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Note: In this journal several articles have been published on the physical role, the 
generalization and the inequalities of the different means [ll. [2]. The following paper is the 
continuation of these investigations from another aspect. 

In this paper we prove inequalities of some means using a probahilistic 
method and we also deal \\ith a classical inequality. 

Theorem. If a and b are positive and a < b, then 
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with probability one, therefore (1) is a consequence of the arithmetic-gcometric 
mean inequality. 

Similarly, (2) follows from the geometric-harmonic mean inequality. 

Remarks 

1. If fl"r), x E (a, b), i = 1,:2 are continuous and strictly monotonic 
functions, p" > 0, k 1, 2, ... , 71 
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and f2 is increasing, then a necessary and sufficient condition that m l < 1112 

for all Xl' X2" .. , xn and PI' P2" .. , Pn is that f2 . fil should be convex ([3] 
p. 75). If we know that 1111 ~ 1112 (e.g. because of the here mentioned theorem) 
and XI;' k = 1, 2,. .. are independent random variables depending on some 
parameters, then using our probabilistic method we obtain great many ne,,' 
inequalities. 

2. Let us consider the Carleman's inequality: if Xl' X z . .• are nOlluegative 
aud not all zero, then 

.:E (Xl X 2 · .• Xn)I/11 .< e .:E X/1' 

11-1 11-1 

The constant e is the best possihle [3]. It is also known [4.] that if ;'/1 is the 
hest constant for the inequality 
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At the same time it is evident that if XI;' k = 1, 2, ... are independent random 
variables having the same uniform distribution e.g. over (0, 1) thcn 

I. 

2 

2 
with probability one and the right side is negative if and only if /. > ., there-

2 e 
fore in this sense .-. is the hest possible eonstant. Many other inequalities 

e 
(Hardy's inequality etc.) can be handled in the same way. 

3. Using the notations: 
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we have proved: 
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It is also true that: 

JIharm </ M"geom < Jflog < J"lexp < iHar · 

The proof of the relation: 

J1 geol11 < Jflog 

can be found in [1]. 
The inequality: 

is also proved in [1] and [5]. 

Summary 

The main conclusion of the paper is the following seqnence of inequalities: 

Ynh< b-a 
In b - In a 

where (1 > 0, b > I) and a == b. 
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