QUANTENCHEMISCHE RECHNUNGEN MIT DER ELEKTRONISCHEN RECHENANLAGE RAZDAN-3 II. VSCF-LCAO-MO-PPP-RECHNUNGEN

Von

J. Nagy—M. T. Vándorffy—I. Horváth*

. Lehrstuhl für Anorganische Chemie, Technische Universität Budapest Eingegangen am 18. Februar 1971

Die SCF-LCAO-MO-PPP-CI-Rechnungen an Silyl-Äthylen Modellverbindungen [1] haben uns überzeugt, daß allein durch Parametervariation (durch Variation der Ionisierungsenergie Usi, Uc, der Resonanzintegralwerte β_{SiC}° , β_{CC}° und der Elektronenwechselwirkungs-Coulomb-Integrale γ_{SiSi} , γ_{CC}) keine solchen Eingangsparameter ermittelt werden können, die bei allen fünf Modellverbindungen (Tab. I) mit den Versuchsdaten übereinstimmende berechnete Ergebnisse liefern. Damit die Rechnungen den Änderungen im π-System empfindlicher folgen, wurden die Fock-Matrixelemente in jedem Iterationsschritt nicht auf die in der PPP-Methode übliche Weise berechnet, sondern es wurden die Änderungen der Variationsparameter, Elektronendichte und Bindungsordnung auch bei der Ionisierungsenergie (U_i) und den Resonanzintegralen (β_{ik}°) berücksichtigt. Es wurde ein Rechenprogramm für eine elektronische Rechenanlage Razdan-3 verfertigt, ferner die Wirkung der erwähnten Variation der U_i- und β_{ik}° -Werte auf Elektronendichte (q_i) , Bindungsordnung (p_{ik}) und Singulett-Übergänge (${}^{1}E$) der Modellverbindungen untersucht.

Rechenprogramm

Im ersten Teil des VSCF—LCAO—MO—PPP-Rechenprogramms werden mit den unter den Eingabedaten vorhandenen effektiven Kernladungswerten Z_i^* , die U_i -Werte der nullten Näherung mit den folgenden Gleichungen berechnet:

$$Z_i = Z_i^* - 0.35 \, q_i \tag{1}$$

$$U_i = a_i e^{b_1 Z_1} + d_i \tag{2}$$

wobei Z_i^* die theoretisch berechnete oder die auch die σ -Polarisation berücksichtigende, effektive Kernladung ist [2].

^{*} Rechenzentrum der Technischen Universität Budapest.

 q_i ist die Elektronendichte beim *i*-ten Atom, die sich in jedem Iterationsschritt bei gerader π -Elektronenzahl nach der folgenden Gleichung ändert:

$$q_i = 2\sum_{i=1}^{n/2} c_{ij}^2, (3)$$

wobei cii Eigenvektorkomponenten bedeuten,

 a_i und b_i zu dem *i*-ten Atom gehörende Konstanten, Eingabedaten [2] sind.

 $d_i = 0$, wenn eine U_i -Variation ausgeführt wird.

Wenn bei den Rechnungen die U_i -Werte nicht geändert werden, dann sollen $d_i = U_i$ -Werte als Eingabedaten angegeben werden. In diesem Fall erhalten die Konstanten a_i und b_i einen Wert gleich Null.

Im nächsten Teil des Programms werden die Werte des Resonanzintegrals β_{lk}° in nullter Näherung nach der Wolfsberg—Helmholtz-Beziehung berechnet.

$$\beta_{ik}^{\circ} = e_{ik} \left(U_i + U_k \right) S_{ik} \tag{4}$$

wobei e_{ik} Konstanten, Eingabedaten, U_i und U_k die nach (1) berechneten Ionisierungsenergiewerte bedeuten. S_{ik} sind Überlappungsintegralwerte, die das Rechenprogramm mit Hilfe der effektiven Kernladungen und Bindungsabstände, mit den früher veröffentlichten Formeln [3] berechnet.

Unter den Eingabedaten soll eine »Beziehungsmatrix« angegeben werden, mit deren Hilfe bestimmt wird, ob der Rechner die β_{ik}° -Rechnungen nach der S_{SiC} - oder nach der S_{CC} -Methode durchführen soll. Wird nicht gewünscht, daß der Rechner einige β_{ik}° -Werte nach der angegebenen Methode berechnet, so besteht auch die Möglichkeit, die β_{ik}° -Werte unter den Eingabedaten anzugeben.

Nach der Berechnung der U_{i^-} , U_{k^-} und β_{ik} -Werte der nullten Näherung, gibt das Programm den Befehl, unter Berücksichtigung der als Eingabedaten angegebenen β_{ik}° -Werte die β_{ik}° -Matrix aufzustellen und zu den β_{CC}° -Werten die für die späteren Änderungen notwendigen Konstanten f_{ik} und g_{ik} auszuwählen. Die durch das π -System verursachten Änderungen werden in jedem Iterationsschritt mit Hilfe der Gleichungen (1) und (2) für die U_i -Werte, bei β_{SiC}° mit der Gleichung (4), bei β_{CC}° mit der Gleichung (5) berücksichtigt.

$$\beta_{\text{CC}}^{\circ} = f_{ik} - g_{ik} p_{ik}, \qquad (5)$$

wobei p_{ik} die Bindungsordnung ist und sich in jedem Iterationsschritt bei gerader π -Elektronenzahl nach der folgenden Gleichungen ändert:

$$p_{ik} = 2 \sum_{\substack{j=1\\i\neq k}}^{n/2} c_{ij} c_{kj}.$$
 (6)

Die Werte der Konstante g_{ik} in Gleichung (5) werden aufgrund des in der nullten Näherung ermittelten Wertes von β_{CC}° einer in das Programm eingebauten Tabelle entnommen. Die Zahlenwerte in der Tabelle wurden aus den Richtungstangenten der aufgrund der folgenden Gleichungen (Pariser und Parr [5]) ermittelten Kurve zusammengestellt

$$\beta_{CC}^{\circ} = -2463,7 \ e^{-5,007R_{CC}} \tag{7}$$

$$R_{CC} = 1.543 - 0.206 \ p_{CC}$$
 (8)

Die Konstanten in Gleichung (7) wurden aus experimentellen Daten für Äthylen, die Konstanten in Gleichung (8) aus den Bindungsabständen der C—C- und C=C-Bindungen ermittelt.

Die f_{ik} -Werte erhält man aus der Gleichung (9):

$$f_{ik} = \beta_{ik}^{\circ} \text{ (nullte N\"{a}herung)} - g_{ik} p_{ik}^{\circ},$$
 (9)

wobei p_{ik}° die Eingangsbindungsordnung bedeutet. Die Werte f_{ik} und g_{ik} werden bei der nullten Näherung bestimmt und bei jedem Iterationsschritt für die Änderung von β_{CC}° verwendet.

Nach Bestimmung der für die PPP-Rechnungen erforderlichen Parameter U_i und β_{ik}° werden mit Hilfe der unter den Eingabedaten angegebenen Ein- und Zweizentren-Coulombintegrale die Fock-Matrixelemente, in folgender geänderter Form mit Hilfe der Gleichungen (2), (4) und (5) ermittelt.

$$F_{ii} = a_i e^{b_i Z_i} + d_i + \frac{1}{2} q_i \gamma_{ii} + \sum_{k \neq i}^{N} (q_k - z_k) \gamma_{ik}$$
 (10)

$$F_{ik}^{SiC} = e_{ik} \left(a_i e^{b_i Z_i} + d_i a_k e^{b_k Z_k} + d_k \right) S_{ik} + \frac{1}{2} p_{ik} \gamma_{ik}$$
 (11)

$$F_{ik}^{(CC)} = f_{ik} - g_{ik}p_{ik} + \frac{1}{2}p_{ik}\gamma_{ik}. \tag{12}$$

Im Rechenprogramm sind Möglichkeiten auch für die folgenden Fälle gegeben:

a) Die U_i -Werte werden während der Rechnung variiert oder sie werden nicht variiert.

- b) Einige β_{ik}° -Werte werden mit dem Programm nicht berechnet, doch werden sie während der Rechnung nach (4) oder (5) geändert.
 - c) Einige β_{ik}° -Werte sollen während der Rechnungen nicht variiert werden.

Die Näherungen werden solange fortgesetzt, bis das System mit einer Genauigkeit von 10^{-6} selbstkonsistent wird. Nach Erreichung der Selbstkonsistenz wird die gesamte π -Elektronenenergie nach folgender Gleichung berechnet:

$$E_{\pi} = \sum_{a=1}^{n / 2} \left\{ \left. \varepsilon_{a}^{\text{SCF}} + \sum_{i=1}^{N} c_{ia}^{\text{SCF}} \left[\left| \left(U_{i}^{\text{SCF}} - \sum_{k \neq i}^{N} z_{k} \gamma_{ik} \right| c_{ia}^{\text{SCF}} + \sum_{\substack{k=1 \\ k \neq i}}^{N} \beta_{ik}^{\circ \text{SCF}} \, c_{ia}^{\text{SCF}} \right] \right\}.$$

Die Eingabedaten des Programms sind: die Zentrenzahl N, die Zeilenzahl t_m , der Matrix β_{ik}° , die π -Elektronenzahl n, die Elektronendichte q_1 , die Zahl z_i , der durch das Atom in das π -System gegebenen Elektronen, die Konstanten a_i , b_i , d_i , e_{ik} , die effektiven Kernladungen Z_i^* , die Bindungsordnungen p_{ik}° , die Bindungsabstände R_{ik} (Å), die während der Rechnungen nicht ermittelten β_{ik}° -Werte, die »Zeichen-Matrizen«, die Ein- und Zweizentren-Coulombntegrale γ_{ii} und γ_{ik} . Das Programm ist im Anhang beigegeben.

Ergebnisse

Das VSCF—LCAO—MO—PPP-Programm wurde bei Rechnungen an fünf gewählten Silyl-Äthylen-Verbindungen [1] angewandt (Tab. I). Es wurde untersucht, wie sich Singulett-Energieübergänge, Elektronendichte-Verteilung und Bindungsordnungen in den folgenden Fällen ändern:

- a) Ohne U_i und β_{ik}° -Variation
- b) Nur mit U_i -Variation
- c) Nur mit β_{SiC}° -Variation
- d) Nur mit β_{CC}° -Variation
- e) Mit U_i und β_{SiC}° -Variation
- f) Mit U_i und β_{CC}° -Variation
- g) Mit U_{i} -, β_{SiC}° und β_{CC}° -Variation.

Da unser VSCF—LCAO—MO—PPP-Rechenprogramm nach erreichter Selbstkonsistenz nur die Endwerte von U_i , β_{ik}° , Z_i , p_{ik} und q_i angibt, wurden die Singulett-Energieübergänge mit den ermittelten Daten mit Hilfe des SCF—LCAO—MO—PPP—CI-Programms [1] berechnet.

Die Grundzahlen und Konstanten für das VSCF—LCAO—MO—PPP-Rechenprogramm wurden auf theoretischem Wege [4] ermittelt und in Tab. I zusammengefaßt.

Die Ergebnisse sind in Tab. II und III und Abb. 1-3 zusammengefaßt.

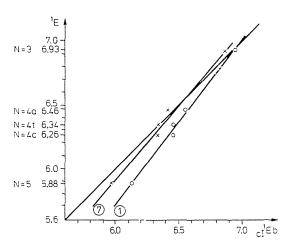


Abb. 1. Korrelation zwischen den berechneten und gemessenen Singulett-Energieübergangswerten, 1. Ohne Variation; 7. Bei U_{i-} , β_{SC}° - und β_{CC}° -Variation

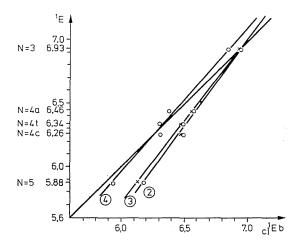


Abb. 2. Korrelation zwischen den berechneten und gemessenen Singulett-Energieübergangswerten. 2. Bei U_i -Variation; 3. bei β_{SiC} -Variation; 4. bei β_{CC}° -Variation

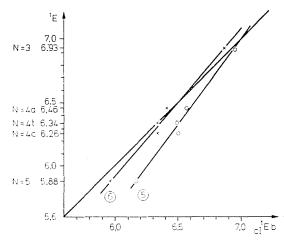


Abb. 3. Korrelation zwischen den berechneten und gemessenen Singulett-Energieübergangswerten. 5. Bei U_i - und β_{SiC}^2 -Variation; 6. bei U_i und β_{CC}^2 -Variation

Aus den Ergebnissen kann festgestellt werden, daß durch die U_i -Variation die Elektronendichte und die Bindungsordnung beeinflußt werden. Bei der N=3 Verbindung nähert sich das berechnete Dipolmoment dem experimentellen Wert in jeder Variation, wo eine U_i -Variation angewandt wird. Die Singulett-Energieübergangswerte werden hingegen durch alle Variationen beeinflußt, wo eine β_{CC}° -Variation angewandt wird. Der Einfluß der β_{SiC}° -Variation ist neben dem Einfluß der U_i - und β_{CC}° -Variationen unwesentlich.

Tabelle I Eingangsparameter bei Rechnungen für das π -System von Silyl-Äthylen-Verbindungen Bezeichnung und Struktur der Verbindungen

Uer	= -1.10 eV	$\gamma_{CC}=7,3783 \text{ eV}$
- 01		
	= -11,16 eV	β_{CC}^{*} N=3 = -2,9403 eV
BSic	= -1,5425 eV	N=4 = -2.8402 eV
1 010	=3,762 eV	N=5 = -2.7401 eV
['] SiSi	= 3,102 61	11-0 - 2,1401 CV

Bezeichnung	Struktur				
N=3 N=4a N=4t N=4c N=5	$ \begin{array}{c} (\text{CH}_3)_3 \text{Si-CH} = \text{CH}_2 \\ [\text{CH}_3)_3 \text{Si}]_2 = \text{C} = \text{CH}_2 \\ (\text{CH}_3)_3 \text{Si-CH} = \text{CH-Si(CH}_3)_3 \\ \\ [(\text{CH}_3)_3 \text{Si}]_2 = \text{C} = \text{CH-Si(CH}_3)_3 \end{array} \\ \text{cis} $	ns			

Tabelle II Bindungsordnung und Elektronendichte bei den einzelnen Variationen für die Modellverbindung N=3

	Ohne Variation	U _{Var} ,	eta_{SiC}°	eta°_{CC} Variation	$\mathrm{U}_i + eta_{SiC}^\circ$ Variation	$egin{aligned} \mathrm{U}_i + eta_{CC}^\circ \ \mathrm{Variation} \end{aligned}$	$\mathrm{U}_{i}+eta_{SiC}^{\circ}+\ +eta_{CC}^{\circ}\ _{\mathrm{Variation}}$
\mathbf{U}_{Si}	-1,1	_1,0887	-1,1	-1,1	-1,0889	-1,0886	-1,0888
U_{C^2}	-11,16	-11,1601	-11,16	-11,16	-11,1603	-11,1602	-11,1603
U_{C^3}	-11,16	-11,2847	-11,16	-11,16	-11,2829	11,2860	-11,2842
β_{SiC}°	-1,5425	-1,5425	1,5361	-1,5425	-1,5318	-1,5425	1,5317
β_{CC}°	-2,9403	-2,9403	-2,9403	-2,8910	-2,9403	-2,8933	-2,8940
P_{SiC}	0,1790	0,1753	0,1783	0,1800	0,1741	0,1762	0,1750
p_{CC}	0,9838	0,9845	0,9839	0,9836	0,9847	0,9844	0,9846
q_{Si}	0,0316	0,0307	0,0313	0,0320	0,0303	0,0310	0,0306
q_{C^2}	1,0135	0,9999	1,0134	1,0138	0,9999	0,9999	0,9999
q_{C^3}	0,9549	0,9694	0,9552	0,9542	0,9698	0,9691	0,9695
$\mu_{(D)}$	0,314	0,217	0,310	0,320	0,2119	0,221	0,216

Experimenteller Wert = 0,229 D. Die U_i und β_{ik}^2 -Werte sind die Ergebniswerte der Variation.

Tabelle III Die Werte der E-Singulettübergänge bei den einzelnen Variationen

	Experimen- telle Werte	Ohne Variation	U _i Variation	eta_{SiC}°	eta_{CC}°	$\mathrm{U}_{i}+eta_{Sic}^{\circ}$ Variation	$\mathrm{U}_{i} + eta_{CC}^{\circ}$ Variation	$egin{array}{l} \mathbf{U_i} + oldsymbol{eta_{SiC}^{\circ}} \ + oldsymbol{eta_{CC}^{\circ}} \ \mathbf{Variation} \end{array}$
N = 3	6.93	6,940	6,949	6,942	6,853	5,953	6,866	6,871
N = 4a	6,46	6,557	6,570	6,558	6,381	6,574	6,409	6,415
N = 4t	6.34	6,462	6,494	6,471	6,308	6,496	6,343	6,345
N = 4c	6.26	6,462	6,494	6,471	6,308	6,496	6,343	6,345
N = 5	5,88	6,125	6,167	6,136	5,916	6,167	5,968	5,968
Bezeichnu	Bezeichnung					4.		
in den Al	in den Abb.		2	3	4	5	6	7

In den Abbildungen wurden die berechneten Singulett-Energieübergangswerte in Verbindung mit den experimentellen Werten für fünf Modellverbindungen dargestellt. Die Berücksichtigung des Einflusses des π -Systems, d. h. die U_i - und β_{ik}° -Variationen hatten zur Folge, daß sich die ermittelte Gerade der Geraden mit 45° Neigungswinkel nähert. Während die berechneten Singulett-Energiewerte ohne Variationen bei allen Verbindungen in einer Richtung von den Versuchswerten abweichen, streuen bei der vollen Variation die Werte um die Gerade mit 45° Neigungswinkel. Die Richtungstangente der Geraden wird durch alle Variationen beeinflußt, wo eine β_{CC}° -Variation stattfindet.

Die Berücksichtigung des Einflusses des π -Systems bei den U_i - und β_{ik}° -Werten ergibt folglich, daß sich das berechnete Dipolmoment der N=3 Verbindung und die berechneten Singulett-Energieübergangswerte bei allen fünf Modellverbindungen den experimentellen Werten nähern.

```
'begin'
'real' delt,oszl,osz2,sl,xy,kl,sum,sum0,sum1,sum2;
'boolean'pszi,kszi,eta,alfa:,
'integer' n,tm,w,i,j,k,i5,j5,d,gg:,
'input'(n,tm):,
'begin' 'array'z1,q1,a1,b1,c1,d1(:1:n:),qq,u1,je11,mu,z2(:1:n:),
gama, pik, gi, bet0, bet1, beta,fi(:1:n,1:n:),jel2,ri,t,p,
e(:1:tm,1:n:),g(:1:9:),has(:1:9,1:2:),am,bm(:0:5:),c,cc,pp(:1:n,1:n:);
'integer' 'array' x(:1:n:):.
'real' 'procedure'fakt(m):,
'integer' m:,'begin' 'integer' i3,j3:,
'if'm=0 'then' 'begin'fakt:=1:, 'goto'veg
'end':, j3:=1:,
'for' i3:=1 'step' l 'until' m 'do'
j3:=j3□i3:,
fakt:=j3:, veg:'end'fakt:,
'procedure'intl(am,pl):,'value'pl:,
'array'am:,'real'pl:,'begin'
'integer'i2,k2:,'real'wo:,
am(:0:):=exp(-p1)/p1:,
'for'i2:=1'step'1'until'5'do' 'begin'wo:=0:,
'for'k2:=0'step'1'until'i2'do'
wo:=wo+p1\Box\Box k2/fakt(k2):,
am(:i2:):=\hat{f}akt(i2)\Box exp(-p1)/p1\Box\Box(i2+1)\Box wo:,
'rend'end'intl:,
'procedure'int2(bm,tl,pl):,
'value'tl,pl:,'real'tl,pl:,'array'bm:,
'begin' 'integer'i2,j2:,'real'wl,w2,w3,w4,w5,w6:,
w1:=t1\(\sigma\)p1:,
bm(:0:):=1/w1\Box(exp(w1)-exp(-w1)):, 'for'i2:=1'step'1'until'5'do'
'begin'w2:=0:,w5:=i2'div'2:,w6:=i2-w5:,w3:=0:,
'for'j2:=1'step'1'until'i2+1'do' 'begin' 'if'(i2-j2)'div'2=2=i2-j2'then'w4:=1'else'w4:=-1:,
bm(:i2:):=-exp(-w1)/w1\Box\Box w5\Box w2/w1\Box\Box w6-exp(w1)/w1\Box\Box w5\Box w3/w1\Box\Box w6:,
'end' 'end'int2:,
'library'jako:,
'procedure'gabe(gama):,
'array'gama:,
'begin' 'integer'k,i,j:,'real'a:,
'input'(k):,'if'k=0'then'
'begin'
'for'i:=l'step'l'until'n'do'
'for'j:=l'step'l'until'n'do'
gama(:i,j:):=0
```

```
'end' 'else' 'begin'
'for'i:=1'step'l'until'n'do'
'for'j:=i'step'l'until'n'do'
'begin' 'input'(a):,
gama(:i,j:):=gama(:j,i:):=a'end' 'end' 'end'gabe:,
 procedure'beo(t,m,n):,
'value'm,n:,
'integer'n,m:,
'array't:,
'begin' 'integer'i,j,k,l:,'real'a:,
'for'i:=1'step'l'until'm'do'
'for'j:=1'step'l'until'n'do'
t(:i,j:):=0:,'input'(k):,
'if'k=0'then' goto'v1:,
'input'(l):,j := 0:,
kl:'input'(a):,
'input'(k):,'if'k'neq'0'then' 'goto'stop:,
'input'(k):,'if'k=0'then' 'goto'stop:,
'input'(i):,'if'i=0'then' 'goto'stop:,
t(:k,i:):=a:,j:=j+1:,
'input'(k):,'if'k=0'and'j=l'then' 'goto'vege:,
'if'k=0'then' 'goto'kl'else''goto'k2:,
vege:
'input'(k):,
'if'k=0'then' 'begin'
'for'i:=2'step'1'until'm'do'
'for'j:=1'step'1'until'i-1'do'
t(:i,j:):=t(:j,i:):,'end':,
 'goto'vl:,
stop:
 'text'hibas adatok:, 'stop':,
vl:'end'beo:.
 'procedure'beol(t,n):,
'value'n:,'integer'n:,
'array't:,
'begin' 'integer'i,j,k:,'real'a:,
 'for'i:=1'step'l'until'n'do'
 t(:i:):=0:
'input'(k):,'if'k=0'then' 'goto'v1:,
'input'(k):,j := 0:,
k1:
'input'(a):,
'input'(i):,'if'i'neq'0'then' 'goto'stop:,
'input'(i):,'if'i=0'then' 'goto'stop:,
t(:i:):=a:.j:=j+1:,
'input'(i):,'if'i=0'and'j=k'then' 'goto'v1:,
'if'i=0'then''goto'kl'else' 'goto'k2:.
 'text'hibas adatok:,'stop':,
v1:
 'end'beol:.
beol(z2,n):,beol(q1,n):,beo(pik,n,n):,
beol(al,n):,beol(bl,n):,beol(cl,n):,
beol(d1,n):,beo(ri,tm,n):,beol(jel1,n):,
beo(jel2,tm,n):,beo(bet0,n,n):,
beo(e,tm,n):,gabe(gama):,
 'text'bemeno adatok:,
'output'('array'22:2:7,'array'gama,'array'ql,'array'pik,'array'al, 'array' bl,'array'cl,'array'dl,'array'ri,'array'jell,'array'jel2. 'array'bet0,'arra'e):,
 'input'(delt,w):,
```

```
g(:1:):=-3:, g(:2:):=-2.75:, g(:3:):=-2.476:,
g(:4:):=-2.3:, g(:5:):=-2.095:, g(:6:):=-1.846:,
g(:7:):=-1.727:, g(:8:):=-1.524:, g(:9:):=-1.461:,
has(:1,1:):=-3.05:, has(:1,2:):=has(:2,1:):=-2.77:.
has(:2.2:):=has(:3.1:):=-2.52:
has(:3,2:):=has(:4,1:):=-2.30:
has(:4,2:):=has(:5,1:):=-2.14:
has(:5,2:):=has(:6,1:):=-1.90:
has(:6,2:):=has(:7,1:):=-1.75:
has(:7,2:):=has(:8,1:):=-1.60:
has(:8.2:):=has(:9.1:):=-1.49:
has(:9,2:):=-1.35:
eta:='true':.kszi:='false':.alfa:='true':. 'goto'vagv:,
utol:eta:='false':,
vagy:'for'i:=1 'step' 1 'until' n 'do' 'begin' z1(:i:):=c1(:i:)-0.35□q1(:i:):,
ul(:i:):=al(:i:) \square exp(bl(:i:) \square zl(:i:)) + dl(:i:)'end':
'for' i:=1 'step' 1 'until' n 'do'
'if'jell(:i:)=1 'then'mu(:i:):=z1(:i:)/3
'else' mu(:i:):=z1(:i:)/2:
'for' i:=1 'step' 1 'until' tm'do'
'for' j:=1 'step' 1 'until' n 'do'
'if' jel2(:i,j:)=0 'then' 'begin' t(:i,j:):=p(:i,j:):=0
'end''else' 'begin'
t(:i,j:):=abs(mu(:j:)-mu(:i:))/(mu(:j:)+mu(:i:)):,
p(:i,j:):=0.5\Box(mu(:j:)+mu(:i:))\Box ri(:i,j:)/0.5292
 end':.
'if'alfa 'then' 'goto'kezd'else' 'goto'kati:, kezd:'for'i:=l'step'l'until'tm'do'
'for'j:=1'step'l'until'n'do'
'begin' 'if'jel2(:i,j:)=1'then'
'begin'int2(bm,t(:i,j:),p(:i,j:)):,intl(am,p(:i,j:)):,
osz1:=(1+t(:i,j:))_{\Box}(5/2):,
osz2:=(1-t(:i,j:))\Box\Box(7/2):,
bet1(:i,j:):=e(:i,j:)\square(u1(:i:)+u1(:j:))\square p(:i,j:)\square\square 6/32/sqrt(6)\square
osz1 \square osz2 \square (am(:5:) \square (bm(:3:) - bm(:1:)) + am(:4:) \square (bm(:0:) - bm(:2:)) +
am(:3:)\Box(bm(:1:)-bm(:5:))+am(:2:)\Box(bm(:4:)-bm(:0:))+am(:1:)\Box
(bm(:5:)-bm(:3:))+am(:0:)\Box(bm(:2:)-bm(:4:)))'end' 'else'
'begin"if'jel2(:i,j:)=2'then' 'begin'
if't(:i,j:)=0'or'p(:i,j:) \square t(:i,j:)'le'0.02'then'
begin'intl(am,p(:i,j:)):
betl(:i,j:):=e(:i,j:)\square(ul(:i:)+ul(:j:))\square p(:i,j:)\square\square 5/120\square(5\square am(:4:)-6\square
am(:2:)+am(:0:))'end"else"begin
int1(am,p(:i,j:)):,int2(bm,t(:i,j:),p(:i,j:)):,
betl(:i,j:):=e(:i,j:)\square(ul(:i:)+ul(:j:))\square p(:i,j:)\square\square 5/32\square(l-t(:i,j:)\square\square 2)
'for'i: =tm+1'step'l'until'n'do'
'for'j:=1'step'l'until'n'do'betl(:i.j:):=bet0(:i.j:):,
'for'i:=1'step'1'until'n'do'
'for'j:=1'step'l'until'n'do'
betl(:j,i:):=betl(:i,j:):,
'for'i:=1'step'l'until'n'do'
'for'j:=1'step'l'until'n'do'
'begin'
fi(:i,j:):=gi(:i,j:):=0'end':,
'for'i:=1'step'l'until'tm'do'
'for'j:=1'step'l'until'n'do'
'begin'
'if'jel2(:i,j:)=2'or'jel2(:i,j:)=6'then'
'begin'
'for'i5:=1'step'1'until'9'do'
'begin'
```

```
'if'betl(:i,j:) has(:i5,1:)'and'betl(:i,j:) has(:i5,2:)'then'
'begin'
gi(:i,j:):=g(:i5:):,fi(:i,j:):=betl(:i,j:)-g(:i5:)\square pik(:i,j:) end' 'end' 'end':,
'if'jel2(i.j;)=7'then' 'begin'fi(:i,j:):=ri(:i,j:):,
gi(:i,j:):=e(:i,j:)'end' 'end':,
'for'i:=1'step'1'until'n'do'
'for'j:=1'step'l'until'n'do'
'begin'
fi(:j,i:):=fi(:i,j:):,gi(:j,i:):=gi(:i,j:)'end':,
'text'a 0-dik kozelites fik es gik ertekei:,
'output'('array'fi,'array'gi):,
'text'a 0-dik kozelites ui es beta0 ertekei:,
'output' ('array'ul, 'array'betl):,
alfa:='false':,
'goto'ki:,
kati:'for'i:=1'step'l'until'tm'do'
'for'j:=1'step'l'until'n'do'
'begin' 'if'je12(:i,j:)=1'or'je12(:i,j:)=5'then' 'begin'
intl(am,p(:i,j:)):,
\begin{array}{l} int2(bm,t(:i,j:),p(:i,j:));,osz1:=(1+t(:i,j:))\square\square(5/2);,\\ osz2:=(1-t(:i,j:))\square\square(7/2);, \end{array}
betl(:i,j:):=e(:i,j:)\square(ul(:i:)+ul(:j:))\square p(:i,j:)\square\square 6/32/sqrt(6)\square
osz1 \square osz2 \square (am(:5:) \square (bm(:3:) - bm(:1:)) + am(:4:) \square (bm(:0:) - bm(:2:)) +
am(:3:) \Box (bm(:1:)-bm(:5:)) + am(:2:) \Box (bm(:4:)-bm(:0:)) + am(:1:) \Box
(bm(:5:)-bm(:3:))+am(:0:)\Box(bm(:2:)-bm(:4:)))'end'
'else''begin' 'if'jel2(:i,j:)=2'or'jel2(:i,j:)=6'or'jel2(:i,j:)=7
'then'betl(:i,j:):=
fi(:i,j:)+gi(:i,j:)\square pik(:i,j:)'else'
bet1(:i,j:):=bet0(:i,j:)'end' 'end':,
'for'j:=1'step'l'until'n'do'
'for'i:=tm+1'step'l'until'n'do'betl(:i,j:):=bet0(:i,j:):,
'for'i:=1'step'l'until'n'do'
'for'j:=1'step'1'until'n'do'
bet1(:j,::):=bet1(:i,j:):,
ki:'for' i:=1 'step' 1 'until' n 'do'
'begin' s1:=u1(:i:)+0.5□q1(:i:)□gama(:i,i:):,
'for' k:=1 'step' 1 'until' i-1,i+1'step' 1 'until'
n 'do' 'begin'
s1:=s1+(q1(:k:)-z2(:k:))\Box gama(:i,k:):,
beta(:i,i:):=s1:,
beta(:i,k:):=bet1(:i,k:)-0.5 \square pik(:i,k:) \square gama(:i,k:)
'end' 'end':.
'if'kszi'then' 'output'('array'beta):,
jako(n,delt,beta,c):,
'for' i:=1 'step' 1 'until' n 'do'
x(:i:):=i:,
'for' i:=1 'step' l 'until' n-l 'do'
'begin' 'for' k:=i+1 'step' 1 'until' n 'do'
'if'beta(:k,k:) beta(:i,i:) 'then'
'begin' s1:=beta(:i,i:):, beta(:i,i:):=beta(:k,k:):,
beta(:k,k:):=s1:,
d:=x(:i:):, x(:i:):=x(:k:):, x(:k:):=d 'end' 'end':, 'for' k:=1 'step' 1 'until' n 'do' 'begin' 'for' i:=1 'step' 1 'until' n 'do'
cc(:i,k:):=c(:i,x(:k:):) 'end':,
'if' kszi 'then'
'output'('array' beta, 'array'cc):,
'if' (w'div'2) = w'then' 'begin'
'for' i:=1 'step' 1 'until' n 'do'
'begin' 'for' k:=1 'step' 1 'until' n 'do'
'begin' xy:=0:, kl:=0:,
'if'(w-1)'div'2=0'then' 'begin'
```

```
qq(:i:):=cc(:i,(w+1)'div'2:)\square\square 2:,
pp(:i,k:):=cc(:i,(w+1)'div'2:)□cc(:k,(w+1)'div'2:)'end':,
'for' gg:=1 'step' 1 'until' w 'div'2'do'
'begin' xy:=xy+cc(:i,gg:)\square\square2:,
qq(:i:):=2\Box xy:,
kl:=kl+cc(:i,gg:)\Box cc(:k,gg:):,
pp(:i.k:):=2 kl'end' 'end' 'end' 'end'
'else'
'begin'
'for' i:=1 'step' 1 'until' n 'do'
'begin' 'for' k:=1 'step' 1 'until' n 'do'
'begin' xy:=0:, kl:=0:,
'for' gg:=1 'step' 1 'until' (w-1)'div'2 'do'
'begin
xy:=xy+cc(:i,gg:)\square\square 2:,
\begin{array}{l} qq(:i:) := 2 \square xy + cc(:i,(w+1)'div'2:) \square \square 2:, \\ kl := kl + cc(:i,gg:) \square cc(:k,gg:):. \end{array}
\begin{array}{lll} & \text{pp}(:i,k:):=2 \square k l + \text{cc}(:i,(w+1)' \text{div}' 2:) \square \\ & \text{cc}(:k,(w+1)' \text{div}' 2:)' \text{end}' \text{ 'end}' \text{ 'end}' \text{ 'end}' \text{ '} \\ & \text{'for'} \ i:=1 \text{ 'step'} \ l \text{ 'until'} \ n \text{ 'do'} \\ & \text{'for'} \ k:=1 \text{ 'step'} \ l \text{ 'until'} \ n \text{ 'do'} \end{array}
'if' abs(pp(:i,k:)-pik(:i,k:))'ge' \Omega-6'or'
abs(qq(:i:)-q1(:i:))'ge'-6' \subseteq then'
'goto' veg 'else' 'goto' stop:,
veg:'for' i:=1 'step' l 'until' n'do'
'begin' q1(:i:):=qq(:i:):,
'for' k:=1 'step' l 'until' n 'do'
pik(:i,k:):=pp(:i,k:)'end':,
kszi:=pszi:=alfa:='false':.
'goto'vagy:,
stop:'for' i:=1 'step' 1 'until' n 'do'
'begin'q1(:i:):=qq(:i:):.
'for' k:=l'step'l'until'n'do'
pik(:i,k:):=pp(:i,k:)'end':,
kszi:='true':.
'if' eta'then' 'goto'utol:,'output'('array'pik,'array'ql):,
'text'az utolso kozelites ui,zi es beta0 ertekei:,
'output'('array' ul, 'array' zl'array' betl):,
'text' elektron energia:,'spaces'10:,
sum:=0:
'for'j:=1'step'1'until'w/2'do'
'begin'sum0:=0:,
'for'i:=1'step'l'until'n'do'
'begin'sum1:=sum2:=0:.
'for'k:=1'step'1'until'i-1,i+1'step'1'until'n'do'
'begin'sum2: =sum2+bet1(:i,k:)\squarecc(:i,j:):,
sum1\!:=\!sum1\!+\!z2(:k:) \square gama(:i,k:)'end':.
sum0:=sum0+((+u1(:i:)-sum1)\Box cc(:i,j:)+sum2)\Box cc(:i,j:)'end':,
sum:=sum+beta(:j,j:)+sum0'end':,
'output'(sum):,
'end' 'end'
```

Zusammenfassung

Es wurde für eine elektronische Rechenanlage Razdan-3 ein Rechenprogramm verfertigt, das zu SCF—LCAO—MO—PPP Rechnungen mit U_i - und β_{ik}^2 -Variation geeignet ist. Das Programm wurde bei quantenchemischen Rechnungen an Silyl-Äthylenen angewandt.

Literatur

```
    J. NAGY, M. T., VÁNDORFFY, I. HORVÁTH: Periodica Polytechn. Chem. Eng. 16, 131 (1972)
    J. NAGY, M. T. VÁNDORFFY: J. Organometal. Chem. 31 (1971) 205-216
```

J. Nagy, J. Réffy: J. Organometal. Chem. 22, 573-582 (1970)
 J. Nagy, M. T. Vándorffy: J. Organometal. Chem. 31 (1971) 217-226
 R. Pariser, R. G. Parr: J. chem. Physics 21, 466, 767 (1953)

Dr. József Nagy Mária T. Vándorffy Irén Horváth 1502 Budapest Postfach 91. Ungarn