joint confidence region, which accounts 
for the variability of all parameters simultaneously, is simply out of question 
here, because of the dimensionality of the problem. 

IV. Conclusions 

The application of the determinant criterion to the experimental data of 
a multiresponse problem has been illustrated. The computational labour was 
found not to increase significantly compared to more commonly used methods 
which require the choice of the weights of the different responses. 

The model contained seven parameters which were significantly estimat­
ed as was shown by their individual 95 % confidence intervals. The estimates 
of the parameters related to coke formation were different from those obtained 
by the least squares approach. This may be explained by the correlation 
between responses which is taken into account in the determinant criterion 
and not in the extended least squares method. 
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Summary 

The paper deals with the estimation of parameters in a multiresponse reaction system, 
namely the isomerization of n-pentane, accompanied by hydrocracking and coke deposition. 
The parameters are estimated by the determinant criterion developed by Box and Draper 
which takes into account the unknown correlation between the responses. A comparison of 
these estimates with those obtained from a less rigorous extension of the classical least squares 
principle is made. Significant differences between both sets of estimates for the important 
coke formation parameters are found. A statistical analysis of the reliability of the param­
eter estimates obtained by the determinant criterion is also presented and shows that the 
results are statistically meaningful. 

C 
FAo 
FI 
KB 
W 
dp 
k[, kH 

kep, kee 

n 
n 1,: nz 
P 
PI 
r[, rH 

re 
t 
v 
YA, YB' YH2 
Yij 

z 

Notation 

carbon content of the catalyst [g coke/g catalyst]; 
molar feed rate of n-pentane at the iulet of the reactor [molefhr]; 
total molar feed rate of n-pentane and hydrogen [molefhr]; 
constant in the reaction rate equations, equal to 10; 
weight of catalyst [gram]; 
catalyst particle diameter [cm]; 
(forward) reaction rate coefficients of isomerization and hydro cracking, re­
spectively [mole/(g catalyst) (hr)]; 
reaction coefficients of coke formation by a parallel mechanism and by a 
consecutive mechanism, respectively [g coke/(g catalyst) (hr)]; 
number of experiments, i.e. number of settings of the independent variables; 
exponents in hydro cracking and coke formation reaction rate equations; 
number of parameters; 
total pressure [atm]; 
reaction rates of isomerization and hydro cracking, respectively [mole/(g 
catalyst) (hr)]; 
reaction rate of coke formation [g coke/(g catalyst) (hr)]; 
time [dimensiouless]; 
number of responses; 
mole fractions of n-pentane, i-pentane and hydrogen, respectively: 
experimentally observed value of the j-th response at the i-th setting of the 
independent variables; 
axial reactor co-ordinate [dimensiouless] 

Vectors and matrices 

p .(P * 1) 
y{l) (v * 1) 

Yi .(n* 1) 
1/1

) (v * 1) 

X 
A 

vector of the true (unknown) parameter valueSg 
vector of experimentally measured values of the v responses at the i-th 
setting of the independent variables; 
vector of observed values of the i-th response for all n experiments 
vector of true (unknown) values of the v responses at the i-th setting of the 
independent variables; 
vector of settings of independent variables; 
variance-covariance matrix of the responses, i.e. matrix of aij elements; 

Other Greek symbols 

Cl. 

Y 
c 
ci 
'fJi 
(!j 

(!B 
Q 
tp(z) 
o 
P(z) 
aij 

deactivation parameter; 
selectivity for isomerization; 
void fraction of catalyst bed; 
unobservable experimental error associated ,vith the i-th response; 
true (unknown) value of the i-th response variable; 
correlation coefficient of experimentally observed and predicted values 
of the j-th response; 
density of the catalyst bed [g catalyst/cm3 reactor]; 
cross section of the reactor [cm 2]; 
function used in shifting the estimated carbon profiles; 
deactivation function: 
function used in the Voorhies law; 
covariance between responses i and j; 
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Superscripts 
o in the absence of fouling; 

mean value; 
predicted value by the mathematical model; 
mean from the predicted values. 
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