A PROBABILISTIC PROOF OF INEQUALITIES OF SOME MEANS

By

G. J. Székely

Department of Probability Theory and Statistics, Loránd Eötvös University, Budapest

(Received June 28, 1973)

Presented by Prof. K. TETTAMANTI

Note: In this journal several articles have been published on the physical role, the generalization and the inequalities of the different means [1], [2]. The following paper is the continuation of these investigations from another aspect.

In this paper we prove inequalities of some means using a probabilistic method and we also deal with a classical inequality.

Theorem. If a and b are positive and a < b, then

$$\frac{1}{e} \cdot \frac{b^{\frac{b}{b-a}}}{a^{\frac{a}{b-a}}} < \frac{a+b}{2} \tag{1}$$

$$\frac{b-a}{\ln b - \ln a} < \frac{1}{e} \cdot \frac{b^{\frac{b}{b-a}}}{a^{\frac{b}{b-a}}}$$
(2)

Proof. Let x_1, x_2, x_3, \ldots be independent random variables uniformly distributed over the interval (a, b). By the strong law of large numbers $\lim_{n \to \infty} \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{a+b}{2}$ and $\lim_{n \to \infty} \frac{\ln x_1 + \ln x_2 + \ln x_3 + \ldots + \ln x_n}{n} =$ $= \frac{b \cdot \ln b - a \cdot \ln a}{b-a} - 1$ i.e. $\lim_{n \to \infty} \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \ldots x_n} = \frac{b^{\frac{b}{b-a}}}{a^{\frac{b}{b-a}}} \cdot \frac{1}{e}$

with probability one, therefore (1) is a consequence of the arithmetic-geometric mean inequality.

Similarly, (2) follows from the geometric-harmonic mean inequality.

Remarks

1. If $f_i(x), x \in (a, b), i = 1, 2$ are continuous and strictly monotonic functions, $p_k > 0, k = 1, 2, ..., n$

$$m_i(x_1, x_2, \ldots, x_n) = f_i^{-1} \left(\frac{p_1 \cdot f_i(x_1) + p_2 \cdot f_i(x_2) + \ldots + p_n \cdot f_i(x_n)}{p_1 + p_2 + \ldots + p_n} \right)$$

 7^{*}

and f_2 is increasing, then a necessary and sufficient condition that $m_1 \leq m_2$ for all x_1, x_2, \ldots, x_n and p_1, p_2, \ldots, p_n is that $f_2 \cdot f_1^{-1}$ should be convex ([3] p. 75). If we know that $m_1 \leq m_2$ (e.g. because of the here mentioned theorem) and $x_k, k = 1, 2, \ldots$ are independent random variables depending on some parameters, then using our probabilistic method we obtain great many new inequalities.

2. Let us consider the Carleman's inequality: if $x_1, x_2...$ are nonnegative and not all zero, then

$$\sum_{n=1}^{\infty} (x_1 x_2 \dots x_n)^{1/n} < e \sum_{n=1}^{\infty} x_n.$$

The constant e is the best possible [3]. It is also known [4] that if λ_n is the best constant for the inequality

$$\sum_{m=1}^{n} (x_1 x_2 \dots x_m)^{1/m} < \lambda_n \sum_{m=1}^{n} x_m,$$

then

$$\lambda_n = e - rac{2\pi^2 e}{(\log n)^2} + 0 \left(rac{1}{(\log n)^3}
ight), \quad (n o \infty) \,.$$

At the same time it is evident that if x_k , k = 1, 2, ... are independent random variables having the same uniform distribution e.g. over (0, 1) then

$$\lim_{n\to\infty}\frac{1}{n}\left[\sum_{m=1}^n(x_1x_2\ldots x_m)^{1/m}-\lambda\cdot\sum_{m=1}^nx_m\right]=\frac{1}{e}-\frac{\lambda}{2}$$

with probability one and the right side is negative if and only if $\lambda > \frac{2}{e}$, therefore in this sense $\frac{2}{e}$ is the best possible constant. Many other inequalities (Hardy's inequality etc.) can be handled in the same way.

3. Using the notations:

$$\begin{split} M_{ar} &= \frac{a+b}{2} \,; \qquad M_{\exp} = \frac{1}{e} \cdot \frac{b^{\frac{b}{b-a}}}{a^{\frac{a}{b-a}}} \,; \qquad M_{\log} = \frac{b-a}{\ln b - \ln a} \,; \\ M_{\text{geom}} &= \sqrt[]{ab} \,; \qquad M_{\text{harm}} = 2 \left(\frac{1}{a} + \frac{1}{b} \right)^{-1} \qquad (a \neq b, \ a > 0, \ b > 0) \end{split}$$

we have proved:

$$M_{
m log} < M_{
m exp} < M_{
m ar}.$$

It is also true that:

$$M_{
m harm} < M_{
m geom} < M_{
m log} < M_{
m exp} < M_{
m ar}$$
 . (3)

The proof of the relation:

$$M_{\rm geom} < M_{\rm log}$$
 (3a)

can be found in [1]. The inequality:

$$M_{
m log} < M_{
m ar}$$
 (3b)

is also proved in [1] and [5].

Summary

The main conclusion of the paper is the following sequence of inequalities:

$$\sqrt[p]{ab} < \frac{b-a}{\ln b - \ln a} < \frac{1}{e} \ \frac{b^{\frac{b}{b-a}}}{a^{\frac{a}{b-a}}} < \frac{a+b}{2}$$

where a > 0, b > 0 and $a \neq b$.

References

- 1. TETTAMANTI, K.-SÁRKÁNY, G.-KRÁLIK, D.-STOMFAI, R.: Über die Annäherung logarithmischer Funktionen durch algebraische Funktionen. Per. Polytechn. Chem. Eng. 14 (1970) Nr. 2. 99-111 p.
- KRÁLIK, D.: Über einige Verallgemeinerungsmöglichkeiten des logarithmischen Mittels zweier positiver Zahlen. Per. Polytechn. Chem. Eng. 16 (1972) Nr. 4. 373-379.
 HARDY, G. H.-LITTLEWOOD, J. E.-PÓLYA, G.: Inequalities. University Press, Cambridge,
- 1952.
- 4. WILF, H. S.: Finite Sections of Some Classical Inequalities. Springer Verlag, Berlin, 1970.
- 5. MITRINOVIC, D. S.: Elementary Inequalities. P. Noordhoff LTD Groningen, The Netherlands, 1964.

Gábor József Székely, 1088 Budapest, Múzeum krt 6/8. Hungary

101