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Note: In this journal several articles have been published on the physical role, the

generalization and the inequalities of the different means [1], [2]. The following paper is the
continuation of these investigations from another aspect.

In this paper we prove inequalities of some means using a probabilistic
method and we also deal with a classical inequality.
Theorem. If @ and b are positive and a < b, then
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Proof. Let x,, x,, x3,... be independent random variables uniformly
distributed over the interval (a, b). By the strong law of large numbers
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with probability one, therefore (1) is a consequence of the arithmetic-geometric
mean inequality.
Similarly, (2) follows from the geometric-harmonic mean inequality.

Remarks

1. If f{x),x € {a,b),i=1,2 are continuous and strictly monotonic
functions, p, >0, k=1,2,...,n
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and f, is increasing, then a necessary and sufficient condition that m, < m,
for all x,, %,,..., %, and py, Pos. - -, P, is that f, - f' should be convex ([3]
p- 75). If we know that m; < m, (e.g. because of the here mentioned theorem)
and «x,, k= 1,2,... are independent random variables depending on some
parameters, then using our probabilistic method we obtain great many new
inequalities.

2. Let us consider the Carleman’s inequality: if x, ®,. .. are nonnegative
and not all zero, then
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The constant e is the best possible [3]. It is also known [4] that if 7 is the

n
best constant for the inequality
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At the same time it is evident that if x,, k = 1, 2,... are independent random
variables having the same uniform distribution e.g. over (0, 1) then
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with probability one and the right side is negativeif and onlyif 7 > -, there-
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2
fore in this sense— is the best possible constant. Many other inequalities
e

(Hardy’s inequality etc.) can be handled in the same way.
3. Using the notations:
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we have proved:

leog < Mexp < Man
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It is also true that:

JIharm < jfgeom < —""I!og < »M—exp < —'M[ar . (3)

~

The proof of the relation:

Moeom << Mg (3a)
can be found in [1].
The inequality:
Mg < My (3b)
is also proved in [1] and [5].
Summary

The main conclusion of the paper is the following sequence of inequalities:
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where ¢ > 0,5 > 0 and a == b.
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